MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Zeng JX, Zhang Z, Dong ZH, Ren PF, Li Y, Liu X
Article Title: Fabrication and characterization of an ion-imprinted membrane via blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) with polyvinylidene fluoride for selective adsorption of Ru(III).
Publication date: 2017
Journal: Reactive and Functional Polymers
Volume: 115
Page numbers: 1-9.
DOI: 10.1016/j.reactfunctpolym.2017.03.018
Alternative URL: http://www.sciencedirect.com/science/article/pii/S1381514817300597

Abstract: An ion-imprinted blend membrane (Ru(III)-IIM) for selectively adsorbing ruthenium(III) from aqueous solutions was fabricated by blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) P(MMA-HEMA) with polyvinylidene fluoride (PVDF). Firstly, P(MMA-HEMA) was successfully synthesized and characterized. Subsequently, combining with the ion-imprinting technology, a series of Ru(III)-IIMs were fabricated via the non-solvent induced phase inversion method. The results indicated that increasing the polymer concentration and extending the evaporation time led to transform the cross-section of membranes from macrovoid structure to a finger-like or tear-like even sponge structure, and also decreased the water flux. The contact angle tests showed the hydrophilicity of Ru(III)-IIMs were effectively improved by blending with P(MMA-HEMA), compared with the PVDF membrane. The adsorption experiments showed that the adsorption capacity of ruthenium(III) onto the Ru(III)-IIM was pH-dependent, and the maximum adsorption capacity reached 42.31 mg g-1 at pH 2.0. The adsorption process was well described by the pseudo-second-order kinetic model and the Langmuir isotherm model. The selective adsorption was studied by using Ni(II) as an interfering ion. Compared with the non-imprinted membrane, the Ru(III)-IIM showed a higher selectivity for Ru(III), with a selectivity coefficient of 6.0 for Ru(III)/Ni(II). In addition, the Ru(III)-IIM had a high reusability and still maintained about 95% of its initial adsorption capacity for Ru(III) after eight cycles
Template and target information: ruthenium ion, Ru(III)
Author keywords: ion-imprinted membrane, Ruthenium(III), Amphiphilic functional polymer, Phase inversion parameters, Adsorption properties


  I love MIPs bag  multi MIPs logo mug    mug featuring the element Ruthenium






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner