MIPs logo MIPdatabase      MIP2020 Conference logo Use this space
Custom Search
Reference type: Journal
Authors: Liu Y, Chen R, Yuan DD, Liu ZC, Meng MJ, Wang Y, Han J, Meng XG, Liu FF, Hu ZY, Guo WL, Ni L, Yan YS
Article Title: Thermal-responsive ion-imprinted polymer based on magnetic mesoporous silica SBA-15 for selective removal of Sr(II) from aqueous solution.
Publication date: 2015
Journal: Colloid & Polymer Science
Volume: 293
Issue: (1)
Page numbers: 109-123.
DOI: 10.1007/s00396-014-3393-7

Abstract: Highly thermal-responsive magnetic Sr(II)-imprinted polymer (Sr(II)-TMIIP) was successfully synthesized as a potential effective adsorbent for selective removal of Sr(II) in aquatic environments. First, magnetic polyethyleneimine-loaded mesoporous SBA-15 (Fe3O4@PEI-SBA-15) was prepared via a simple polymer-mediated self-assembly method. Then, the surface of Fe3O4@PEI-SBA-15 was endowed with reactive vinyl groups through modification with 3-(methacryloyloxy)propyl trimethoxysilane (MPS). With the aid of vinyl groups, free radical polymerization of N-isopropylacrylamide (NIPAM), methacrylic acid (MAA), and N,N'-methylenebisacrylamide (BIS) in the presence of Sr(II) was performed with 2,2'-azobisisobutyronitrile (AIBN) as initiator, which provided a desired imprinted layer coating onto Fe3O4@PEI-SBA-15. The as-prepared Sr(II)-TMIIP was characterized by Fourier transmission infrared spectra (FT-IR), X-ray diffractometer (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), UV, and N2 adsorptionGă˘desorption techniques. The results showed that the Sr(II)-TMIIP exhibited thermal stability, temperature and magnetic sensitivity (M s = 10.34 emu/g), and ordered mesoporous structure. Batch mode adsorption studies were conducted to investigate the specific binding kinetics, adsorption equilibrium, and selective recognition ability of Sr(II)-TMIIP. Adsorption equilibrium experiments showed that the adsorption amount strongly depended on temperature and reached a maximum around the lower critical solution temperature (LCST). Regeneration experiments indicated that repeated adsorption and desorption by temperature swings were possible. Compared with the nonimprinted polymer (NIP), the Sr(II)-TMIIP had good temperature response and excellent selectivity and reusability, making it possible in applying for Sr(II) separation and controlled release
Template and target information: Srontium ion, Sr(II)
Author keywords: Thermal-responsive, Ion-imprinted polymer, Magnetic, SBA-15, Sr(II)

  MIPs are Forever spoof movie poster bag  Chemistry peptide mug  Chemists are fun customisable shirt

Molecules Special Issue call      Appeal for information


Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.

Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:

Mickey Mouse 90th Anniversary banner