MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Wojnarowicz A, Sharma PS, Sosnowska M, Lisowski W, Huynh TP, Pszona M, Borowicz P, D'Souza F, Kutner W
Article Title: An electropolymerized molecularly imprinted polymer for selective carnosine sensing with impedimetric capacity.
Publication date: 2016
Journal: Journal of Materials Chemistry B
Volume: 4
Issue: (6)
Page numbers: 1156-1165.
DOI: 10.1039/C5TB02260F
Alternative URL: https://www.researchgate.net/publication/290977477_Electropolymerized_molecularly_imprinted_polymer_for_selective_carnosine_sensing_with_capacitive_impedimetry

Abstract: A chemosensor with a molecularly imprinted polymer (MIP) film as the recognition unit selective to a carnosine biomarker was molecularly engineered, devised and fabricated. The molecular structure of the pre-polymerization complex of the carnosine template with the carboxy and 18-crown-6 ether derivatives of bis(2,2'-bithien-5-yl)methane functional monomers was thermodynamically optimized by density functional theory (DFT) at the B3LYP/6-31g(d) level. The calculated high negative Gibbs free energy change, Δ G = -227.4 kJ mol-1, indicated the formation of a very stable complex. The solution of this complex was prepared and used for deposition of the MIP films on a Pt disk electrode or an Au electrode of the quartz crystal resonator by potentiodynamic electropolymerization. Subsequently, the carnosine template was extracted from the MIPs with 0.1 M NaOH, as confirmed by the differential pulse voltammetry (DPV), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy measurements. For carnosine sensing, impedimetric capacity (IC) measurements were performed under flow-injection analysis (FIA) conditions resulting in the limit of detection of 20 μM (at S/N = 3). This limit implied the readiness of the chemosensor for carnosine determination in clinical samples. Due to multiple modes of carnosine binding to MIP recognition sites, the IC chemosensor was found to be more selective to carnosine than to its common interferences including anserine, carcinine and histidine. Advantageously, the imprinting factor, determined by piezoelectric microgravimetry (PM), was high equaling 14.9
Template and target information: carnosine


  Bag featuring the name Piyush spelled out in symbols of the chemical elements  Mug featuring the name Marta spelled out in the single letter amino acid code  Woman of proper-tea mug in green






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner