MIPs logo MIPdatabase      MIP2020 Conference logo Use this space
Custom Search
Reference type: Book Chapter
Authors: Horemans F, DiliŽn H, Wagner P, Cleij TJ
Publication date: 2012
Chapter title: MIP-based Sensor Platforms for Detection of Analytes in Nano- and Micromolar Range.
Chapter number: 5
Page numbers: 91-124.
DOI: 10.1016/B978-0-444-56331-6.00005-0

Book title: Molecularly Imprinted Sensors
Editors: Li SJ, Ge Y, Piletsky SA, Lunec J
Publisher: Elsevier
City: Amsterdam
ISBN: 978-0-444-56331-6

Abstract: The development of accurate and low-cost sensor systems is of considerable interest. The receptor layer in such a sensor should exhibit excellent binding behavior and selectivity toward the desired target molecules. Although numerous examples of such receptors can be found in nature, unfortunately they have several drawbacks when applied outside their natural environment, such as instability in changing chemical and physical environments and resulting limited shelf life. In contrast, molecularly imprinted polymers (MIPs) are robust and inert over, for example, a wide temperature and pH range, while exhibiting similar specific binding characteristics and selectivity as antibodies. Different readout techniques, such as spectroscopic methods, piezoelectric measurements, and electrochemical detection, are possible in combination with MIP-based sensing. In this chapter, a straightforward and versatile MIP-based sensor platform is presented, which is compatible with both impedimetric and microgravimetric detection. Impedance spectroscopy allows for the accurate detection of target molecules in the nanomolar range. Microgravimetry permits detection in the micromolar range. In this way, the binding events occurring in the MIPs can be monitored over a large concentration range. Optimization of the MIP synthesis for sensor purposes has been demonstrated for a variety of target molecules. It is demonstrated that well-functioning MIPs can be obtained with different synthetic MIP protocols, depending on the target and measuring environment of interest. Furthermore, it becomes evident that the synthesis of a MIP for sensor applications requires special adjustments to the commonly utilized preparation procedures. Typical issues, which have been resolved, are the achievement of better binding behavior in aqueous environments of varying pH, a more homogeneous morphology with associated binding characteristics, and a satisfactory timing of the sensor response. After these optimizations, it can be concluded that the unique combination of specificity, binding capacity, and binding kinetics makes MIPs a valuable class of recognition elements for sensing applications
Template and target information: Review - MIP sensors with nano- and micro-molar sensitivity


  Periodic table Trainer shirt  Mug featuring the name Patrick spelled out in the single letter amino acid code  Gravity waves shirt

Molecules Special Issue call      Appeal for information






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner