MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Jandera P
Article Title: Advances in the development of organic polymer monolithic columns and their applications in food analysis - A review.
Publication date: 2013
Journal: Journal of Chromatography A
Volume: 1313
Page numbers: 37-53.
DOI: 10.1016/j.chroma.2013.08.010
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0021967313012399

Abstract: Monolithic continuous separation media are gradually finding their way to sample pre-treatment, isolation, enrichment and final analytical separations of a plethora of compounds, occurring as food components, additives or contaminants, including pharmaceuticals, pesticides and toxins, which have traditionally been the domain of particulate chromatographic materials. In the present review, recent advances in the technology of monolithic columns and the applications in food analysis are addressed. Silica-based monoliths are excellent substitutes to conventional particle-packed columns, improving the speed of analysis for low-molecular weight compounds, due to their excellent efficiency and high permeability. These properties have been recently appreciated in two-dimensional HPLC, where the performance in the second dimension is of crucial importance. Organic-polymer monoliths in various formats provide excellent separations of biopolymers. Thin monolithic disks or rod columns are widely employed in isolation, purification and pre-treatment of sample containing proteins, peptides or nucleic acid fragments. Monolithic capillaries were originally intended for use in electrochromatography, but are becoming more frequently used for capillary and micro-HPLC. Monoliths are ideal highly porous support media for immobilization or imprinting template molecules, to provide sorbents for shape-selective isolation of target molecules from various matrices occurring in food analysis. The separation efficiency of organic polymer monoliths for small molecules can be significantly improved by optimization of polymerization approach, or by post-polymerization modification. This will enable full utilization of a large variety of available monomers to prepare monoliths with chemistry matching the needs of selectivity of separations of various food samples containing even very polar or ionized compounds
Template and target information: Review - food analysis
Author keywords: food analysis, Silica monolithic columns, Organic polymer monoliths, MIPs, disks


  Eat, sleep, imprint, greetings card  SMI logo mug  Man of proper-tea mug in red






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner