New Journal - Molecular Imprinting (opens in new window)

mips logo Go to mipdatabase.com Search this site:
Custom(Search)
Reference type: Journal
Authors: Zhao L, Ban L, Zhang QW, Huang YP, Liu ZS
Article Title: Preparation and characterization of imprinted monolith with metal ion as pivot.
Publication date: 2011
Journal: Journal of Chromatography A
Volume: 1218
Issue: (50)
Page numbers: 9071-9079.
DOI: 10.1016/j.chroma.2011.10.027
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0021967311015378

Abstract: This report provided the first example of using pivot concept to prepare monolithic molecularly imprinted polymers (MIPs) with ketoprofen (KET) imprints, in which metal ions were employed as mediator between the functional monomer and the template to achieve higher fidelity of imprint. To solve metal ions in pre-polymerization system, a new ternary porogen of dimethyl sulfoxideGÇôtolueneGÇôisooctane was developed for preparation of MIP monoliths with high porosity and good permeability. The effect of polymerization parameters such as the nature of metal ions, the ratio of template to metal ion and the degree of crosslinking, on the permeability, morphology and affinity of the metal ion mediated MIP monolith were studied. The experiments demonstrated that Ni2+, Co2+ and Zn2+ can be applied as pivot to prepare KET-imprinted monolith. Relative to monolithic MIP without metal ions, all the ion-mediated macropore MIP monoliths showed enhanced permeability, capacity factor and selectivity factor. High permeability (1.06 x 1-7 mm2) was obtained on the Co2+-mediated MIP monolith and great selectivity factor (3.84) was achieved on the Ni2+-mediated one. The stoichiometric displacement model was constructed to investigate the recognition mechanism of metal-ion mediated MIP. The results indicate that metal ion as pivot not only improves the affinity but also allows the fine-tuning on the macroporous structure of MIP monolith
Template and target information: ketoprofen, KET
Author keywords: monolith, molecularly imprinted polymer, metal ion, Pivot, molecular recognition, ketoprofen

Featured products

 

Element 73 tie - Tantalum tie say Ta with a tie

 

theophylline template mug ball and stick

 

MIP2010 10th Anniversary mug