MIPs logo MIPdatabase      Use this space
Reference type: Journal
Authors: Yagishita M, Kubo T, Nakano T, Shiraishi F, Tanigawa T, Naito T, Sano T, Nakayama SF, Nakajima D, Otsuka K
Article Title: Efficient extraction of estrogen receptor-active compounds from environmental surface water via a receptor-mimic adsorbent, a hydrophilic PEG-based molecularly imprinted polymer.
Publication date: 2018
Journal: Chemosphere
DOI: 10.1016/j.chemosphere.2018.10.194
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0045653518320654

Abstract: We report an efficient screening procedure for the selective detection of compounds that are actively bound to estrogen receptor (ER) from environmental water samples using a receptor-mimic adsorbent prepared by a molecularly imprinted polymer (MIP). To mimic the recognition ability of ER, we improved the typical MIP preparation procedure using a hydrophilic matrix with a polyethylene glycol (PEG)-based crosslinker and a hydrophobic monomer to imitate the hydrophobic pocket of ER. An optimized MIP prepared with methacrylic acid as an additional functional monomer and estriol (E3), an analogue of 17β-estradiol (E2), exhibited highly selective adsorption for ER-active compounds such as E2 and E3, with significant suppression of non-specific hydrophobic adsorption. The prepared MIP was then applied to the screening of ER-active compounds in sewage samples. The fraction concentrated by the MIP was evaluated by in vitro bioassay using the yeast two-hybrid (Y2H) method and liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOFMS). Compared to an authentic adsorbent, styrene-divinylbenzene (SDB)-based resin, the fraction concentrated by the MIP had 120% ER activity in the Y2H assay, and only 25% peak volume was detected in LC-Q-TOFMS. Furthermore, a few ER-active compounds were identified only from the fraction concentrated by the MIP, although they could not be determined in the fraction concentrated by the SDB-based resin due to ion suppression along with high levels of hydrophobic compounds. These results indicated that the newly developed MIP effectively captured ER-active compounds and while allowing most non-ER-active compounds to pass through
Author keywords: Estrogen receptor, Receptor-mimic adsorbent, Molecularly imprinted polymer, Yeast two-hybrid, LC-Q-TOFMS

  mipdatabase.com logo special offer joke shirt  Lab Heroine Periodic bag  HE-MAN polymer chemistry shirt

Molecules Special Issue call      Appeal for information


Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.

Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:

Mickey Mouse 90th Anniversary banner