Abstract: A molecularly imprinted polymer was selectively applied for solid-phase extraction and diazinon residues enrichment before high-performance liquid chromatography. Diazinon was thermally copolymerized with Fe3O4@polyethyleneglycol nanoparticles, methacrylic acid (functional monomer), 2-hydroxyethyl methacrylate (co-monomer), and ethylene glycol dimethacrylate (cross-linking monomer) in the presence of acetonitrile (porogen) and 2,2-azobisisobutyronitrile (initiator). Then, the imprinted diazinon was reproducibly eluted with methanol/acetic acid (9:1, v/v). The sorbent particles were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The comprehensive study of variables through experimental design showed that the maximum performance was achieved under these conditions: pH 7, 10 mL sample volume, 15 mg sorbent, 10 min vortex time, 5 min ultrasonic time, 200 μL methanol/acetic acid (9:1, v/v) as eluent, and 5 min desorption time. Under optimized conditions, the molecularly imprinted polymer solid-phase extraction method demonstrated a linear range (0.02-5 g mL-1), a correlation coefficient of 0.997, and 0.005 g mL-1 detection limit. This article is protected by copyright. All rights reserved
Author keywords: Diazinon, Magnetic molecularly imprinted polymers, sample preparation, Solid-phase extraction