R
Proceeding, Liu QS et al, Preparation and Application of Picroside II Molecularly Imprinted Ploymer for TCM Researching,
In: Advanced Materials Research, Bu JL, Wang PC, Ai LQ, Sang XM, Li YG (Eds.),
1987-1990, (2011)
   
Rabbit serum
Wei SL et al., Preparation and Application of Di(2-propylheptyl) Phthalate Molecularly Imprinted Solid-phase Extraction Sorbent.
Chinese Journal of Chromatography, 32, (5), 458-463, (2014)
   
Racemate
Chang EJ et al., The preparation of chiral separation membranes by UV polymerization and its properties.
Journal of the Korean Industrial and Engineering Chemistry, 19, (3), 287-294, (2008)
   
RACEMIC AMINES
Klibanov AM, Improving enzymes by using them in organic solvents.
Nature, 409, (6817), 241-246, (2001)
   
racemic carnitine hydrochloride
Li XT et al., Non-covalently molecularly imprinted polymer as a chiral stationary phase to resolve the enantiomers of carnitine hydrochloride.
Chinese Journal of Analytical Chemistry, 30, (4), 388-391, (2002)
   
racemic carnitine hydrochloride
Li XT et al., Enantiomeric resolution on L-carnitine selective polymers prepared by molecular imprinting.
Chinese Chemical Letters, 13, (2), 157-158, (2002)
   
Racemic mixtures
Jalink T et al., Towards EMIC rational design: setting the molecular simulation toolbox for enantiopure molecularly imprinted catalysts.
Chemistry Central Journal, 10, (1), ArticleNo66-(2016)
   
racemic resolution
Kempe M et al., Binding-studies on substrate-and enantio-selective molecularly imprinted polymers.
Analytical Letters, 24, (7), 1137-1145, (1991)
   
racemic resolution
Dunkin IR et al., Molecular imprinting of flat polycondensed aromatic-molecules in macroporous polymers.
Polymer, 34, (1), 77-84, (1993)
   
racemic resolution
Ramström O et al., Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting.
Journal of Organic Chemistry, 58, (26), 7562-7564, (1993)
   
racemic resolution
Sellergren B et al., Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers.
Journal of Chromatography, 635, (1), 31-49, (1993)
   
racemic resolution
Kempe M et al., Chiral recognition of N-a-protected amino-acids and derivatives in noncovalently molecularly imprinted polymers.
International Journal of Peptide and Protein Research, 44, 603-606, (1994)
   
racemic resolution
Mayes AG et al., Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting.
Analytical Biochemistry, 222, (2), 483-488, (1994)
   
racemic resolution
Sellergren B et al., Enantioselective ester hydrolysis catalyzed by imprinted polymers.
Tetrahedron: Asymmetry, 5, (8), 1403-1406, (1994)
   
racemic resolution
Nicholls IA et al., Recognition and enantioselection of drugs and biochemicals using molecularly imprinted polymer technology.
Trends In Biotechnology, 13, (2), 47-51, (1995)
   
racemic resolution
Nilsson KGI et al., Molecular imprinting of acetylated carbohydrate-derivatives into methacrylic polymers.
Journal of Chromatography A, 707, (2), 199-203, (1995)
   
racemic resolution
Sellergren B et al., Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases.
Journal of Chromatography A, 690, (1), 29-39, (1995)
   
racemic resolution
Steinke J et al., Imprinting of synthetic polymers using molecular templates.
Advances in Polymer Science, 123, 81-125, (1995)
   
racemic resolution
Ansell RJ et al., Molecularly imprinted polymers for bioanalysis: Chromatography, binding assays and biomimetic sensors.
Current Opinion in Biotechnology, 7, (1), 89-94, (1996)
   
racemic resolution
Matsui J et al., Metal ion mediated recognition in molecularly imprinted polymers.
Analytica Chimica Acta, 335, (1-2), 71-77, (1996)
   
racemic resolution
Muldoon MT et al., Plastic antibodies: Molecularly-imprinted polymers.
Chemistry and Industry, 204-207, (1996)
   
racemic resolution
Yano K et al., Stereoselective recognition of dipeptide derivatives in molecularly imprinted polymers which incorporate an L-valine derivative as a novel functional monomer.
Analytica Chimica Acta, 357, (1-2), 91-98, (1997)
   
racemic resolution
Ramström O et al., Molecular imprinting technology: Challenges and prospects for the future.
Chirality, 10, (3), 195-209, (1998)
   
racemic resolution
Wulff G, Fitting molecules into polymeric receptors.
Chemtech, 28, (11), 19-26, (1998)
   
racemic resolution
Yano K et al., Molecularly imprinted polymers which mimic multiple hydrogen bonds between nucleotide bases.
Analytica Chimica Acta, 363, (2-3), 111-117, (1998)
   
racemic resolution
Yoshida M et al., Spacer effect of novel bifunctional organophosphorus monomers in metal-imprinted polymers prepared by surface template polymerization.
Journal of Polymer Science Part A: Polymer Chemistry, 36, (15), 2727-2734, (1998)
   
racemic resolution
Piletsky SA et al., Receptor and transport properties of imprinted polymer membranes - a review.
Journal of Membrane Science, 157, (2), 263-278, (1999)
   
racemic resolution
Ratner BD et al., Recognition templates for biomaterials with engineered bioreactivity.
Current Opinion in Solid State & Materials Science, 4, (4), 395-402, (1999)
   
racemic resolution
Spivak D et al., Molecular imprinting of carboxylic acids employing novel functional macroporous polymers.
Journal of Organic Chemistry, 64, (13), 4627-4634, (1999)
   
racemic resolution
Suedee R et al., Direct enantioseparation of adrenergic drugs via thin-layer chromatography using molecularly imprinted polymers.
Journal of Pharmaceutical and Biomedical Analysis, 19, (3), 519-527, (1999)
   
RACEMIC-RESOLUTION
Yoshida M et al., Chiral-recognition polymer prepared by surface molecular imprinting technique.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169, (1-3), 259-269, (2000)
   
RACEMIC-RESOLUTION
Yoshida M et al., Surface imprinted polymers recognizing amino acid chirality.
Journal of Applied Polymer Science, 78, (4), 695-703, (2000)
   
RACEMIC-RESOLUTION
Khasawneh MA et al., Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents II. Covalent imprinted polymers.
Journal of Chromatography A, 922, (1-2), 87-97, (2001)
   
RACEMIC- RESOLUTION
Striegler S, Selective discrimination of closely related monosaccharides at physiological pH by a polymeric receptor.
Tetrahedron, 57, (12), 2349-2354, (2001)
   
RACEMIC- RESOLUTION
Kirchner R et al., Calorimetric investigation of chiral recognition processes in a molecularly imprinted polymer.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 43, (3-4), 279-283, (2002)
   
RACEMIC-RESOLUTION
Seong H et al., Glucose binding to molecularly imprinted polymers.
Journal of Biomaterials Science-Polymer Edition, 13, (6), 637-649, (2002)
   
RACEMIC- RESOLUTION
Striegler S et al., Investigation of sugar-binding sites in ternary ligand-copper(II)-carbohydrate complexes.
European Journal of Inorganic Chemistry, (2), 487-495, (2002)
   
RACEMIC-RESOLUTION
Wulff G, Enzyme-like catalysis by molecularly imprinted polymers.
Chemical Reviews, 102, (1), 1-27, (2002)
   
RACEMIC-RESOLUTION
Alexander C et al., Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis.
Tetrahedron, 59, (12), 2025-2057, (2003)
   
RACEMIC-RESOLUTION
Sibrian-Vazquez M et al., Improving the strategy and performance of molecularly imprinted polymers using cross-linking functional monomers.
Journal of Organic Chemistry, 68, (25), 9604-9611, (2003)
   
RACEMIC- RESOLUTION
Striegler S, Selective carbohydrate recognition by synthetic receptors in aqueous solution.
Current Organic Chemistry, 7, (1), 81-102, (2003)
   
RACEMIC-RESOLUTION
Raitman OA et al., Analysis of NAD(P)+ and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: A surface plasmon resonance study.
Analytica Chimica Acta, 504, (1), 101-111, (2004)
   
racemic resolution
Torres JJ et al., Experimental and theoretical studies on the enantioselectivity of molecularly imprinted polymers prepared with a chiral functional monomer.
Journal of Chromatography A, 1266, 24-33, (2012)
   
racemic resolution
Kadhirvel P et al., Recognitive nano-thin-film composite beads for the enantiomeric resolution of the metastatic breast cancer drug aminoglutethimide.
Journal of Chromatography A, 1358, 93-101, (2014)
   
racemic templates
Hebert B et al., Scalemic and racemic imprinting with a chiral crosslinker.
Analytica Chimica Acta, 890, 157-164, (2015)
   
Ractopamine
Wang S et al., Molecularly imprinted polymer for the determination of trace ractopamine in pork using SPE followed by HPLC with fluorescence detection.
Journal of Separation Science, 32, (9), 1333-1339, (2009)
   
Ractopamine
Hu YL et al., Investigation of ractopamine-imprinted polymer for dispersive solid-phase extraction of trace β-agonists in pig tissues.
Journal of Separation Science, 33, (13), 2017-2025, (2010)
   
Ractopamine
Xu ZG et al., Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples.
Journal of Chromatography A, 1217, (22), 3612-3618, (2010)
   
Ractopamine
Fang GZ et al., Substitution of Antibody with Molecularly Imprinted Film in Enzyme-Linked Immunosorbent Assay for Determination of Trace Ractopamine in Urine and Pork Samples.
Food Analytical Methods, 4, (4), 590-597, (2011)
   
Ractopamine
He JX et al., Preparation, characterization and application of organic-inorganic hybrid ractopamine multi-template molecularly imprinted capillary monolithic column.
Analytica Chimica Acta, 692, (1-2), 57-62, (2011)
   
Ractopamine
Tang YW et al., Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a noncovalent approach.
Analytical and Bioanalytical Chemistry, 401, (7), 2275-2282, (2011)
   
Ractopamine
Zhang QJ et al., Molecularly imprinted solid-phase extraction for the selective HPLC determination of ractopamine in pig urine.
Journal of Separation Science, 34, (23), 3399-3409, (2011)
   
Ractopamine
Huang Y et al., Molecularly-imprinted solid phase extraction coupled with high performance liquid chromatography for the determination of ractopamine in feed samples.
Chinese Journal of Chromatography, 30, (1), 56-61, (2012)
   
Ractopamine
Kong LJ et al., An electrochemical sensor for rapid determination of ractopamine based on a molecularly imprinted electrosynthesized o-aminothiophenol film.
Analytical and Bioanalytical Chemistry, 404, (6), 1653-1660, (2012)
   
Ractopamine
Li Y et al., Separation and enrichment of trace ractopamine in biological samples by uniformly-sized molecularly imprinted polymers.
Journal of Pharmaceutical Analysis, 2, (6), 395-402, (2012)
   
Ractopamine
Wang S et al., Determination of ractopamine in pork by using electrochemiluminescence inhibition method combined with molecularly imprinted stir bar sorptive extraction.
Journal of Electroanalytical Chemistry, 664, (1), 146-151, (2012)
   
Ractopamine
Zhang HC et al., A Conductometric Sensor Based on Screen Printed Electrode Modified with Multi-walled Carbon Nanotubes and Molecularly Imprinted Membrane for Determination of Ractopamine in Pig Urine.
Chinese Journal of Analytical Chemistry, 40, (1), 95-100, (2012)
   
Ractopamine
Zhang HC et al., A novel amperometric sensor based on screen-printed electrode modified with multi-walled carbon nanotubes and molecularly imprinted membrane for rapid determination of ractopamine in pig urine.
Sensors and Actuators B: Chemical, 168, (1), 103-110, (2012)
   
Ractopamine
Cho YJ et al., Improvement of an simultaneous determination for clenbuterol and ractopamine in livestock products using LC-MS/MS.
Korean Journal of Food Science and Technology, 45, (1), 25-33, (2013)
   
Ractopamine
Du W et al., Dummy-template molecularly imprinted solid phase extraction for selective analysis of ractopamine in pork.
Food Chemistry, 139, (1-4), 24-30, (2013)
   
Ractopamine
Liu HL et al., A novel dual-function molecularly imprinted polymer on CdTe/ZnS quantum dots for highly selective and sensitive determination of ractopamine.
Analytica Chimica Acta, 762, 76-82, (2013)
   
Ractopamine
Tang YZ et al., Preparation of ractopamine molecularly imprinted polymers and its chromatographic characterization.
Chinese Journal of Analysis Laboratory, 32, (5), 15-19, (2013)
   
Ractopamine
Wang PL et al., Synthesis of ractopamine molecularly imprinted membrane and its application in the rapid determination of three β-agonists in porcine urine samples.
Journal of Separation Science, 36, (8), 1455-1462, (2013)
   
Ractopamine
Wang YR et al., Preparation and Characteristic Analysis of Ractopamine Molecularly Imprinted Polymers.
Spectroscopy and Spectral Analysis, 33, (10), 2629-2632, (2013)
   
Ractopamine
Yang T et al., Preparation and Characterization of Ractopamine-Imprinted Material Using Surface-Molecular Imprinting Method and Its Adsorption Characteristics.
Scientia Agricultura Sinica, 46, (6), 1256-1262, (2013)
   
Ractopamine
Kong LJ et al., Molecularly imprinted quartz crystal microbalance sensor based on poly(o-aminothiophenol) membrane and Au nanoparticles for ractopamine determination.
Biosensors and Bioelectronics, 51, 286-292, (2014)
   
Ractopamine
Liu HL et al., Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine.
Biosensors and Bioelectronics, 55, 127-132, (2014)
   
Ractopamine
Mi JB et al., Determination of Clenbuterol and Ractopamine in Animal Origin Food by LC-MS/MS Based on a Restricted Access Imprinted Polymer Cartridge for Online Cleanup.
Journal of Instrumental Analysis, 33, (12), 1356-1361, (2014)
   
Ractopamine
Wan DH et al., A microfluidic chip-chemiluminescence sensor based on molecular imprinted recognition for determination of ractopamine.
Journal of Food Safety and Quality, 5, (5), 1391-1397, (2014)
   
Ractopamine
Xiao XH et al., Rapid analysis of ractopamine in pig tissues by dummy-template imprinted solid-phase extraction coupling with surface-enhanced Raman spectroscopy.
Talanta, 138, 40-45, (2015)
   
Ractopamine
Ma M et al., A disposable molecularly imprinted electrochemical sensor based on screen-printed electrode modified with ordered mesoporous carbon and gold nanoparticles for determination of ractopamine.
Journal of Electroanalytical Chemistry, 775, 171-178, (2016)
   
Ractopamine
Tang YW et al., Determination of ractopamine in pork using a magnetic molecularly imprinted polymer as adsorbent followed by HPLC.
Food Chemistry, 201, 72-79, (2016)
   
Ractopamine
Yao T et al., Enhancement of surface plasmon resonance signals using a MIP/GNPs/rGO nano-hybrid film for the rapid detection of ractopamine.
Biosensors and Bioelectronics, 75, 96-100, (2016)
   
Ractopamine
Tang YW et al., Upconversion Nanoparticles Capped with Molecularly Imprinted Polymer as Fluorescence Probe for the Determination of Ractopamine in Water and Pork.
Food Analytical Methods, (2017)
   
Ractopamine
Pan MF et al., Reproducible Molecularly Imprinted Piezoelectric Sensor for Accurate and Sensitive Detection of Ractopamine in Swine and Feed Products.
Sensors, 18, (6), ArticleNo1870-(2018)
   
Ractopamine
Wu HY et al., A comprehensive theoretical study of structural optimization, interaction energies calculations and solvent effects between ractopamine and functional monomers in molecular imprinting polymers.
Polymer Bulletin, 75, (5), 1981-1996, (2018)
   
radial distribution function
Luo DH et al., On the structure of molecularly imprinted polymers by modifying charge on functional groups through molecular dynamics simulations.
Molecular Simulation, 40, (6), 431-438, (2014)
   
γ-Radiation
Kala R et al., Synthesis, characterization, and analytical applications of erbium(III) ion imprinted polymer particles prepared via γ-irradiation with different functional and crosslinking monomers.
Analytica Chimica Acta, 549, (1-2), 51-58, (2005)
   
γ-Radiation
Wolman FJ et al., Peptide imprinted polymer synthesized by radiation-induced graft polymerization.
Reactive and Functional Polymers, 66, (11), 1199-1205, (2006)
   
radiation
Kamal H et al., Radiation Syntheses of Molecularly Imprinted Polymer for Metal Ion Selective Separation.
Arab Journal of Nuclear Sciences and Applications, 45, (2), 79-96, (2012)
   
Radiation dose
Wang YJ et al., Preparation of quercetin-Ni(II) imprinted polymer by electron beam radiation polymerization and its recognition characteristics.
Acta Polymerica Sinica, (4), 526-533, (2013)
   
Radiation grafting
Shen L et al., Preparation of protein molecular imprinted polymer hydrogel by radiation grafting of polypropylene.
Journal of Tianjin Polytechnic University, 28, (1), 19-22, (2009)
   
Radiation-induced grafting
Concheiro A et al., Chemically cross-linked and grafted cyclodextrin hydrogels: From nanostructures to drug-eluting medical devices.
Advanced Drug Delivery Reviews, 65, (9), 1188-1203, (2013)
   
Radiation-induced grafting
Llorina Rañada M et al., Molecularly imprinted poly(N-vinyl imidazole) based polymers grafted onto nonwoven fabrics for recognition/removal of phloretic acid.
Radiation Physics and Chemistry, 94, 93-97, (2014)
   
Radiation induced grafting
Akbulut-Söylemez M et al., Detailed positron annihilation lifetime spectroscopic investigation of atrazine imprinted polymers grafted onto PE/PP non-woven fabrics.
Journal of Molecular Recognition, 31, (1), ArticleNoe2676-(2018)
   
Radiation induced grafting
Akbulut-Söylemez M et al., Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting.
Radiation Physics and Chemistry, 142, 77-81, (2018)
   
Radiation-induced grafting
Akbulut-Söylemez M et al., Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization.
European Polymer Journal, 103, 21-30, (2018)
   
Radiation induced grafting
Söylemez MA et al., Preparation and detailed structural characterization of Penicillin G imprinted polymers by PALS and XPS.
Radiation Physics and Chemistry, 159, 174-180, (2019)
   
RADIATION INDUCED POLYMERIZATION
Ye L et al., Molecularly imprinted monodisperse microspheres for competitive radioassay.
Analytical Communications, 36, (2), 35-38, (1999)
   
radiation-induced polymerization
Akbulut Söylemez M, Synthesis and characterization of tetracycline-imprinted membranes: A detailed positron annihilation lifetime spectroscopy investigation.
Journal of Molecular Recognition, 34, (8), Article_e2895-(2021)
   
Radiation-induced polymerization (RIP)
Yoon SK et al., Synthesis of molecularly imprinted polymer (MIP) by radiation-induced polymerization and separation of ferulic acid from rice oil using MIP-packed column.
Analytical Science &Technology, 19, (3), 218-225, (2006)
   
Radiation polymerization
Kato M et al., Metal-ion adsorption on poly(1-vinylimidazole) resins prepared by γ-irradiation with template metal-ion.
Kobunshi Ronbunshu, 37, (10), 647-650, (1980)
   
Radiation polymerization
Zsebi Z et al., Analytical followup of the gamma initiated synthesis of a molecularly imprinted polymer.
Analytica Chimica Acta, 608, (2), 197-203, (2008)
   
Radiation polymerization
Proceeding, Li ZW et al, Chiral Separation of Amlodipine and its Enantiomer on a Molecularly Imprinted Polymer-Based Stationary Phase,
In: Advanced Materials Research, Chen R, Sung WP, Kao JCM (Eds.),
36-39, (2013)
   
Radiation polymerization
Liu W et al., The radiation polymerization method for preparing baicalein molecularly imprinted polymer.
Journal of Functional Materials, 44, (SUPPL.1), 112-115, (2013)
   
Radiation polymerization
Söylemez MA et al., Synthesis of well-defined molecularly imprinted bulk polymers for the removal of azo dyes from water resources.
Current Research in Green and Sustainable Chemistry, 4, Article100196-(2021)
   
radiation therapy
Yoshida A et al., Gold Nanoparticle-Incorporated Molecularly Imprinted Microgels as Radiation Sensitizers in Pancreatic Cancer.
ACS Applied Bio Materials, 2, (3), 1177-1183, (2019)
   
radical copolymerization
Patil Y et al., Advances in the (co)polymerization of alkyl 2-trifluoromethacrylates and 2-(trifluoromethyl)acrylic acid.
Progress in Polymer Science, 38, (5), 703-739, (2013)
   
radical photopolymerization
Msaadi R et al., Highly Selective Copper Ion Imprinted Clay/Polymer Nanocomposites Prepared by Visible Light Initiated Radical Photopolymerization.
Polymers, 11, (2), ArticleNo286-(2019)
   
radical polymerization
Fukusaki EI et al., An artificial plastic receptor that discriminates axial asymmetry.
Journal of Bioscience and Bioengineering, 90, (6), 665-668, (2000)
   
radical polymerization
Papaioannou EH et al., Molecularly Imprinted Polymers for Cholecystokinin C-Terminal Pentapeptide Recognition.
Macromolecular Chemistry And Physics, 208, (24), 2621-2627, (2007)
   
radical polymerization
Puoci F et al., Molecularly imprinted polymers for 5-fluorouracil release in biological fluids.
Molecules, 12, (4), 805-814, (2007)
   
radical polymerization
Farber S et al., Selective 17-β-estradiol molecular imprinting.
Journal of Polymer Science Part A: Polymer Chemistry, 47, (20), 5534-5542, (2009)
   
radical polymerization
Papaioannou E et al., Molecularly imprinted polymers for RGD selective recognition and separation.
Amino Acids, 36, (3), 563-569, (2009)
   
radical-polymerization
Tehrani MS et al., Solid-Phase Extraction of Metoprolol onto (Methacrylic acid- ethylene glycol dimethacrylate)-based Molecularly Imprinted Polymer and Its Spectrophotometric Determination.
Chinese Journal of Chemistry, 28, (4), 647-655, (2010)
   
radical polymerization
Zhang TL et al., Evaluation of aminoquinoline-imprinted polymers and the recognition mechanism.
Journal of Applied Polymer Science, 129, (6), 3447-3453, (2013)
   
radical polymerization
Cao Y et al., Surface molecularly imprinted polymer prepared by reverse atom transfer radical polymerization for selective adsorption indole.
Journal of Applied Polymer Science, 131, (13), Article No 40473-(2014)
   
radical polymerization
Dai JD et al., Surface imprinted core-shell nanorod with ultrathin water-compatible polymer brushes for specific recognition and adsorption of sulfamethazine in water medium.
Journal of Applied Polymer Science, 131, (19), Article No 40854-(2014)
   
radical polymerization
Scorrano S et al., A molecularly imprinted polymer as artificial receptor for the detection of indole-3-carbinol.
Journal of Applied Polymer Science, 131, (19), Article No 40819-(2014)
   
radical polymerization
Zhao CY et al., One-pot method for obtaining hydrophilic tetracycline-imprinted particles via precipitation polymerization in ethanol.
Journal of Applied Polymer Science, 131, (7), Article 40071-(2014)
   
radical polymerization
Shahar T et al., Molecularly imprinted polymer particles: Formation, characterization and application.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 495, 11-19, (2016)
   
radical polymerization
Mohebali A et al., Isosorbide dinitrate template-based molecularly imprinted poly(methacrylic acid) nanoparticles: effect of initiator concentration on morphology and physicochemical properties.
Chemical Papers, 72, (12), 3005-3016, (2018)
   
radical polymerization
Asliyüce S et al., Combined protein A imprinting and cryogelation for production of spherical affinity material.
Biomedical Chromatography, 33, (10), Article_e4605-(2019)
   
radical polymerization
Mitchell P et al., Precise Generation of Selective Surface-Confined Glycoprotein Recognition Sites.
ACS Applied Bio Materials, 2, (6), 2617-2623, (2019)
   
radical reactions
Cowen T et al., In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.
Macromolecular Rapid Communications, 37, (24), 2011-2016, (2016)
   
Radical scavenger
Salmi Z et al., Preparation of MIP grafts for quercetin by tandem aryl diazonium surface chemistry and photopolymerization.
Microchimica Acta, 180, (15-16), 1411-1419, (2013)
   
radical surface polymerization
Griffete N et al., Thermal Polymerization on the Surface of Iron Oxide Nanoparticles Mediated by Magnetic Hyperthermia: Implications for Multishell Grafting and Environmental Applications.
ACS Applied Nano Materials, 1, (2), 547-555, (2018)
   
radioactive
Yang S et al., Ion-Imprinted Mesoporous Silica for Selective Removal of Uranium from Highly Acidic and Radioactive Effluent.
ACS Applied Materials & Interfaces, 9, (34), 29337-29344, (2017)
   
radioassay
Bengtsson H et al., Molecular imprint based radioassay for direct determination of S-propranolol in human plasma.
Analytical Communications, 34, (9), 233-235, (1997)
   
radioassay
Ye L et al., Molecularly imprinted monodisperse microspheres for competitive radioassay.
Analytical Communications, 36, (2), 35-38, (1999)
   
radioassay
Ansell RJ, MIP-ligand binding assays (pseudo-immunoassays).
Bioseparation, 10, (6), 365-377, (2002)
   
radioassay
Lavignac N et al., Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays.
Analytica Chimica Acta, 510, (2), 139-145, (2004)
   
radioassay
Bedwell TS et al., Analytical applications of MIPs in diagnostic assays: future perspectives.
Analytical and Bioanalytical Chemistry, 408, (7), 1735-1751, (2016)
   
Radiochemical separation
Sarabadani P et al., Ion-imprinted polymeric nanoparticles as a novel sorbent to separate radioyttrium from Sr target.
Radiochimica Acta, 101, (11), 725-731, (2013)
   
Radiochemical separation
Sarabadani P et al., Solid phase extraction of radioyttrium from irradiated strontium target using nanostructure ion imprinted polymer formed with 1-hydroxy-4-(prop-2-enyloxy)-9,10-anthraquinone.
Applied Radiation and Isotopes, 90, 8-14, (2014)
   
radiochemistry
Shen XH et al., Applications of Typical Supramolecular Systems in the Field of Radiochemistry.
Progress In Chemistry, 23, (7), 1386-1399, (2011)
   
radiochemistry
Liang HL et al., Application of Ion-Imprinting Technology in the Field of Radiochemistry.
Journal of Nuclear and Radiochemistry, 38, (3), 129-144, (2016)
   
radioimmunoassay
Ramström O et al., Artificial antibodies to corticosteroids prepared by molecular imprinting.
Chemistry & Biology, 3, (6), 471-477, (1996)
   
radioimmunoassay
Bengtsson H et al., Molecular imprint based radioassay for direct determination of S-propranolol in human plasma.
Analytical Communications, 34, (9), 233-235, (1997)
   
radioimmunoassay
Ramström O et al., Molecularly imprinted materials - Their use in separations, immunoassay-type analyses and syntheses.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 129-129, (1997)
   
radioimmunoassay
Yan MD, Molecularly imprinted polymers as antibody mimics: Applications in immunoassays and recent developments.
Journal of Clinical Ligand Assay, 25, (2), 234-236, (2002)
   
radioimmunoassay
Ansell RJ, Molecularly imprinted polymers in pseudoimmunoassay.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 151-165, (2004)
   
radioimmunoassay
Baggiani C et al., MIP-based immunoassays: State of the Art, limitations and Perspectives.
Molecular Imprinting, 1, 41-54, (2013)
   
radioligand
Takeuchi T, Determination of drugs using natural/synthetic receptors.
Japanese Journal of Clinical Chemistry, 26, (1), 1-6, (1997)
   
radioligand binding
Petcu M et al., Probing the limits of molecular imprinting: strategies with a template of limited size and functionality.
Journal of Molecular Recognition, 22, (1), 18-25, (2009)
   
radioligand binding
Rosengren AM et al., Dielectric constants are not enough: Principal component analysis of the influence of solvent properties on molecularly imprinted polymer-ligand rebinding.
Biosensors and Bioelectronics, 25, (3), 553-557, (2009)
   
radioligand binding arnal
Karlsson JG et al., Probing the molecular basis for ligand-selective recognition in molecularly imprinted polymers selective for the local anaesthetic bupivacaine.
Analytica Chimica Acta, 435, (1), 57-64, (2001)
   
radioligand binding assay
Senholdt M et al., Determination of cyclosporin A and metabolites total concentration using a molecularly imprinted polymer based radioligand binding assay.
Analytical Letters, 30, (10), 1809-1821, (1997)
   
radioligand binding assay
Ansell RJ et al., Magnetic molecularly imprinted polymer beads for drug radioligand binding assay.
Analyst, 123, (7), 1611-1616, (1998)
   
radioligand binding assay
Book chapter, Mayes AGet al., Optimization of molecularly imprinted polymers for radio-ligand binding assays,
In: Drug-development assay approaches including molecular imprinting and biomarkers, Reid E, Hill HM, Wilson ID (Eds.)
Royal Society of Chemistry: 28-36, (1998)    
radioligand binding assay
Andersson LI, Molecular imprinting: developments and applications in the analytical chemistry field.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 745, (1), 3-13, (2000)
   
radioligand binding assay
Ansell RJ, Molecularly imprinted polymers in pseudoimmunoassay.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 151-165, (2004)
   
radioligand binding assay
Wei ST et al., Molecularly imprinted micro and nanospheres for the selective recognition of 17β-estradiol.
Biosensors and Bioelectronics, 21, (10), 1943-1951, (2006)
   
Radionuclide
Birlik Özkütük E et al., Synergistic thallium and iodine memory-based cryogel traps for removing thallium and iodine ions.
Journal of Radioanalytical and Nuclear Chemistry, 314, (3), 2229-2236, (2017)
   
Radionuclide
Gan Q et al., Two-Dimensional Ion-Imprinted Silica for Selective Uranium Extraction from Low-Level Radioactive Effluents.
ACS Sustainable Chemistry & Engineering, 9, (23), 7973-7981, (2021)
   
radiosensitizer
Yoshida A et al., Gold Nanoparticle-Incorporated Molecularly Imprinted Microgels as Radiation Sensitizers in Pancreatic Cancer.
ACS Applied Bio Materials, 2, (3), 1177-1183, (2019)
   
Radiotherapy therapy
Bakhshizadeh M et al., Utilizing photosensitizing and radiosensitizing properties of TiO2-based mitoxantrone imprinted nanopolymer in fibrosarcoma and melanoma cells.
Photodiagnosis and Photodynamic Therapy, 25, 472-479, (2019)
   
radiotracer
Carter SR et al., Surface molecular imprinting in aqueous medium on polymer core-shell particles.
Abstracts of Papers of the American Chemical Society, 224, (COLL), 363-363, (2002)
   
radiotracer
Carter S et al., Core-shell molecular imprinted polymer colloids.
Supramolecular Chemistry, 15, (3), 213-220, (2003)
   
Radix Paeoniae Alba (RPA)
Li XP et al., Molecularly imprinted solid phase extraction in a syringe filter for determination of triazine herbicides in Radix Paeoniae Alba by ultra-fast liquid chromatography.
Talanta, 148, 539-547, (2016)
   
Radix Pueraria
Cheng SL et al., Separation of isoflavones from Radix Pueraria by molecular imprinting technology.
Chinese Traditional Patent Medicine, 28, (10), 1484-1488, (2006)
   
Radix Puerariae Lobatae
Fan JP et al., Preparation of a novel mixed non-covalent and semi-covalent molecularly imprinted membrane with hierarchical pores for separation of genistein in Radix Puerariae Lobatae.
Reactive and Functional Polymers, 146, Article104439-(2020)
   
Radix Salvia Miltiorrhiza
Yan HY et al., Determination of Three Tanshinones from Radix Salvia Miltiorrhiza by Molecularly Imprinted Solid-phase Extraction.
Chinese Journal of Chemistry, 27, (11), 2212-2216, (2009)
   
RAFT
Pan GQ et al., Efficient One-Pot Synthesis of Water-Compatible Molecularly Imprinted Polymer Microspheres by Facile RAFT Precipitation Polymerization.
Angewandte Chemie International Edition, 50, (49), 11731-11734, (2011)
   
RAFT
Halhalli MR et al., Thin Walled Imprinted Polymer Beads Featuring Both Uniform and Accessible Binding Sites.
Chemistry of Materials, 24, (15), 2909-2919, (2012)
   
RAFT
Proceeding, Qiao FX et al, Determination of Sulfonamides in Milk Samples Based on RAFT Molecularly Imprinted Solid Phase Extraction,
In: Advanced Materials Research, Chen SA, Liu ZT, Zeng QZ (Eds.),
1909-1912, (2012)
   
RAFT
Salian VD et al., The role of living/controlled radical polymerization in the formation of improved imprinted polymers.
Journal of Molecular Recognition, 25, (6), 361-369, (2012)
   
RAFT
Proceeding, Qiao FX et al, Synthesis of RAFT Molecularly Imprinting Polymer Based on Ionic Liquid,
In: Advanced Materials Research, Batisdas DM, Chang YQ (Eds.),
246-249, (2013)
   
RAFT
Kadhirvel P et al., Recognitive nano-thin-film composite beads for the enantiomeric resolution of the metastatic breast cancer drug aminoglutethimide.
Journal of Chromatography A, 1358, 93-101, (2014)
   
RAFT
Li Y et al., Highly sensitive Fe3O4 nanobeads/graphene-based molecularly imprinted electrochemical sensor for 17β-estradiol in water.
Analytica Chimica Acta, 884, 106-113, (2015)
   
RAFT
Huang HL et al., Synthesis and characterization of a novel quercetin magnetic molecularly imprinted polymer via reversible addition fragmentation chain transfer strategy.
Journal of Macromolecular Science, Part A, 54, (7), 446-451, (2017)
   
RAFT
Xiao YH et al., Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I.
Talanta, 162, 415-422, (2017)
   
RAFT agent
Asman S et al., Effects of RAFT Agent on the Selective Approach of Molecularly Imprinted Polymers.
Polymers, 7, (3), 484-503, (2015)
   
RAFT coupling chemistry
Lu XC et al., Improvement of surface hydrophilicity and biological sample-compatibility of molecularly imprinted polymer microspheres by facile surface modification with α-cyclodextrin.
European Polymer Journal, 115, 12-21, (2019)
   
RAFT coupling chemistry
Tu XZ et al., Molecularly imprinted dispersive solid-phase microextraction sorbents for direct and selective drug capture from the undiluted bovine serum.
Talanta, 226, Article122142-(2021)
   
RAFT-mediated polymerization
Liu HN et al., Enrofloxacin-imprinted monolithic columns synthesized using reversible addition-fragmentation chain transfer polymerization.
Journal of Separation Science, 31, (10), 1694-1701, (2008)
   
RAFT polymerisation
Cormack PAG et al., Molecularly imprinted polymer synthesis using RAFT polymerisation.
Sains Malaysiana, 42, (4), 529-535, (2013)
   
RAFT polymerization
Li Y et al., Selective recognition and removal of chlorophenols from aqueous solution using molecularly imprinted polymer prepared by reversible addition-fragmentation chain transfer polymerization.
Biosensors and Bioelectronics, 25, (2), 306-312, (2009)
   
RAFT polymerization
Chang LM et al., Preparation of core-shell molecularly imprinted polymer via the combination of reversible addition-fragmentation chain transfer polymerization and click reaction.
Analytica Chimica Acta, 680, (1-2), 65-71, (2010)
   
RAFT polymerization
Pan GQ et al., An efficient approach to obtaining water-compatible and stimuli-responsive molecularly imprinted polymers by the facile surface-grafting of functional polymer brushes via RAFT polymerization.
Biosensors and Bioelectronics, 26, (3), 976-982, (2010)
   
RAFT polymerization
Gonzato C et al., Magnetic Molecularly Imprinted Polymer Nanocomposites via Surface-Initiated RAFT Polymerization.
Advanced Functional Materials, 21, (20), 3947-3953, (2011)
   
RAFT polymerization
Ma Y et al., Narrowly Dispersed Molecularly Imprinted Polymer Microspheres with Photo- and Thermo-Responsive Template Binding Properties in Pure Aqueous Media by RAFT Polymerization.
Molecular Imprinting, 1, (1), 3-16, (2012)
   
RAFT polymerization
Ding P et al., Preparation of self-supporting molecularly imprinted films via transition layer construction and RAFT polymerization, and their use in HPLC.
Microchimica Acta, 180, (7-8), 599-605, (2013)
   
RAFT polymerization
Liu ST et al., Water-Compatible Molecularly Imprinted Microspheres in Pipette Tip Solid-Phase Extraction for Simultaneous Determination of Five Fluoroquinolones in Eggs.
Journal of Agricultural and Food Chemistry, 61, (49), 11974-11980, (2013)
   
RAFT polymerization
Ma Y et al., Comparative study of the molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer bulk polymerization and traditional radical bulk polymerization.
Journal of Molecular Recognition, 26, (5), 240-251, (2013)
   
RAFT polymerization
Zhao LJ et al., Preparation of surface-imprinted polymer grafted with water-compatible external layer via RAFT precipitation polymerization for highly selective and sensitive electrochemical determination of brucine.
Biosensors and Bioelectronics, 60, 71-76, (2014)
   
RAFT polymerization
Asman S et al., Study of the morphology and the adsorption behavior of molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization process based on two functionalized β-cyclodextrin as monomers.
Journal of Molecular Liquids, 214, 59-69, (2016)
   
RAFT polymerization
Liu Y et al., RAFT-mediated microemulsion polymerization to synthesize a novel high-performance graphene oxide-based cadmium imprinted polymer.
Chemical Engineering Journal, 302, 609-618, (2016)
   
RAFT polymerization
Liu Y et al., Selective Ce(III) ion-imprinted polymer grafted on Fe3O4 nanoparticles supported by SBA-15 mesopores microreactor via surface-initiated RAFT polymerization.
Microporous And Mesoporous Materials, 234, 176-185, (2016)
   
RAFT polymerization
Oliveira D et al., Modeling RAFT Gelation and Grafting of Polymer Brushes for the Production of Molecularly Imprinted Functional Particles.
Macromolecular Symposia, 370, (1), 52-65, (2016)
   
RAFT polymerization
Oliveira D et al., Molecular imprinting of 5-fluorouracil in particles with surface RAFT grafted functional brushes.
Reactive and Functional Polymers, 107, 35-45, (2016)
   
RAFT polymerization
Book chapter, Zhao YLet al., Reversible Addition-Fragmentation Chain Transfer Polymerization from Surfaces,
In: Controlled Radical Polymerization at and from Solid Surfaces, Vana P (Ed.)
77-106, (2016)    
RAFT polymerization
Luo XB et al., Lithium ion-imprinted polymers with hydrophilic PHEMA polymer brushes: The role of grafting density in anti-interference and anti-blockage in wastewater.
Journal of Colloid and Interface Science, 492, 146-156, (2017)
   
RAFT polymerization
Shao YM et al., Preparation of novel magnetic molecular imprinted polymers nanospheres via reversible addition - fragmentation chain transfer polymerization for selective and efficient determination of tetrabromobisphenol A.
Journal of Hazardous Materials, 339, 418-426, (2017)
   
RAFT polymerization
Wang JJ et al., Selective adsorption of thiocyanate anions using straw supported ion imprinted polymer prepared by surface imprinting technique combined with RAFT polymerization.
Separation and Purification Technology, 177, 62-70, (2017)
   
RAFT polymerization
Akbulut-Söylemez M et al., Preparation of well-defined erythromycin imprinted non-woven fabrics via radiation-induced RAFT-mediated grafting.
Radiation Physics and Chemistry, 142, 77-81, (2018)
   
RAFT polymerization
Akbulut-Söylemez M et al., Method for preparing a well-defined molecularly imprinted polymeric system via radiation-induced RAFT polymerization.
European Polymer Journal, 103, 21-30, (2018)
   
RAFT polymerization
Ansari S et al., Ultrasound-assisted dispersive solid-phase microextraction of capecitabine by multi-stimuli responsive molecularly imprinted polymer modified with chitosan nanoparticles followed by HPLC analysis.
Microchimica Acta, 187, (6), Article366-(2020)
   
RAFT polymerization
Söylemez MA et al., Synthesis of well-defined molecularly imprinted bulk polymers for the removal of azo dyes from water resources.
Current Research in Green and Sustainable Chemistry, 4, Article100196-(2021)
   
RAFTPP
Su LQ et al., Controllable Preparation and Application of Quercetin Molecularly Imprinted Polymer.
Russian Journal of Applied Chemistry, 92, (7), 972-981, (2019)
   
RAFT precipitation polymerization
Ma Y et al., Efficient one-pot synthesis of water-compatible and photoresponsive molecularly imprinted polymer nanoparticles by facile RAFT precipitation polymerization.
Journal of Polymer Science Part A: Polymer Chemistry, 52, (14), 1941-1952, (2014)
   
RAFT precipitation polymerization
Bai JW et al., Synthesis and characterization of paclitaxel-imprinted microparticles for controlled release of an anticancer drug.
Materials Science and Engineering: C, 92, 338-348, (2018)
   
RAM
Nováková L et al., A review of current trends and advances in modern bio-analytical methods: Chromatography and sample preparation.
Analytica Chimica Acta, 656, (1-2), 8-35, (2009)
   
Raman
Song H et al., The role of impregnation medium on the activity of ceria-supported cobalt catalysts for ethanol steam reforming.
Journal of Molecular Catalysis A: Chemical, 318, (1-2), 21-29, (2010)
   
Raman
Kantarovich K et al., Reading Biochips by Raman and Surface-Enhanced Raman Spectroscopies.
Plasmonics, 8, (1), 3-12, (2013)
   
Raman
Proceeding, Araki S et al, Raman enhanced structure with reconfigured molecularly-imprinted-polymer for gas deteciton,
1-3, (2016)
   
Raman imaging
Zhang T et al., Targeted Live Cell Raman Imaging and Visualization of Cancer Biomarkers with Thermal-Stimuli Responsive Imprinted Nanoprobes.
Particle & Particle Systems Characterization, 35, (12), Article1800390-(2018)
   
Raman microscopy
Büttiker R et al., Membranes for Specific Adsorption: Immobilizing Molecularly Imprinted Polymer Microspheres using Electrospun Nanofibers.
Chimia, 65, (3), 182-186, (2011)
   
Raman reporter
Lin XL et al., Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood.
Biosensors and Bioelectronics, 143, Article111599-(2019)
   
Raman sensors
Jiang Y et al., Graphene Oxide-Silver Nanoparticles in Molecularly-Imprinted Hybrid Films Enabling SERS Selective Sensing.
Materials, 11, (9), ArticleNo1674-(2018)
   
Raman spectra
Zhang JJ et al., Voltammetric lidocaine sensor by using a glassy carbon electrode modified with porous carbon prepared from a MOF, and with a molecularly imprinted polymer.
Microchimica Acta, 185, (1), ArticleNo78-(2018)
   
Raman spectroscopy
Kostrewa S et al., Surface-enhanced Raman scattering on molecularly imprinted polymers in water.
Macromolecular Chemistry And Physics, 204, (3), 481-487, (2003)
   
Raman spectroscopy
McStay D et al., Raman spectroscopy of molecular imprinted polymers.
Journal of Optics A: Pure and Applied Optics, 7, (6), S340-S345, (2005)
   
Raman spectroscopy
Bompart M et al., Chemical Nanosensors Based on Composite Molecularly Imprinted Polymer Particles and Surface-Enhanced Raman Scattering.
Advanced Materials, 22, (21), 2343-2348, (2010)
   
Raman spectroscopy
Kantarovich K et al., Detection Of Biochips By Raman And Surface Enhanced Raman Spectroscopies.
AIP Conference Proceedings, 1267, (1), 1010-1010, (2010)
   
Raman spectroscopy
Yang LB et al., Ultrasensitive SERS Detection of TNT by Imprinting Molecular Recognition Using a New Type of Stable Substrate.
Chemistry - A European Journal, 16, (42), 12683-12693, (2010)
   
Raman spectroscopy
Proceeding, Reddy KK et al, Artificial Biomolecular Recognition Element Based Sensor for Electrochemical Impedance Detection of Creatinine,
25-29, (2011)
   
Raman spectroscopy
Gao F et al., Determination of Sudan I in paprika powder by molecularly imprinted polymers-thin layer chromatography-surface enhanced Raman spectroscopic biosensor.
Talanta, 143, 344-352, (2015)
   
Raman spectroscopy
Hu YX et al., Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy.
Food Chemistry, 176, 123-129, (2015)
   
Raman spectroscopy
Hu YX et al., Rapid Detection of Melamine in Tap Water and Milk Using Conjugated "One-Step" Molecularly Imprinted Polymers-Surface Enhanced Raman Spectroscopic Sensor.
Journal of Food Science, 81, (5), N1272-N1280, (2016)
   
Raman spectroscopy
Jia H et al., Anti-diabetic Drugs Detection by Raman Spectrometry with Molecular Imprinted Composite Membrane.
Chemical Journal of Chinese Universities, 37, (2), 239-245, (2016)
   
Raman spectroscopy
Liu J et al., Probing Low-Copy-Number Proteins in a Single Living Cell.
Angewandte Chemie International Edition, 55, (42), 13215-13218, (2016)
   
Raman spectroscopy
Feng SL et al., Development of molecularly imprinted polymers-surface-enhanced Raman spectroscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice.
Sensors and Actuators B: Chemical, 241, 750-757, (2017)
   
Raman spectroscopy
Zhou LL et al., Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins.
Biosensors and Bioelectronics, 145, Article111729-(2019)
   
RAMIP-BSA
Moraes GdOI et al., A new restricted access molecularly imprinted polymer capped with albumin for direct extraction of drugs from biological matrices: the case of chlorpromazine in human plasma.
Analytical and Bioanalytical Chemistry, 405, (24), 7687-7696, (2013)
   
RAMIP-BSA
de Lima MM et al., On-line restricted access molecularly imprinted solid phase extraction of ivermectin in meat samples followed by HPLC-UV analysis.
Food Chemistry, 197, (Part A), 7-13, (2016)
   
RAM-MIP
Kuceki M et al., Selective and sensitive voltammetric determination of folic acid using graphite/restricted access molecularly imprinted poly(methacrylic acid)/SiO2 composite.
Journal of Electroanalytical Chemistry, 818, 223-230, (2018)
   
Randall hot extraction
Geiss O et al., A fast and selective method for the determination of 8 carcinogenic polycyclic aromatic hydrocarbons in rubber and plastic materials.
Journal of Chromatography A, 1566, 13-22, (2018)
   
Randles equivalent circuit
Rao HB et al., Electrochemical creatinine sensor based on a glassy carbon electrode modified with a molecularly imprinted polymer and a Ni@polyaniline nanocomposite.
Microchimica Acta, 184, (1), 261-269, (2017)
   
RANDOM COPOLYMERS
Peppas NA et al., Polymers and gels as molecular recognition agents.
Pharmaceutical Research, 19, (5), 578-587, (2002)
   
RANDOM COPOLYMERS
Lin CI et al., Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine.
Analytica Chimica Acta, 481, (2), 175-180, (2003)
   
RANDOM HETEROPOLYMERS
Peppas NA et al., Polymers and gels as molecular recognition agents.
Pharmaceutical Research, 19, (5), 578-587, (2002)
   
RANDOM MEDIA
Pande VS et al., Phase-diagram of an imprinted copolymer in a random external-field.
Journal of Physics A-Mathematical and General, 28, (13), 3657-3666, (1995)
   
RANDOM-MEDIA
Rzysko W et al., Theory of adsorption in a polydisperse templated porous material: Hard sphere systems.
Journal of Chemical Physics, 116, (10), 4286-4292, (2002)
   
random trityl chloride functionalised macroporous polymer
Macindoe WM et al., Some studies on the selective synthesis of sucrose acetates using template and random trityl chloride functionalised macroporous polymers.
Carbohydrate Research, 289, (1), 151-161, (1996)
   
RANGE
Wulff G et al., Enzyme-analogue built polymers,17. Investigations on the racemic resolution of amino-acids.
Reactive Polymers, Ion Exchangers, Sorbents, 2, (2), 167-174, (1984)
   
RANGE
Dong SJ et al., Chloride chemical sensor based on an organic conducting polypyrrole polymer.
Analyst, 113, (10), 1525-1528, (1988)
   
RANGE
Andersson LI et al., Enantiomeric resolution of amino-acid derivatives on molecularly imprinted polymers as monitored by potentiometric measurements.
Journal of Chromatography A, 516, (2), 323-331, (1990)
   
RANGE
Rosatzin T et al., Preparation of Ca2+ selective sorbents by molecular imprinting using polymerizable ionophores.
Journal of the Chemical Society-Perkin Transactions 2, (8), 1261-1265, (1991)
   
RANGE
Mayes AG et al., Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting.
Analytical Biochemistry, 222, (2), 483-488, (1994)
   
RANGE
Pande VS et al., Folding thermodynamics and kinetics of imprinted renaturable heteropolymers.
Journal of Chemical Physics, 101, (9), 8246-8257, (1994)
   
RANGE
Braco L, Biocatalysis and biorecognition in nonaqueous media - some perspectives in analytical biochemistry.
Mikrochimica Acta, 120, (1-4), 231-242, (1995)
   
RANGE
Glad M et al., Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) Particles for efficient enantiomeric separations.
Reactive Polymers, 25, (1), 47-54, (1995)
   
RANGE
Kriz D et al., Competitive amperometric morphine sensor-based on an agarose immobilized molecularly imprinted polymer.
Analytica Chimica Acta, 300, (1-3), 71-75, (1995)
   
RANGE
Andersson HS et al., Study of the nature of recognition in molecularly imprinted polymers.
Journal of Molecular Recognition, 9, (5-6), 675-682, (1996)
   
RANGE
Ansell RJ et al., Molecularly imprinted polymers for bioanalysis: Chromatography, binding assays and biomimetic sensors.
Current Opinion in Biotechnology, 7, (1), 89-94, (1996)
   
RANGE
Berglund J et al., Recognition in molecularly imprinted polymer a2-adrenoreceptor mimics.
Bioorganic & Medicinal Chemistry Letters, 6, (18), 2237-2242, (1996)
   
RANGE
Ramström O et al., Artificial antibodies to corticosteroids prepared by molecular imprinting.
Chemistry & Biology, 3, (6), 471-477, (1996)
   
RANGE
Rill RL et al., Protein electrophoresis in polyacrylamide gels with templated pores.
Electrophoresis, 17, (8), 1304-1312, (1996)
   
RANGE
Bengtsson H et al., Molecular imprint based radioassay for direct determination of S-propranolol in human plasma.
Analytical Communications, 34, (9), 233-235, (1997)
   
RANGE
Bzhelyanskiy A et al., A metal ion-templated polymeric sensor for lead.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 29-29, (1997)
   
RANGE
Chen GH et al., A glucose-sensing polymer.
Nature Biotechnology, 15, (4), 354-357, (1997)
   
RANGE
Mayes AG et al., Molecularly imprinted polymers: useful materials for analytical chemistry?
TrAC Trends in Analytical Chemistry, 16, (6), 321-332, (1997)
   
RANGE
Walshe M et al., The preparation of a molecular imprinted polymer to 7-hydroxycoumarin and its use as a solid-phase extraction material.
Journal of Pharmaceutical and Biomedical Analysis, 16, (2), 319-325, (1997)
   
RANGE
Yokobayashi Y et al., Enhancing the selectivity of molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 26-26, (1997)
   
RANGE
Zeng XF et al., Templated polymers for the selective sequestering and sensing of metal ions.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 146-146, (1997)
   
RANGE
Donath E et al., Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes.
Angewandte Chemie International Edition, 37, (16), 2201-2205, (1998)
   
RANGE
Wulff G, Fitting molecules into polymeric receptors.
Chemtech, 28, (11), 19-26, (1998)
   
RANGE
de Boer T et al., Selectivity in capillary electrokinetic separations.
Electrophoresis, 20, (15-16), 2989-3010, (1999)
   
RANGE
Dickert FL et al., Molecular imprinting in chemical sensing.
TrAC Trends in Analytical Chemistry, 18, (3), 192-199, (1999)
   
RANGE
Dickert FL et al., Imprinting with sensor development - On the way to synthetic antibodies.
Fresenius Journal of Analytical Chemistry, 364, (6), 506-511, (1999)
   
RANGE
Ensing K et al., Tailor-made materials for tailor-made applications: application of molecular imprints in chemical analysis.
TrAC Trends in Analytical Chemistry, 18, (3), 138-145, (1999)
   
RANGE
Haupt K et al., Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance.
Analytical Communications, 36, (12), 391-393, (1999)
   
RANGE
Ji HS et al., Selective piezoelectric odor sensors using molecularly imprinted polymers.
Analytica Chimica Acta, 390, (1-3), 93-100, (1999)
   
RANGE
Liang CD et al., Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine.
Analyst, 124, 1781-1785, (1999)
   
RANGE
Liu XC et al., Sugar acrylate-based polymers as chiral molecularly imprintable hydrogels.
Journal of Polymer Science Part A: Polymer Chemistry, 37, (11), 1665-1671, (1999)
   
RANGE
Piletsky SA et al., Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers.
Fresenius Journal of Analytical Chemistry, 364, (6), 512-516, (1999)
   
RANGE
Ye L et al., Molecularly imprinted monodisperse microspheres for competitive radioassay.
Analytical Communications, 36, (2), 35-38, (1999)
   
RANGE
Zhou J et al., Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine.
Analytica Chimica Acta, 381, (1), 85-91, (1999)
   
RANGE
Katz A et al., Molecular imprinting of bulk, microporous silica.
Nature, 403, (6767), 286-289, (2000)
   
RANGE
Krull IS et al., Specific applications of capillary electrochromatography to biopolymers, including proteins, nucleic acids, peptide mapping, antibodies, and so forth.
Journal of Chromatography A, 887, (1-2), 137-163, (2000)
   
RANGE
Murray GM et al., Portable sensor for illicit cocaine based on a molecularly imprinted polymer.
unknown source, (2000)
   
RANGE
Overdevest PEM et al., Langmuir isotherms for enantioselective complexation of (d/l)-phenylalanine by cholesteryl-l-glutamate in nonionic micelles.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, (2-3), 209-224, (2000)
   
RANGE
Peng H et al., Bulk acoustic wave sensor using molecularly imprinted polymers as recognition elements for the determination of pyrimethamine.
Talanta, 52, (3), 441-448, (2000)
   
RANGE
Saunders GD et al., A selective uranium extraction agent prepared by polymer imprinting.
Chemical Communications, (4), 273-274, (2000)
   
RANGE
Allender CJ et al., Separation of individual antiviral nucleotide prodrugs from synthetic mixtures using cross-reactivity of a molecularly imprinted stationary phase.
Analytica Chimica Acta, 435, (1), 107-113, (2001)
   
RANGE
Cao L et al., Enantioselective sensor based on microgravimetric quartz crystal microbalance with molecularly imprinted polymer film.
Analyst, 126, (2), 184-188, (2001)
   
RANGE
Chen YB et al., Influence of the pH on the behavior of an imprinted polymeric stationary phase - supporting evidence for a binding site model.
Journal of Chromatography A, 927, (1-2), 1-17, (2001)
   
RANGE
Hentze HP et al., Template synthesis of porous organic polymers.
Current Opinion in Solid State & Materials Science, 5, (4), 343-353, (2001)
   
RANGE
Jenkins AL et al., Molecularly imprinted polymers for the detection of chemical agents in water.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 42-42, (2001)
   
RANGE
Luo CH et al., Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element.
Analytica Chimica Acta, 428, (1), 143-148, (2001)
   
RANGE
Möller K et al., Synthesis and evaluation of molecularly imprinted polymers for extracting hydrolysis products of organophosphate flame retardants.
Journal of Chromatography A, 938, (1-2), 121-130, (2001)
   
RANGE
Podosenova NG et al., Fullerene effects on the adsorption properties of silica gel with respect to low-density lipoproteides.
Russian Journal of Physical Chemistry, 75, (11), 1871-1875, (2001)
   
RANGE
Schweitz L et al., Approaches to molecular imprinting based selectivity in capillary electrochromatography.
Electrophoresis, 22, (19), 4053-4063, (2001)
   
RANGE
Shimizu KD et al., Selective chemical modification of molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 469-469, (2001)
   
RANGE
Tan YG et al., A piezoelectric biomimetic sensor for aminopyrine with a molecularly imprinted polymer coating.
Analyst, 126, (5), 664-668, (2001)
   
RANGE
Tarbin JA et al., Development of molecularly imprinted phase for the selective retention of stilbene-type estrogenic compounds.
Analytica Chimica Acta, 433, (1), 71-79, (2001)
   
RANGE
Zhong N et al., Hydrophilic cholesterol-binding molecular imprinted polymers.
Tetrahedron Letters, 42, (10), 1839-1841, (2001)
   
RANGE
Book chapter, Brazel CS, Biomedical sensing,
In: Encyclopedia of Smart Materials, Schwartz M (Ed.)
Wiley: 95-111, (2002)    
RANGE
Chow CF et al., Fluorescent sensing of homocysteine by molecular imprinting.
Analytica Chimica Acta, 466, (1), 17-30, (2002)
   
RANGE
Cui A et al., Enzyme-based molecular imprinting with metals.
Biomacromolecules, 3, (6), 1353-1358, (2002)
   
RANGE
Davidson L et al., Molecular imprinting of biologically active steroidal systems.
Current Organic Chemistry, 6, (3), 265-281, (2002)
   
RANGE
Güney O et al., Metal ion templated chemosensor for metal ions based on fluorescence quenching.
Sensors and Actuators B: Chemical, 85, (1-2), 86-89, (2002)
   
RANGE
Jenkins AL, Imprinted polymer sensors for pesticide detection.
Abstracts of Papers of the American Chemical Society, 224, (ANYL), 156-156, (2002)
   
RANGE
Kobayashi T et al., Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: Charge transfer interaction as recognition origin.
Chemistry of Materials, 14, (6), 2499-2505, (2002)
   
RANGE
Proceeding, Kondo F et al, Molecular design of hydrogel catalyst for hydrolysis -Attempt to molecular imprinting in water-,
In: Polymer Preprints, Japan,
1429, (2002)
   
RANGE
Piscopo L et al., Uniformly sized molecularly imprinted polymers (MIPs) for 17b-estradiol.
Macromolecular Chemistry And Physics, 203, (10-11), 1532-1538, (2002)
   
RANGE
Tada M et al., Novel SiO2-attached molecular-imprinting Rh-monomer catalysts for shape-selective hydrogenation of alkenes; preparation, characterization and performance.
Physical Chemistry Chemical Physics, 4, (18), 4561-4574, (2002)
   
RANGE
Walker V et al., Solid-phase extraction in clinical biochemistry.
Annals of Clinical Biochemistry, 39, (5), 464-477, (2002)
   
RANGE
Wickham JM et al., Electrodes with imprinted polymer membranes.
Abstracts of Papers of the American Chemical Society, 223, (ANYL), 074-074, (2002)
   
RANGE
Zhu QZ et al., Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer.
Environmental Science & Technology, 36, (24), 5411-5420, (2002)
   
RANGE
Book chapter, Albano DRBet al., Piezoelectric quartz crystal sensor for sodium dodecylsulfate (SDS) based on molecularly imprinted polypyrrole,
In: Sensors: Asiasense 2003 - Asian Conference On Sensors, Ahmad M, Heng LY, Salimon J, Ghodgaonkar DK, Yousof RW, Surif S, Taib MN (Eds.)
IEEE: New York, 117-120, (2003)    
RANGE
Book chapter, Cabanilla Set al., Piezoelectric biomimetic sensor for caffeine based on electrosynthesized polypyrrole,
In: Sensors: Asiasense 2003 - Asian Conference On Sensors, Ahmad M, Heng LY, Salimon J, Ghodgaonkar DK, Yousof RW, Surif S, Taib MN (Eds.)
IEEE: New York, 105-109, (2003)    
RANGE
Conrad PGI et al., Functional molecularly imprinted polymer microstructures fabricated using microstereolithography.
Advanced Materials, 15, (18), 1541-1544, (2003)
   
RANGE
Davidson L et al., Synthesis and evaluation of a solid supported molecular tweezer type receptor for cholesterol.
Journal of Materials Chemistry, 13, (4), 758-766, (2003)
   
RANGE
Du JX et al., Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material.
Analytica Chimica Acta, 489, (2), 183-189, (2003)
   
RANGE
Fernandez-Sanchez JF et al., A sensitive fluorescence optosensor for analysing propranolol in pharmaceutical preparations and a test for its control in urine in sport.
Journal of Pharmaceutical and Biomedical Analysis, 31, (5), 859-865, (2003)
   
RANGE
Gong JL et al., A novel electrosynthesized polymer applied to molecular imprinting technology.
Talanta, 61, (4), 447-453, (2003)
   
RANGE
Kraft M et al., New frontiers for mid-infrared sensors: Towards deep sea monitoring with a submarine FT-IR sensor system.
Applied Spectroscopy, 57, (6), 591-599, (2003)
   
RANGE
Lai EPC et al., Molecularly imprinted solid phase extraction for rapid screening of metformin.
Microchemical Journal, 75, (3), 159-168, (2003)
   
RANGE
Leung MKP et al., Molecular sensing of 3-chloro-1,2-propanediol by molecular imprinting.
Analytica Chimica Acta, 491, (1), 15-25, (2003)
   
RANGE
Li P et al., Morphologies and binding characteristics of molecularly imprinted polymers prepared by precipitation polymerization.
Polymer International, 52, (12), 1799-1806, (2003)
   
RANGE
Lu SL et al., Preparation of molecularly imprinted Fe3O4/P(St-DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amino acid.
Journal of Applied Polymer Science, 89, (14), 3790-3796, (2003)
   
RANGE
Martin PD et al., Comparison of normal and reversed-phase solid phase extraction methods for extraction of b-blockers from plasma using molecularly imprinted polymers.
Analyst, 128, (4), 345-350, (2003)
   
RANGE
Marx KA, Quartz crystal microbalance: A useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface.
Biomacromolecules, 4, (5), 1099-1120, (2003)
   
RANGE
Mena ML et al., Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination.
Analytical and Bioanalytical Chemistry, 376, (1), 18-25, (2003)
   
RANGE
Mertz E et al., Kinetics and thermodynamics of amine and diamine signaling by a trifluoroacetyl azobenzene reporter group.
Organic Letters, 5, (17), 3127-3130, (2003)
   
RANGE
Mohr GJ, New chromoreactands for the detection of aldehydes, amines and alcohols.
Sensors and Actuators B: Chemical, 90, (1-3), 31-36, (2003)
   
RANGE
Poole CF, New trends in solid-phase extraction.
TrAC Trends in Analytical Chemistry, 22, (6), 362-373, (2003)
   
RANGE
Ray RJ, Development of polymer coated surface plasmon resonance sensors.
Abstracts of Papers of the American Chemical Society, 226, (ANYL), 048-048, (2003)
   
RANGE
Sanbe H et al., Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis of b-blockers in biological fluids.
Analyst, 128, (6), 593-597, (2003)
   
RANGE
Sanbe H et al., Preparation of uniformly sized molecularly imprinted polymers for phenolic compounds and their application to the assay of bisphenol A in river water.
Analytical Sciences, 19, (5), 715-719, (2003)
   
RANGE
Takeoka Y et al., Template synthesis and optical properties of chameleonic poly(N-isopropylacrylamide) gels using closest-packed self- assembled colloidal silica crystals.
Advanced Materials, 15, (3), 199-201, (2003)
   
RANGE
Tamayo FG et al., Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples.
Analytica Chimica Acta, 482, (2), 165-173, (2003)
   
RANGE
Vidal JC et al., Recent advances in electropolymerized conducting polymers in amperometric biosensors.
Microchimica Acta, 143, (2-3), 93-111, (2003)
   
RANGE
Xie JC et al., Selective extraction of functional components derived from herb in plasma by using a molecularly imprinted polymer based on 2,2-bis(hydroxymethyl)butanol trimethacrylate.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 788, (2), 233-242, (2003)
   
RANGE
Zhou YX et al., Potentiometric sensing of chiral amino acids.
Chemistry of Materials, 15, (14), 2774-2779, (2003)
   
RANGE
Zuo XB et al., Molecularly imprinted polymers for the specific rebinding of macrocyclic metal complexes via non-covalent interactions.
Abstracts of Papers of the American Chemical Society, 225, (NUCL), 26-26, (2003)
   
RANGE
Adhikari B et al., Polymers in sensor applications.
Progress in Polymer Science, 29, (7), 699-766, (2004)
   
RANGE
Andaç M et al., Molecular recognition based cadmium removal from human plasma.
Journal of Chromatography B, 811, (2), 119-126, (2004)
   
RANGE
Ansell RJ, Molecularly imprinted polymers in pseudoimmunoassay.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 151-165, (2004)
   
RANGE
Baggiani C et al., Binding properties of 2,4,5-trichlorophenoxyacetic acid-imprinted polymers prepared with different molar ratios between template and functional monomer.
Talanta, 62, (5), 1029-1034, (2004)
   
RANGE
Boyd JW et al., Development of molecularly imprinted polymer sensors for chemical warfare agents.
Johns Hopkins APL Technical Digest, 25, (1), 44-49, (2004)
   
RANGE
Cai LS et al., Molecularly imprinted polymer for theophylline retention and molecular recognition properties in capillary electrochromatography.
Wuhan University Journal of Natural Sciences, 9, (3), 359-365, (2004)
   
RANGE
Davies MP et al., Approaches to the rational design of molecularly imprinted polymers.
Analytica Chimica Acta, 504, (1), 7-14, (2004)
   
RANGE
Ebarvia BS et al., Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer.
Analytical and Bioanalytical Chemistry, 378, (5), 1331-1337, (2004)
   
RANGE
Elmer SL et al., Cross-linking dendrimers with allyl ether end-groups using the ring-closing metathesis reaction.
Journal of Organic Chemistry, 69, (21), 7363-7366, (2004)
   
RANGE
Feng L et al., Biosensor for the determination of sorbitol based on molecularly imprinted electro synthesized polymers.
Biosensors and Bioelectronics, 19, (11), 1513-1519, (2004)
   
RANGE
Feng LA et al., Molecularly imprinted TiO2 thin film by liquid phase deposition for the determination of L-glutamic acid.
Langmuir, 20, (5), 1786-1790, (2004)
   
RANGE
Gong JL et al., Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer.
Analytical and Bioanalytical Chemistry, 379, (2), 302-307, (2004)
   
RANGE
Hua F et al., Polymer imprint lithography with molecular-scale resolution.
Nano Letters, 4, (12), 2467-2471, (2004)
   
RANGE
Huang YC et al., Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography.
Electrophoresis, 25, (4-5), 554-561, (2004)
   
RANGE
Kala R et al., Preconcentrative separation of erbium from Y, Dy, Ho, Tb and Tm by using ion imprinted polymer particles via solid phase extraction.
Analytica Chimica Acta, 518, (1-2), 143-150, (2004)
   
RANGE
Liu YW et al., Solid-phase extraction and preconcentration of cadmium(II) in aqueous solution with Cd(II)-imprinted resin (poly-Cd(II)-DAAB-VP) packed columns.
Analytica Chimica Acta, 519, (2), 173-179, (2004)
   
RANGE
Motherwell WB et al., A study of some molecularly imprinted polymers as protic catalysts for the isomerisation of a-pinene oxide to trans-carveol.
Tetrahedron, 60, (14), 3231-3241, (2004)
   
RANGE
Möller K et al., Determination of a flame retardant hydrolysis product in human urine by SPE and LC-MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger.
Analytical and Bioanalytical Chemistry, 378, (1), 197-204, (2004)
   
RANGE
Pap T et al., Characterization of the selectivity of a phenytoin imprinted polymer.
Journal of Chromatography A, 1034, (1-2), 99-107, (2004)
   
RANGE
Petcu M et al., Propofol-imprinted membranes with potential applications in biosensors.
Analytica Chimica Acta, 504, (1), 73-79, (2004)
   
RANGE
Puri BK et al., A new polymeric adsorbent for screening and pre-concentration of organotin compounds in sediments and seawater samples.
Spectrochimica Acta Part B-Atomic Spectroscopy, 59, (2), 209-214, (2004)
   
RANGE
Raitman OA et al., Analysis of NAD(P)+ and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: A surface plasmon resonance study.
Analytica Chimica Acta, 504, (1), 101-111, (2004)
   
RANGE
Book chapter, Vilar R, Hydrogen-bonding templated assemblies,
In: Supramolecular Assembly via Hydrogen Bonds II, Mingos DMP (Ed.)
Springer Verlag: Berlin, 85-137, (2004)    
RANGE
Wu SG et al., Molecularly imprinted solid phase extraction-pulsed elution-mass spectrometry for determination of cephalexin and a-aminocephalosporin antibiotics in human serum.
Journal of Pharmaceutical and Biomedical Analysis, 36, (3), 483-490, (2004)
   
RANGE
Yin F, Capacitive sensors using electropolymerized o-phenylenediamine film doped with ion-pair complex as selective elements for the determination of pentoxyverine.
Talanta, 63, (3), 641-646, (2004)
   
RANGE
Zhou YX et al., Potentiometric sensor for dipicolinic acid.
Abstracts of Papers of the American Chemical Society, 228, (ANYL), 054-054, (2004)
   
Ranitidine
Rezaei B et al., Modified Au nanoparticles-imprinted sol-gel, multiwall carbon nanotubes pencil graphite electrode used as a sensor for ranitidine determination.
Materials Science and Engineering: C, 37, 113-119, (2014)
   
ranitidine hydrochloride
Wang W et al., Preparation of novel ranitidine hydrochloride electrode based on films of molecularly imprinted polymers.
Chemical Research and Application, 22, (4), 440-443, (2010)
   
Rapid analysis
Wu ZZ et al., Ultrasensitive detection of microcystin-LR with gold immunochromatographic assay assisted by a molecular imprinting technique.
Food Chemistry, 283, 517-521, (2019)
   
Rapid analysis
Wang JX et al., Molecularly imprinted fluoroprobes doped with Ag nanoparticles for highly selective detection of oxytetracycline in real samples.
Analytica Chimica Acta, 1161, Article338326-(2021)
   
Rapid and sensitive determination
Zhao BS et al., Fe3O4 nanoparticles coated with double imprinted polymers for magnetic solid phase extraction of lead(II) from biological and environmental samples.
Microchimica Acta, 186, (12), Article775-(2019)
   
rapid detection
Li M et al., Rapid detection of digoxin in serum samples by molecular imprinted biosensor.
Chinese Journal of Bioprocess Engineering, 9, (2), 64-67, (2011)
   
rapid detection
Ren HP et al., Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers.
Spectroscopy and Spectral Analysis, 36, (2), 372-378, (2016)
   
rapid detection
Wang JX et al., Surface-imprinted fluorescence microspheres as ultrasensitive sensor for rapid and effective detection of tetracycline in real biological samples.
Sensors and Actuators B: Chemical, 263, 533-542, (2018)
   
rapid detection
Liu GY et al., Recent Advances and Perspectives of Molecularly Imprinted Polymer-Based Fluorescent Sensors in Food and Environment Analysis.
Nanomaterials, 9, (7), ArticleNo1030-(2019)
   
rapid detection
Qin SN et al., Preparation of Enrofloxacin Molecular Imprinting Electrochemical Sensor and Its Application to Rapid Detection of Foods.
China Biotechnology, 39, (3), 65-74, (2019)
   
rapid detection
Ma JX et al., Application of novel quantum dot-based molecularly imprinted fluorescence sensor in rapid detection.
Chinese Journal of Chromatography, 39, (8), 775-780, (2021)
   
rapid detection
Cheng WW et al., A facile electrochemical method for rapid determination of 3-chloropropane-1,2-diol in soy sauce based on nanoporous gold capped with molecularly imprinted polymer.
Food Control, 134, Article108750-(2022)
   
rapid detection method
Cao JL et al., Research progress on rapid detection methods of mycotoxins.
Chinese Journal of Pharmaceutical Analysis, 33, (1), 159-164, (2013)
   
RAPID-DETERMINATION
Feng SY et al., Molecularly imprinted solid-phase extraction for the screening of antihyperglycemic biguanides.
Journal of Chromatography A, 1027, (1-2), 155-160, (2004)
   
Rapid expansion of supercritical fluids
Pestov D et al., Improving the stability of surface acoustic wave (SAW) chemical sensor coatings using photopolymerization.
Sensors and Actuators B: Chemical, 126, (2), 557-561, (2007)
   
Rapid in situ analysis
Li YT et al., Electrochemical fabrication of reduced MoS2-based portable molecular imprinting nanoprobe for selective SERS determination of theophylline.
Microchimica Acta, 187, (4), Article203-(2020)
   
rapid isolation and extraction
Yan HY et al., Synthesis of Multi-core-shell Magnetic Molecularly Imprinted Microspheres for Rapid Recognition of Dicofol in Tea.
Journal of Agricultural and Food Chemistry, 61, (11), 2896-2901, (2013)
   
rapid method
Lai EPC et al., Optimization of Molecularly Imprinted Polymer Method for Rapid Screening of 17β-Estradiol in Water by Fluorescence Quenching.
International Journal of Analytical Chemistry, 2011, Article ID 214747-(2011)
   
rapid screening
Zhou SN et al., Analysis of wheat extracts for ochratoxin A by molecularly imprinted solid-phase extraction and pulsed elution.
Analytical and Bioanalytical Chemistry, 378, (8), 1903-1906, (2004)
   
rapid screening
Pidenko P et al., Imprinted proteins as a receptor for detection of zearalenone.
Analytica Chimica Acta, 1040, 99-104, (2018)
   
Rapid synthesis
Pérez-Moral N et al., Direct rapid synthesis of MIP beads in SPE cartridges.
Biosensors and Bioelectronics, 21, (9), 1798-1803, (2006)
   
RAPID TARGET ANALYSIS
Hogendoorn E et al., Recent and future developments of liquid chromatography in pesticide trace analysis.
Journal of Chromatography A, 892, (1-2), 435-453, (2000)
   
RAPID TARGET ANALYSIS
van Hout MWJ et al., Ion suppression in the determination of clenbuterol in urine by solid-phase extraction atmospheric pressure chemical ionisation ion-trap mass spectrometry.
Rapid Communications In Mass Spectrometry, 17, (3), 245-250, (2003)
   
Rapid test
Teles FSRR, Biosensors and rapid diagnostic tests on the frontier between analytical and clinical chemistry for biomolecular diagnosis of dengue disease: A review.
Analytica Chimica Acta, 687, (1), 28-42, (2011)
   
Rapid test
Burmistrova NA et al., Soft glass multi-channel capillaries as a platform for bioimprinting.
Talanta, 208, Article120445-(2020)
   
Rare earth
An FQ et al., Selectively removal of Al(III) from Pr(III) and Nd(III) rare earth solution using surface imprinted polymer.
Reactive and Functional Polymers, 73, (1), 60-65, (2013)
   
Rare earth
An FQ et al., Recognizing properties of ionic imprinted polymer towards Fe(II) in rare earth.
Journal of Functional Materials, 44, (9), 1272-1276, (2013)
   
Rare earth
An FQ et al., Removal of Fe(II) from Ce(III) and Pr(III) rare earth solution using surface imprinted polymer.
Desalination and Water Treatment, 51, (28-30), 5566-5573, (2013)
   
Rare earth
Wang WS et al., Effective removal of Fe(II) impurity from rare earth solution using surface imprinted polymer.
Chemical Engineering Research and Design, 91, (12), 2759-2764, (2013)
   
Rare earth
Cui KY et al., A facile bionic strategy towards Gd (III)-imprinted membranes via interlaced stacking of one-dimensional/two-dimensional nanocomposite materials.
Journal of the Taiwan Institute of Chemical Engineers, 95, 652-659, (2019)
   
Rare earth
Zheng XD et al., One-step fabrication of imprinted mesoporous cellulose nanocrystals films for selective separation and recovery of Nd(III).
Cellulose, 26, (9), 5571-5582, (2019)
   
Rare earth element
Patra S et al., RETRACTED Removal and Recycling of Precious Rare Earth Element from Wastewater Samples Using Imprinted Magnetic Ordered Mesoporous Carbon.
ACS Sustainable Chemistry & Engineering, 5, (8), 6910-6923, (2017)
   
Rare earth element
Li JP et al., Molecularly imprinted sensor based on Russian Matryoshka structured molecules for enhanced specific identification and double amplification in ultra-trace Tb3+ determination.
Biosensors and Bioelectronics, 109, 224-229, (2018)
   
rare earth elements
Li XZ et al., Progress in solid-liquid extraction resin for separation of rare earth elements.
Journal of Rare Earths, 23, (Supplement 1), 581-592, (2005)
   
rare earth elements
Pyrzynska K et al., Application of solid phase extraction procedures for rare earth elements determination in environmental samples.
Talanta, 154, 15-22, (2016)
   
rare earth elements
Bunina ZY et al., Sorption materials based on ethylene glycol dimethacrylate and methacrylic acid copolymers for rare earth elements extraction from aqueous solutions.
Adsorption Science & Technology, 35, (5-6), 545-559, (2017)
   
rare earth elements
Zulfikar MA et al., Separation of Yttrium from Aqueous Solution Using Ionic Imprinted Polymers.
Russian Journal of Non-Ferrous Metals, 58, (6), 614-624, (2017)
   
rare earth elements
Iftekhar S et al., Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements.
Carbohydrate Polymers, 194, 274-284, (2018)
   
rare earth elements
Ni CQ et al., Selective removal and recovery of La(III) using a phosphonic-based ion imprinted polymer: Adsorption performance, regeneration, and mechanism.
Journal of Environmental Chemical Engineering, 9, (6), Article106701-(2021)
   
rare earth elements extraction
Bunina ZY et al., Sorption materials based on ethylene glycol dimethacrylate and methacrylic acid copolymers for rare earth elements extraction from aqueous solutions.
Adsorption Science & Technology, 35, (5-6), 545-559, (2017)
   
rare earth ion
Li XZ et al., Evaluation of ionic imprinted polymers by electrochemical recognition of rare earth ions.
Hydrometallurgy, 87, (1-2), 63-71, (2007)
   
rare earth ion
Gao XC et al., Studies on Recognition and Separation of Neighbor Rare Earth Ions on Scale of Picometer Using Novel Surface Ion-Imprinted Material.
Acta Chimica Sinica, 68, (11), 1109-1118, (2010)
   
rare earth ion
Gao BJ et al., Study on recognition and separation of rare earth ions at picometre scale by using efficient ion-surface imprinted polymer materials.
Hydrometallurgy, 150, 83-91, (2014)
   
Rare earth metal ions
Yu XN et al., Preparation of rare earth metal ion/TiO2Hal-conducting polymers by ions imprinting technique and its photodegradation property on tetracycline.
Applied Clay Science, 99, 125-130, (2014)
   
Rare earth metals
Wang JJ et al., Straw-supported ion imprinted polymer sorbent prepared by surface imprinting technique combined with AGET ATRP for selective adsorption of La3+ ions.
Chemical Engineering Journal, 293, 24-33, (2016)
   
Rare earth metals
Rahman ML et al., Ion-Imprinted Polymer for Selective Separation of Cerium(III) Ions from Rare Earth Mixture.
Journal of Nanoscience and Nanotechnology, 19, (9), 5796-5802, (2019)
   
rare earths
Yusoff MM et al., Synthesis of ion imprinted polymers for selective recognition and separation of rare earth metals.
Journal of Rare Earths, 35, (2), 177-186, (2017)
   
rare earths
Chen J et al., Trace detection of Ce3+ by adsorption strip voltammetry at a carbon paste electrode modified with ion imprinted polymers.
Journal of Rare Earths, 36, (10), 1121-1126, (2018)
   
Rare Metals
Stevens MG et al., Preparation of Highly Selective Sorbents Composed of Peptides and Silica Using Novel Molecular Imprinting Technology for Target Metal Ions.
Journal of Chemical Engineering of Japan, 53, (9), 485-493, (2020)
   
Rat brain tissues
Yuan XC et al., Fe3O4/graphene molecularly imprinted composite for selective separation of catecholamine neurotransmitters and their analysis in rat brain tissues.
Talanta, 224, Article121843-(2021)
   
Rate constant
Baggiani C et al., Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity.
Journal of Chromatography A, 1218, (14), 1828-1834, (2011)
   
RATE CONSTANTS
Dai S et al., Spectroscopic probing of adsorption of uranyl to uranyl-imprinted silica sol-gel glass via steady-state and time-resolved fluorescence measurement.
Journal of Physical Chemistry B, 101, (28), 5521-5524, (1997)
   
RATE CONSTANTS
Byrne ME et al., Networks for recognition of biomolecules: Molecular imprinting and micropatterning poly(ethylene glycol)-containing films.
Polymers for Advanced Technologies, 13, (10-12), 798-816, (2002)
   
rate-controlled delivery
Dhanashree S et al., Molecularly Imprinted Polymers: Novel Discovery for Drug Delivery.
Current Drug Delivery, 13, (5), 632-645, (2016)
   
RATES
Hopkins A et al., Microgels as matrices for molecular receptor and reactive sites - synthesis and reactivity of cavities possessing amino-functions.
Journal of the Chemical Society-Perkin Transactions 2, (6), 891-896, (1983)
   
Rat faeces
Cai QZ et al., Selective capture and rapid identification of Panax notoginseng metabolites in rat faeces by the integration of magnetic molecularly imprinted polymers and high-performance liquid chromatography coupled with orbitrap mass spectrometry.
Journal of Chromatography A, 1455, 65-73, (2016)
   
Ratio fluorescence sensor
Wang LS et al., A novel nanocomposite optosensing sensor based on porous molecularly imprinted polymer and dual emission quantum dots for visual and high selective detection of bovine serum albumin.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 632, Article127843-(2022)
   
Ratiometric
Xu SJ et al., Well-defined hydrophilic "turn-on"-type ratiometric fluorescent molecularly imprinted polymer microspheres for direct and highly selective herbicide optosensing in the undiluted pure milks.
Talanta, 211, Article120711-(2020)
   
Ratiometric detection
Zhang L et al., Visual detection of melamine by using a ratiometric fluorescent probe consisting of a red emitting CdTe core and a green emitting CdTe shell coated with a molecularly imprinted polymer.
Microchimica Acta, 185, (2), 135-(2018)
   
Ratiometric electrochemical sensor
Hao QQ et al., Probe and analogue: Double roles of thionine for aloe-emodin selective and sensitive ratiometric detection.
Sensors and Actuators B: Chemical, 292, 247-253, (2019)
   
Ratiometric electrochemical sensor
Yang J et al., Molecularly imprinted polymer-decorated signal on-off ratiometric electrochemical sensor for selective and robust dopamine detection.
Biosensors and Bioelectronics, 135, 224-230, (2019)
   
Ratiometric electrochemical sensor
Hu XP et al., A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon.
Food Chemistry, 363, Article130385-(2021)
   
Ratiometric electrochemical sensor
Liu YW et al., A novel ratiometric electrochemical sensor based on dual-monomer molecularly imprinted polymer and Pt/Co3O4 for sensitive detection of chlorpromazine hydrochloride.
Analytica Chimica Acta, 1190, Article339245-(2022)
   
Ratiometric electrochemiluminescence sensor
Cao N et al., A novel ratiometric molecularly imprinted electrochemiluminescence sensor for sensitive and selective detection of sialic acid based on PEI-CdS quantum dots as anodic coreactant and cathodic luminophore.
Sensors and Actuators B: Chemical, 313, Article128042-(2020)
   
Ratiometric fluorescence
Wang XY et al., A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-D).
Biosensors and Bioelectronics, 81, 438-444, (2016)
   
Ratiometric fluorescence
Wang XY et al., Molecular imprinting ratiometric fluorescence sensor for highly selective and sensitive detection of phycocyanin.
Biosensors and Bioelectronics, 77, 624-630, (2016)
   
Ratiometric fluorescence
Wang XY et al., Molecular Imprinting Based Hybrid Ratiometric Fluorescence Sensor for the Visual Determination of Bovine Hemoglobin.
ACS Sensors, 3, (2), 378-385, (2018)
   
Ratiometric fluorescence
Yang Q et al., Dual-emission color-controllable nanoparticle based molecular imprinting ratiometric fluorescence sensor for the visual detection of Brilliant Blue.
Sensors and Actuators B: Chemical, 284, 428-436, (2019)
   
Ratiometric fluorescence
He HL et al., Fluorescent turn-on assay of C-type natriuretic peptide using a molecularly imprinted ratiometric fluorescent probe with high selectivity and sensitivity.
Microchimica Acta, 187, (11), Article614-(2020)
   
Ratiometric fluorescence
Li CY et al., Facile approach to the synthesis of molecularly imprinted ratiometric fluorescence nanosensor for the visual detection of folic acid.
Food Chemistry, 319, Article126575-(2020)
   
Ratiometric fluorescence
Wang JR et al., Enhancing anti-interference ability of molecularly imprinted ratiometric fluorescence sensor via differential strategy demonstrated by the detection of bovine hemoglobin.
Sensors and Actuators B: Chemical, 322, Article128581-(2020)
   
Ratiometric fluorescence
Wang XY et al., Fluorescent nanosensor designing via hybrid of carbon dots and post-imprinted polymers for the detection of ovalbumin.
Talanta, 211, Article120727-(2020)
   
Ratiometric fluorescence change
Li YY et al., Aggregation-induced emission luminogen based molecularly imprinted ratiometric fluorescence sensor for the detection of Rhodamine 6G in food samples.
Food Chemistry, 287, 55-60, (2019)
   
Ratiometric fluorescence detection
Li M et al., Ratiometric fluorescence and mesoporous structured imprinting nanoparticles for rapid and sensitive detection 2,4,6-trinitrophenol.
Biosensors and Bioelectronics, 89, (Part 2), 899-905, (2017)
   
Ratiometric fluorescence detection
Hao GY et al., A versatile microfluidic paper chip platform based on MIPs for rapid ratiometric sensing of dual fluorescence signals.
Microchemical Journal, 157, Article105050-(2020)
   
ratiometric fluorescence nanosensors
Chen XQ et al., Ratiometric fluorescence nanosensors based on core-shell structured carbon/CdTe quantum dots and surface molecularly imprinted polymers for the detection of sulfadiazine.
Journal of Separation Science, 41, (23), 4394-4401, (2018)
   
Ratiometric fluorescence probe
Xu SF et al., One-pot synthesis of mesoporous structured ratiometric fluorescence molecularly imprinted sensor for highly sensitive detection of melamine from milk samples.
Biosensors and Bioelectronics, 73, 160-166, (2015)
   
Ratiometric fluorescence probe
Lu HZ et al., Functional monomer-template-QDs sandwich structure for mesoporous structured bovine hemoglobin imprinted ratiometric fluorescence sensor.
Talanta, 165, 482-488, (2017)
   
Ratiometric fluorescence probe
Wei JR et al., Ratiometric fluorescence for sensitive and selective detection of mitoxantrone using a MIP@rQDs@SiO2 fluorescence probe.
Sensors and Actuators B: Chemical, 244, 31-37, (2017)
   
Ratiometric fluorescence probe
Lu HZ et al., A dual reference ion-imprinted ratiometric fluorescence probe for simultaneous detection of silver (I) and lead (II).
Sensors and Actuators B: Chemical, 288, 691-698, (2019)
   
Ratiometric fluorescence probe
Ran H et al., Self-assembly PS@dual-emission ratiometric fluorescence probe coupled with core-shell structured MIP for the detection of malachite green in fish.
Journal of Photochemistry and Photobiology A-Chemistry, 372, 260-269, (2019)
   
Ratiometric fluorescence probe
Sun X et al., Construction of ratiometric fluorescence MIPs probe for selective detection of tetracycline based on passion fruit peel carbon dots and europium.
Microchimica Acta, 188, (9), Article297-(2021)
   
Ratiometric fluorescence sensor
Liu XQ et al., A tailored molecular imprinting ratiometric fluorescent sensor based on red/blue carbon dots for ultrasensitive tetracycline detection.
Journal of Industrial and Engineering Chemistry, 72, 100-106, (2019)
   
Ratiometric fluorescence sensor
Liu XQ et al., Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin.
Sensors and Actuators B: Chemical, 289, 242-251, (2019)
   
Ratiometric fluorescence sensor
Wei X et al., Ratiometric fluorescence molecularly imprinted sensor based on dual-emission quantum dots hybrid for determination of tetracycline.
Analytical and Bioanalytical Chemistry, 411, (22), 5809-5816, (2019)
   
Ratiometric fluorescence sensor
Fu JL et al., A dual-response ratiometric fluorescence imprinted sensor based on metal-organic frameworks for ultrasensitive visual detection of 4-nitrophenol in environments.
Biosensors and Bioelectronics, 198, Article113848-(2022)
   
Ratiometric fluorescent
Xu YQ et al., Preparation of functionalized double ratio fluorescent imprinted sensors for visual determination and recognition of dopamine in human serum.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 219, 225-231, (2019)
   
Ratiometric fluorescent
Wang LY et al., Specific determination of HBV using a viral aptamer molecular imprinting polymer sensor based on ratiometric metal organic framework.
Microchimica Acta, 188, (7), Article221-(2021)
   
Ratiometric fluorescent probe
Lu HZ et al., Visualizing BPA by molecularly imprinted ratiometric fluorescence sensor based on dual emission nanoparticles.
Biosensors and Bioelectronics, 92, 147-153, (2017)
   
Ratiometric fluorescent probe
Liu MY et al., Molecularly Imprinted Core-Shell CdSe@SiO2/CDs as a Ratiometric Fluorescent Probe for 4-Nitrophenol Sensing.
Nanoscale Research Letters, 13, (1), ArticleNo27-(2018)
   
Ratiometric fluorescent sensor
Gui WY et al., Ratiometric fluorescent sensor with molecularly imprinted mesoporous microspheres for malachite green detection.
Sensors and Actuators B: Chemical, 266, 685-691, (2018)
   
Ratiometric fluorescent sensor
Lian ZR et al., Dual-emission ratiometric fluorescent sensor based molecularly imprinted nanoparticles for visual detection of okadaic acid in seawater and sediment.
Sensors and Actuators B: Chemical, 346, Article130465-(2021)
   
Ratiometric measurement
Sánchez-Barragán I et al., Room-temperature phosphorescence (RTP) for optical sensing.
TrAC Trends in Analytical Chemistry, 25, (10), 958-967, (2006)
   
Ratiometric sensor
Dai YL et al., Voltammetric determination of paracetamol using a glassy carbon electrode modified with Prussian Blue and a molecularly imprinted polymer, and ratiometric read-out of two signals.
Microchimica Acta, 183, (10), 2771-2778, (2016)
   
Ratiometric sensor
Amjadi M et al., Molecularly imprinted mesoporous silica embedded with carbon dots and semiconductor quantum dots as a ratiometric fluorescent sensor for diniconazole.
Biosensors and Bioelectronics, 96, 121-126, (2017)
   
Ratiometric strategy
Zhang W et al., A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer for selective and stable determination of imidacloprid.
Biosensors and Bioelectronics, 154, Article112091-(2020)
   
Ratiometry
Jalili R et al., Detection of penicillin G residues in milk based on dual-emission carbon dots and molecularly imprinted polymers.
Food Chemistry, 314, Article126172-(2020)
   
RATIONAL CONTROL
Klibanov AM, Improving enzymes by using them in organic solvents.
Nature, 409, (6817), 241-246, (2001)
   
rational design
Nicholls IA, Towards the rational design of molecularly imprinted polymers.
Journal of Molecular Recognition, 11, (1-6), 79-82, (1998)
   
rational design
Wu LQ et al., Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches.
Journal of Molecular Recognition, 17, (6), 567-574, (2004)
   
rational design
Farrington K et al., Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction.
Analytica Chimica Acta, 566, (1), 60-68, (2006)
   
rational design
OMahony J et al., Anatomy of a successful imprint: Analysing the recognition mechanisms of a molecularly imprinted polymer for quercetin.
Biosensors and Bioelectronics, 21, (7), 1383-1392, (2006)
   
rational design
Proceeding, Padró-Cortés L et al, Insight the rational design of molecularly imprinted polymer for the development of biomimetic receptors,
(2006)
   
rational design
Wei ST et al., Capturing molecules with templated materials--Analysis and rational design of molecularly imprinted polymers.
Analytica Chimica Acta, 578, (1), 50-58, (2006)
   
rational design
Salvador JP et al., A New Methodology for the Rational Design of Molecularly Imprinted Polymers.
Analytical Letters, 40, (7), 1294-1306, (2007)
   
rational design
Matsui J et al., An approach to peptide-based ATP receptors by a combination of random selection, rational design, and molecular imprinting.
Biosensors and Bioelectronics, 25, (3), 563-567, (2009)
   
rational design
Juhl PB et al., Engineering of Candida antarctica lipase B for hydrolysis of bulky carboxylic acid esters.
Journal of Biotechnology, 150, (4), 474-480, (2010)
   
rational design
Muhammad T et al., Rational design and synthesis of water-compatible molecularly imprinted polymers for selective solid phase extraction of amiodarone.
Analytica Chimica Acta, 709, (1), 98-104, (2012)
   
rational design
Tang ML et al., Development of chiral stationary phases for high-performance liquid chromatographic separation.
TrAC Trends in Analytical Chemistry, 39, 180-194, (2012)
   
rational design
Book chapter, Nicholls IAet al., Theoretical and Computational Strategies for the Study of the Molecular Imprinting Process and Polymer Performance,
In: Molecularly Imprinted Polymers in Biotechnology, Mattiasson B, Ye L (Eds.)
Springer: Berlin,Heidelberg, 25-50, (2015)    
rational design
Scognamiglio V et al., Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.
Biosensors and Bioelectronics, 74, 1076-1086, (2015)
   
rational design
Chen JF et al., Theoretical analysis of a high performance protein imprint on a nanosensor.
Sensing and Bio-Sensing Research, 7, 12-19, (2016)
   
rational design
Ansari S et al., Molecularly imprinted polymers for capturing and sensing proteins: Current progress and future implications.
TrAC Trends in Analytical Chemistry, 114, 29-47, (2019)
   
rational design
Pataer P et al., Preparation of a stoichiometric molecularly imprinted polymer for auramine O and application in solid-phase extraction.
Journal of Separation Science, 42, (8), 1634-1643, (2019)
   
rational design
Pereira TFD et al., Carvedilol-Imprinted Polymer: Rational design and selectivity studies.
Journal of Molecular Structure, 1177, 101-106, (2019)
   
rational design
Fernando PUAI et al., Toward Rational Design of Electrogenerated Molecularly Imprinted Polymers (eMIPs): Maximizing Monomer/Template Affinity.
ACS Applied Polymer Materials, 3, (9), 4523-4533, (2021)
   
Rational MIP design
Moura SL et al., Theoretical and experimental study for the biomimetic recognition of levothyroxine hormone on magnetic molecularly imprinted polymer.
Biosensors and Bioelectronics, 107, 203-210, (2018)
   
Rational MIP design
Zhang LH et al., Theoretical and experimental studies of a novel electrochemical sensor based on molecularly imprinted polymer and GQDs-PtNPs nanocomposite.
Microchemical Journal, 158, Article105196-(2020)
   
Rat plasma
Rao RN et al., Development of a molecularly imprinted polymer for selective extraction followed by liquid chromatographic determination of sitagliptin in rat plasma and urine.
Talanta, 85, (2), 950-957, (2011)
   
Rat plasma
Yin XY et al., Determination of hyperoside and isoquercitrin in rat plasma by membrane-protected micro-solid-phase extraction with high-performance liquid chromatography.
Journal of Separation Science, 35, (3), 384-391, (2012)
   
Rat plasma
Meng JW et al., Novel molecularly imprinted magnetic nanoparticles for the selective extraction of protoberberine alkaloids in herbs and rat plasma.
Journal of Separation Science, 38, (12), 2117-2125, (2015)
   
Rat plasma
Varma NN et al., HPLC Bioassay of Elvitegravir using a Molecularly Imprinted Polymer Based Solid Phase Extraction in RAT Plasma: Application to Pharmacokinetic Studies.
Journal of Analytical Chemistry, 76, (10), 1172-1181, (2021)
   
RATRPP
Zou TB et al., Preparation of silica-based surface-imprinted core-shell nanoadsorbents for the selective recognition of sulfamethazine via reverse atom transfer radical precipitation polymerization.
Journal of Polymer Research, 21, (8), Article No 520-(2014)
   
Rat serum
Chen CF et al., A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine.
Microchemical Journal, 147, 191-197, (2019)
   
Rats plasma
Gao D et al., Preparation and evaluation of magnetic molecularly imprinted polymers for the specific enrichment of phloridzin.
Talanta, 178, 299-307, (2018)
   
Rats plasma
Wang DD et al., Selective separation and purification of polydatin by molecularly imprinted polymers from the extract of Polygoni Cuspidati Rhizoma et Radix, rats plasma and urine.
Journal of Chromatography B, 1156, Article122307-(2020)
   
Rats urine
Wang DD et al., Selective separation and purification of polydatin by molecularly imprinted polymers from the extract of Polygoni Cuspidati Rhizoma et Radix, rats plasma and urine.
Journal of Chromatography B, 1156, Article122307-(2020)
   
Rattle-type structure
Fan JP et al., Preparation, characterization, and application of multiple stimuli-responsive rattle-type magnetic hollow molecular imprinted poly (ionic liquids) nanospheres (Fe3O4@void@PILMIP) for specific recognition of protein.
Chemical Engineering Journal, 337, 722-732, (2018)
   
Raw milk
Xie YF et al., Simultaneous Determination of Erythromycin, Tetracycline, and Chloramphenicol Residue in Raw Milk by Molecularly Imprinted Polymer Mixed with Solid-Phase Extraction.
Food Analytical Methods, 11, (2), 374-381, (2018)
   
Raw milk
Chen SJ et al., A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn:ZnS quantum dots coated with a molecularly imprinted polymer.
Microchimica Acta, 187, (1), Article40-(2019)
   
RAY CRYSTAL- STRUCTURE
Philp D et al., Self-assembly in natural and unnatural systems.
Angewandte Chemie International Edition, 35, (11), 1155-1196, (1996)
   
RAY CRYSTAL-STRUCTURE
Gorbatchuk VV et al., Biomimetic cooperative interactions of dried cross-linked poly(N-6-aminohexylacrylamide) with binary mixtures of solvent vapors.
Biomacromolecules, 5, (4), 1615-1623, (2004)
   
RAY PHOTOELECTRON- SPECTROSCOPY
Tada M et al., Design of a novel molecular-imprinted Rh-amine complex on SiO2 and its shape-selective catalysis for a-methylstyrene hydrogenation.
Journal of Physical Chemistry B, 108, (9), 2918-2930, (2004)
   
(5R)-5-benzylhydantoin
Zhou J et al., A molecularly imprinted polymer receptor for the enantiomeric recognition of amino acid hydantoins mimicking cooperative hydrogen bonds between nucleotide bases.
Chinese Journal of Chemistry, 18, (4), 482-488, (2000)
   
5R-5-Benzylhydantoin
Wang H et al., Study of enantioselective binding and transportation properties of molecularly imprinted membrane for amino acid hydantoins.
Chemical Research and Application, 18, (3), 261-265, (2006)
   
R(+)-cathinone
Saputra A et al., Determination of Effective Functional Monomer and Solvent for R(+)-Cathinone Imprinted Polymer Using Density Functional Theory and Molecular Dynamics Simulation Approaches.
Indonesian Journal of Chemistry, 17, (3), 516-522, (2017)
   
RDX
Alizadeh T et al., Molecularly imprinted polymer nano-sphere/multi-walled carbon nanotube coated glassy carbon electrode as an ultra-sensitive voltammetric sensor for picomolar level determination of RDX.
Talanta, 194, 415-421, (2019)
   
REACTANDS
Mohr GJ et al., Reversible chemical reactions as the basis for optical sensors used to detect amines, alcohols and humidity.
Journal of Materials Chemistry, 9, (9), 2259-2264, (1999)
   
REACTANDS
Mohr GJ, New chromoreactands for the detection of aldehydes, amines and alcohols.
Sensors and Actuators B: Chemical, 90, (1-3), 31-36, (2003)
   
REACTANDS
Mohr GJ, Chromo- and fluororeactands: Indicators for detection of neutral analytes by using reversible covalent-bond chemistry.
Chemistry - A European Journal, 10, (5), 1082-1090, (2004)
   
reactand sensors
Mohr GJ, Chromo- and fluororeactands: Indicators for detection of neutral analytes by using reversible covalent-bond chemistry.
Chemistry - A European Journal, 10, (5), 1082-1090, (2004)
   
reaction
Nakano Y, Science and technology of polymer gels.
Journal of Chemical Engineering of Japan, 38, (8), 605-614, (2005)
   
reaction
Wang J et al., Advances of Application of Molecular Imprinting Technology.
Chemistry & Bioengineering, 23, (4), 4-6, (2006)
   
Reaction conditions
Hu CH et al., Albumin molecularly imprinted polymer with high template affinity -- Prepared by systematic optimization in mixed organic/aqueous media.
Microchemical Journal, 91, (1), 53-58, (2009)
   
Reaction driving force
Liu PX et al., Two different states conversion mechanism of the imprinting sites.
Journal of Colloid and Interface Science, 539, 235-244, (2019)
   
reaction engineering
Visnjevski A et al., Catalyzing a cycloaddition with molecularly imprinted polymers obtained via immobilized templates.
Applied Catalysis A: General, 260, (2), 169-174, (2004)
   
reaction kinetics
Liu JQ et al., Molecularly imprinted polymers with strong carboxypeptidase A- like activity: Combination of an amidinium function with a zinc-ion binding site in transition-state imprinted cavities.
Angewandte Chemie International Edition, 43, (10), 1287-1290, (2004)
   
reaction kinetics
Wulff G et al., Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes.
Angewandte Chemie International Edition, 45, (18), 2955-2958, (2006)
   
reaction mechanisms
Waldvogel SR, Caffeine - A drug with a surprise.
Angewandte Chemie International Edition, 42, (6), 604-605, (2003)
   
reactive brilliant blue KN-R
Li JX et al., Preparation and characterization of molecularly imprinted CA/PVDF blend membrane specific for reactive brilliant blue KN-R.
Membrane Science and Technology, 29, (1), 8-12, (2009)
   
Reactive dyes
Al-Degs YS et al., Preparation of highly selective solid-phase extractants for Cibacron reactive dyes using molecularly imprinted polymers.
Analytical and Bioanalytical Chemistry, 393, (3), 1055-1062, (2009)
   
Reactive dyes
Kyzas GZ et al., Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs).
Chemical Engineering Journal, 149, (1-3), 263-272, (2009)
   
reactive extraction
Book chapter, Hatti-Kaul R, Downstream Processing in Industrial Biotechnology,
In: Industrial Biotechnology, Soetaert W, Vandamme EJ (Eds.)
Wiley-VCH: Weinheim, 279-321, (2010)    
Reactive nitrogen species
Mergola L et al., Developments in the synthesis of a water compatible molecularly imprinted polymer as artificial receptor for detection of 3-nitro-l-tyrosine in neurological diseases.
Biosensors and Bioelectronics, 40, (1), 336-341, (2013)
   
Reactive oxygen species
Lacina K et al., Boronic acids for sensing and other applications - a mini-review of papers published in 2013.
Chemistry Central Journal, 8, (1), Article No 60-(2014)
   
Reactive oxygen species
Chen JX et al., The Molecular Imprinted Nanotrapper for Catalase: A Chemical-Free Inhibition Way to Trigger Tumor Cells Apoptosis.
Particle & Particle Systems Characterization, 34, (2), ArticleNo1600260-(2017)
   
Reactive oxygen species
Chen JX et al., Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy.
Nano Research, 10, (7), 2351-2363, (2017)
   
REACTIVE POLYMERS
Horak D et al., Packings for size exclusion chromatography: Preparation and some properties.
Strategies In Size Exclusion Chromatography, 635, 190-210, (1996)
   
REACTIVITY
Hopkins A et al., Microgels as matrices for molecular receptor and reactive sites - synthesis and reactivity of cavities possessing amino-functions.
Journal of the Chemical Society-Perkin Transactions 2, (6), 891-896, (1983)
   
REACTIVITY
Lauer M et al., On the chemistry of binding-sites, 4. On an unusual increase in reactivity of arylboronic acids by neighboring groups.
Chemische Berichte-Recueil, 118, 246-260, (1985)
   
REACTIVITY
Weatherhead RH et al., Polyethyleneimine derivatives as catalysts - dye-binding capacity and reactivity are not diminished on extensive internal cross-linking of the polymers.
Journal of Molecular Catalysis, 85, (1), 33-44, (1993)
   
REACTIVITY
Ramström O et al., Artificial antibodies to corticosteroids prepared by molecular imprinting.
Chemistry & Biology, 3, (6), 471-477, (1996)
   
REACTIVITY
Stewart NAS et al., Imprinting of lyophilized a-chymotrypsin affects the reactivity of the active-site imidazole.
Biochemical and Biophysical Research Communications, 240, (1), 27-31, (1997)
   
REACTIVITY
Biffis A et al., The synthesis, characterization and molecular recognition properties of imprinted microgels.
Macromolecular Chemistry And Physics, 202, (1), 163-171, (2001)
   
REACTIVITY
Crescenzi C et al., Solid-phase microextraction of clenbuterol and structural analogs with MIP-coated fibers.
Abstracts of Papers of the American Chemical Society, 222, (ANYL), 135-135, (2001)
   
REACTIVITY
Larsen AO et al., Polymer immobilized cationic MeOBiPhep rhodium catalysts: The effect of poisoning on the reactivity of molecularly imprinted catalysts.
Abstracts of Papers of the American Chemical Society, 221, (INOR), 110-110, (2001)
   
REACTIVITY
Martin PD et al., An unexpected selectivity of a propranolol-derived molecular imprint for tamoxifen.
Analyst, 126, (6), 757-759, (2001)
   
REACTIVITY
Cui A et al., Enzyme-based molecular imprinting with metals.
Biomacromolecules, 3, (6), 1353-1358, (2002)
   
REACTIVITY
Liang CD et al., Change of pH indicators pKa value via molecular imprinting.
Chemical Communications, (15), 1620-1621, (2002)
   
REACTIVITY
Bass JD et al., Thermolytic synthesis of imprinted amines in bulk silica.
Chemistry of Materials, 15, (14), 2757-2763, (2003)
   
REACTIVITY
Bass JD et al., The effect of outer-sphere acidity on chemical reactivity in a synthetic heterogeneous base catalyst.
Angewandte Chemie International Edition, 42, (42), 5219-5222, (2003)
   
REACTIVITY
Gagné MR et al., Reactivity of chiral pockets in highly crosslinked organic polymers.
Abstracts of Papers of the American Chemical Society, 225, U692-U692, (2003)
   
REACTIVITY
Tada M et al., Approaches to design of active structures by attaching and molecular imprinting of metal complexes on oxide surfaces.
Journal of Molecular Catalysis A: Chemical, 204-205, (1), 27-53, (2003)
   
REACTIVITY
Becker JJ et al., Exploiting the synergy between coordination chemistry and molecular imprinting in the quest for new catalysts.
Accounts of Chemical Research, 37, (10), 798-804, (2004)
   
REACTIVITY
Sibrian-Vazquez M et al., Characterization of molecularly imprinted polymers employing crosslinkers with nonsymmetric polymerizable groups.
Journal of Polymer Science Part A: Polymer Chemistry, 42, (15), 3668-3675, (2004)
   
reactivity ratio
Patil Y et al., Advances in the (co)polymerization of alkyl 2-trifluoromethacrylates and 2-(trifluoromethyl)acrylic acid.
Progress in Polymer Science, 38, (5), 703-739, (2013)
   
REACTOR
Lye GJ et al., Application of in situ product-removal techniques to biocatalytic processes.
Trends In Biotechnology, 17, (10), 395-402, (1999)
   
REACTOR
Brüggemann O, Chemical reaction engineering using molecularly imprinted polymeric catalysts.
Analytica Chimica Acta, 435, (1), 197-207, (2001)
   
REACTOR
Brüggemann O, Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.
Biomolecular Engineering, 18, (1), 1-7, (2001)
   
REACTOR
Koter I et al., Kinetic resolution of chiral alcohols in bifunctional membrane exhibiting enzyme activity and enantioselective permeation.
Journal of Molecular Catalysis B: Enzymatic, 24-25, (1), 17-26, (2003)
   
ready-to-use materials
Poller AM et al., Surface Imprints: Advantageous Application of Ready2use Materials for Bacterial Quartz-Crystal Microbalance Sensors.
ACS Applied Materials & Interfaces, 9, (1), 1129-1135, (2017)
   
REAGENT
Hopkins A et al., Microgels as matrices for molecular receptor and reactive sites - synthesis and reactivity of cavities possessing amino-functions.
Journal of the Chemical Society-Perkin Transactions 2, (6), 891-896, (1983)
   
REAGENT
Guyot A, Some problems in the physical and chemical characterization of functionalized supports.
Reactive Polymers, 10, (2-3), 113-129, (1989)
   
REAGENT
Book chapter, Sellergren B, Molecular Imprinting by non-covalent interactions,
In: Innovations and Perspectives in Solid Phase Synthesis. Peptides, Polypeptides and Oligonucleotides, Epton R (Ed.)
SPCC (UK): Birmingham, 293-307, (1990)    
REAGENT
Morita M et al., Selective electrochemical detection of catechol and catecholamines on modified electrodes with molecular template.
Denki Kagaku, 64, 1239-1243, (1996)
   
REAGENT
Morita M et al., Interdigitated array microelectrodes as electrochemical sensors.
Electrochimica Acta, 42, (20-22), 3177-3183, (1997)
   
REAGENT
Boeckl MS et al., Template-assisted nano-patterning of solid surfaces.
Biopolymers, 47, (2), 185-193, (1998)
   
REAGENT
Makote R et al., Template recognition in inorganic-organic hybrid films prepared by the sol-gel process.
Chemistry of Materials, 10, (9), 2440-2445, (1998)
   
REAGENT
Mohr GJ et al., Reversible chemical reactions as the basis for optical sensors used to detect amines, alcohols and humidity.
Journal of Materials Chemistry, 9, (9), 2259-2264, (1999)
   
REAGENT
Deng G et al., Control of surface expression of functional groups on silica particles.
Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 11, (2), 165-172, (2000)
   
REAGENT
Koide T et al., Enantiomeric separations of acidic and neutral compounds by capillary electrochromatography with b-cyclodextrin-bonded positively charged polyacrylamide gels.
HRC - Journal of High Resolution Chromatography, 23, (1), 59-66, (2000)
   
REAGENT
Murray GM et al., Portable sensor for illicit cocaine based on a molecularly imprinted polymer.
unknown source, (2000)
   
REAGENT
Alvarez-Lorenzo C et al., Soft contact lenses capable of sustained delivery of timolol.
Journal of Pharmaceutical Sciences, 91, (10), 2182-2192, (2002)
   
REAGENT
Fujiwara M et al., A sol-gel method using tetraethoxysilane and acetic anhydride: Immobilization of cubic [mu]-oxo Si-Ti complex in a silica matrix.
Chemistry of Materials, 14, (12), 4975-4981, (2002)
   
REAGENT
Lemay P, The use of high pressure for separation and production of bioactive molecules.
Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1595, (1-2), 357-366, (2002)
   
REAGENT
Tong AJ et al., Molecular imprinting-based fluorescent chemosensor for histamine using zinc (II)-protoporphyrin as a functional monomer.
Analytica Chimica Acta, 466, (1), 31-37, (2002)
   
REAGENT
Bass JD et al., Thermolytic synthesis of imprinted amines in bulk silica.
Chemistry of Materials, 15, (14), 2757-2763, (2003)
   
REAGENT
Du JX et al., Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material.
Analytica Chimica Acta, 489, (2), 183-189, (2003)
   
REAGENT
Mohr GJ, New chromoreactands for the detection of aldehydes, amines and alcohols.
Sensors and Actuators B: Chemical, 90, (1-3), 31-36, (2003)
   
REAGENT
Narducci D et al., Investigation of gas-surface interactions at self-assembled silicon surfaces acting as gas sensors.
Applied Surface Science, 212-213, (1), 491-496, (2003)
   
REAGENT
Vidal JC et al., Recent advances in electropolymerized conducting polymers in amperometric biosensors.
Microchimica Acta, 143, (2-3), 93-111, (2003)
   
REAGENT
Ebarvia BS et al., Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer.
Analytical and Bioanalytical Chemistry, 378, (5), 1331-1337, (2004)
   
REAGENT
Lavignac N et al., 4-(3-Aminopropylene)-7-nitrobenzofurazan: a new polymerisable monomer for use in homogeneous molecularly imprinted sorbent fluoroassays.
Tetrahedron Letters, 45, (18), 3625-3627, (2004)
   
reagents
Hopkins A et al., Microgels as matrices for molecular receptor and reactive sites - synthesis and reactivity of cavities possessing amino-functions.
Journal of the Chemical Society-Perkin Transactions 2, (6), 891-896, (1983)
   
reagents
Guyot A, Some problems in the physical and chemical characterization of functionalized supports.
Reactive Polymers, 10, (2-3), 113-129, (1989)
   
reagents
Book chapter, Sellergren B, Molecular Imprinting by non-covalent interactions,
In: Innovations and Perspectives in Solid Phase Synthesis. Peptides, Polypeptides and Oligonucleotides, Epton R (Ed.)
SPCC (UK): Birmingham, 293-307, (1990)    
reagents
Manesiotis P et al., An enantioselective imprinted receptor for Z-glutamate exhibiting a binding induced color change.
Chemical Communications, (20), 2278-2279, (2004)
   
reagents
Fang GZ et al., Preparation and Evaluation of Lysozyme Molecularly Imprinted Polymer Film on the Surface of Multi-wall Carbon Nanotubes.
Current Organic Chemistry, 16, (12), 1461-1467, (2012)
   
REAGENT-(-)-SPARTEINE DERIVATIVE COMPLEXES
Okamoto Y et al., Asymmetric polymerization.
Chemical Reviews, 94, (2), 349-372, (1994)
   
real aqueous media
Yang S et al., A Facile and Universal Method to Prepare Hydrophilic Molecularly Imprinted Microspheres by Encapsulating a Polymer in Hollow Mesoporous Silica Microspheres.
Chemistry - An Asian Journal, 10, (3), 722-727, (2015)
   
Real effluents
Kyzas GZ et al., Selective separation of basic and reactive dyes by molecularly imprinted polymers (MIPs).
Chemical Engineering Journal, 149, (1-3), 263-272, (2009)
   
Real-life application
Lieberzeit PA et al., Chemosensors in environmental monitoring: challenges in ruggedness and selectivity.
Analytical and Bioanalytical Chemistry, 393, (2), 467-472, (2009)
   
Real-life applications
Findeisen A et al., Artificial receptor layers for detecting chemical and biological agent mimics.
Sensors and Actuators B: Chemical, 170, 196-200, (2012)
   
Real-life matrices
Book chapter, Mustafa Get al., MIP Sensors on the Way to Real-World Applications,
In: Designing Receptors for the Next Generation of Biosensors, Piletsky SA, Whitcombe MJ (Eds.)
Springer: Berlin, Heidelberg, 167-187, (2013)    
Real sample
Patra S et al., Nano-iniferter based imprinted sensor for ultra trace level detection of prostate-specific antigen in both men and women.
Biosensors and Bioelectronics, 66, 1-10, (2015)
   
real-sample
Kumar S et al., Super paramagnetic iron oxide nanoparticle modified mancozeb imprinted polymer.
AIP Conference Proceedings, 1832, (1), ArticleNo050014-(2017)
   
Real sample analysis
Prasad BB et al., Enantioselective quantitative separation of d- and l-thyroxine by molecularly imprinted micro-solid phase extraction silver fiber coupled with complementary molecularly imprinted polymer-sensor.
Journal of Chromatography A, 1217, (26), 4255-4266, (2010)
   
Real sample analysis
Prasad BB et al., Development of a highly sensitive and selective hyphenated technique (molecularly imprinted micro-solid phase extraction fiber-molecularly imprinted polymer fiber sensor) for ultratrace analysis of folic acid.
Analytica Chimica Acta, 662, (1), 14-22, (2010)
   
Real sample analysis
Prasad BB et al., Multiwalled carbon nanotubes bearing terminal monomeric unit for the fabrication of epinephrine imprinted polymer-based electrochemical sensor.
Biosensors and Bioelectronics, 45, 114-122, (2013)
   
Real sample analysis
Prasad BB et al., Highly selective and sensitive analysis of dopamine by molecularly imprinted stir bar sorptive extraction technique coupled with complementary molecularly imprinted polymer sensor.
Journal of Colloid and Interface Science, 396, 234-241, (2013)
   
Real sample analysis
Prasad BB et al., Quantum dots-multiwalled carbon nanotubes nanoconjugate-modified pencil graphite electrode for ultratrace analysis of hemoglobin in dilute human blood samples.
Talanta, 109, 52-60, (2013)
   
Real sample analysis
Prasad BB et al., Highly selective and sensitive analysis of γ-aminobutyric acid using a new molecularly imprinted polymer modified at the surface of abrasively immobilized multi-walled carbon nanotubes on pencil graphite electrode.
Electrochimica Acta, 102, 400-408, (2013)
   
Real sample analysis
Prasad BB et al., Molecularly imprinted micro solid-phase extraction technique coupled with complementary molecularly imprinted polymer-sensor for ultra trace analysis of epinephrine in real samples.
Colloids and Surfaces B: Biointerfaces, 113, 69-76, (2014)
   
Real sample analysis
Tiwari MP et al., An insulin monitoring device based on hyphenation between molecularly imprinted micro-solid phase extraction and complementary molecularly imprinted polymer-sensor.
Journal of Chromatography A, 1337, 22-31, (2014)
   
Real sample analysis
Patra S et al., Bimetallic magnetic nanoparticle as a new platform for fabrication of pyridoxine and pyridoxal-5-phosphate imprinted polymer modified high throughput electrochemical sensor [RETRACTED].
Biosensors and Bioelectronics, 73, 234-244, (2015)
   
Real sample analysis
Prasad BB et al., A new micro-contact imprinted l-cysteine sensor based on sol-gel decorated graphite/multiwalled carbon nanotubes/gold nanoparticles composite modified sandpaper electrode.
Sensors and Actuators B: Chemical, 212, 155-164, (2015)
   
Real sample analysis
Patra S et al., Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology.
Analytica Chimica Acta, 918, 77-88, (2016)
   
Real sample analysis
Roy E et al., Shape effect on the fabrication of imprinted nanoparticles: Comparison between spherical-, rod-, hexagonal-, and flower-shaped nanoparticles.
Chemical Engineering Journal, 321, 195-206, (2017)
   
Real-sample analysis
Kumar S et al., Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique.
Journal of Physics and Chemistry of Solids, 116, 222-233, (2018)
   
Real sample analysis
Feng J et al., A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen.
Microchimica Acta, 186, (12), Article774-(2019)
   
Real samples
He CY et al., Application of molecularly imprinted polymers to solid-phase extraction of analytes from real samples.
Journal of Biochemical and Biophysical Methods, 70, (2), 133-150, (2007)
   
Real samples
Martín-Yerga D et al., Electrochemical determination of mercury: A review.
Talanta, 116, 1091-1104, (2013)
   
Real samples
Prasad BB et al., An electroconducting copper (II) imprinted sensor using algae as cheap substitute of multiwalled carbon nanotubes.
Electrochimica Acta, 187, 193-203, (2016)
   
Real samples
Prasad BB et al., Electrochemical sensing of ultra trace copper(II) by alga-OMNiIIP modified pencil graphite electrode.
Sensors and Actuators B: Chemical, 229, 655-663, (2016)
   
Real samples
Prasad BB et al., One MoNomer doubly imprinted dendrimer nanofilm modified pencil graphite electrode for simultaneous electrochemical determination of norepinephrine and uric acid.
Electrochimica Acta, 232, 474-483, (2017)
   
Real samples
Fatma S et al., A reduced graphene oxide ceramic electrode modified with one MoNomer doubly imprinted acryloylated tetraamine cobalt phthalocyanine polymer for the simultaneous analysis of anticancerous drugs.
Sensors and Actuators B: Chemical, 281, 139-149, (2019)
   
Real samples
Feier B et al., Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Cefalexin.
Biosensors, 9, (1), ArticleNo31-(2019)
   
Real samples
Hu TL et al., Recent advances and applications of molecularly imprinted polymers in solid-phase extraction for real sample analysis.
Journal of Separation Science, 44, (1), 274-309, (2021)
   
Real samples
Kasiri E et al., Highly effective pre-concentration of thymol and carvacrol using nano-sized magnetic molecularly imprinted polymer based on experimental design optimization and their trace determination in summer savoury, Origanum majorana and Origanum vulgare extracts.
Journal of Chromatography B, 1182, Article122941-(2021)
   
real-time
Tsow F et al., A Wearable and Wireless Sensor System for Real-Time Monitoring of Toxic Environmental Volatile Organic Compounds.
IEEE Sensors Journal, 9, (12), 1734-1740, (2009)
   
real-time
Proceeding, Lebal N et al, Real-time study of adenosine-5 monophosphate adsorption with a Love wave sensor based on molecularly imprinted polymer,
1-3, (2014)
   
REAL-TIME ANALYSIS
Luppa PB et al., Immunosensors - principles and applications to clinical chemistry.
Clinica Chimica Acta, 314, (1-2), 1-26, (2001)
   
Real-time detection
Lopez-Roldan R et al., On-line bacteriological detection in water.
TrAC Trends in Analytical Chemistry, 44, 46-57, (2013)
   
Real-time fluorescence measurement
Liu YX et al., The detection method for small molecules coupled with a molecularly imprinted polymer/quantum dot chip using a home-built optical system.
Analytical and Bioanalytical Chemistry, 408, (19), 5261-5268, (2016)
   
real-time measurement
Samardzic R et al., Quartz Crystal Microbalance In-Line Sensing of Escherichia Coli in a Bioreactor Using Molecularly Imprinted Polymers.
Sensor Letters, 12, (6-7), 1152-1155, (2014)
   
Real-time monitoring
Calvo-Rolle JL et al., Oil degradation monitoring with chemical sensors and molecular imprinted polymer.
Dyna, 85, (9), 738-745, (2010)
   
Real-time monitoring
Wu YT et al., Monitoring bisphenol A and its biodegradation in water using a fluorescent molecularly imprinted chemosensor.
Chemosphere, 119, 515-523, (2015)
   
Real-time PCR
Skottrup PD et al., Towards on-site pathogen detection using antibody-based sensors.
Biosensors and Bioelectronics, 24, (3), 339-348, (2008)
   
Real-Time Response
Proceeding, Korostynska O et al, Flexible Approach to Sensors Arrays Nanopatterning for Real-Time Water Contaminants Monitoring Platform,
In: Key Engineering Materials, Hristoforou E, Vlachos DS (Eds.),
55-58, (2013)
   
Real-time sensor
Chen C et al., A new sensor for the assessment of personal exposure to volatile organic compounds.
Atmospheric Environment, 54, (1), 679-687, (2012)
   
Real-time systems
Proceeding, Lebal N et al, Real-time study of adenosine-5 monophosphate adsorption with a Love wave sensor based on molecularly imprinted polymer,
1-3, (2014)
   
Real water
Duan YP et al., Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers.
Analytica Chimica Acta, 758, 93-100, (2013)
   
Real water sample
Wang JX et al., Molecularly imprinted fluorescent hollow nanoparticles as sensors for rapid and efficient detection [lambda]-cyhalothrin in environmental water.
Biosensors and Bioelectronics, 85, 387-394, (2016)
   
Real water sample
Zhang ZL et al., Highly efficient and selective removal of trace lead from aqueous solutions by hollow mesoporous silica loaded with molecularly imprinted polymers.
Journal of Hazardous Materials, 328, 160-169, (2017)
   
Real water samples
Dai CM et al., Performance evaluation and application of molecularly imprinted polymer for separation of carbamazepine in aqueous solution.
Journal of Hazardous Materials, 184, (1-3), 156-163, (2010)
   
Real water samples
Chen ZD et al., Determination of Bisphenol A Using an Electrochemical Sensor Based on a Molecularly Imprinted Polymer-Modified Multiwalled Carbon Nanotube Paste Electrode.
Analytical Letters, 47, (6), 996-1014, (2014)
   
REARRANGEMENT
Motherwell WB et al., A study of some molecularly imprinted polymers as protic catalysts for the isomerisation of a-pinene oxide to trans-carveol.
Tetrahedron, 60, (14), 3231-3241, (2004)
   
Rebinding
Proceeding, Zhao KY et al, The rebinding properties of bovine serum albumin imprinted calcium phosphate/polyacrylate/alginate hybrid polymer microspheres,
In: Advanced Materials Research, Jiang ZY, Han JT, Liu XH (Eds.),
1636-1640, (2010)
   
Rebinding
Dourado EMA et al., Molecular Recognition Effects in Atomistic Models of Imprinted Polymers.
International Journal of Molecular Sciences, 12, (8), 4781-4804, (2011)
   
Rebinding
Proceeding, Cui WK et al, Specific Rebinding of Protein Imprinted Calcium Polyacrylate/Alginate Hybrid Materials via the Adjustment of pH Values,
In: Advanced Materials Research, Xu B, Li HY (Eds.),
206-209, (2012)
   
Re-binding
Florea AM et al., The structure effect upon gallic acid re-binding in molecularly imprinted organosilica.
Journal of Sol-Gel Science and Technology, 76, (3), 529-541, (2015)
   
Rebinding
Smitha KR, Development of enantioselective molecular imprinted polymers of D-mandelic acid.
Journal of Research Innovations in Engineering & Technology, 2, (3), 55-59, (2016)
   
Rebinding
Daniels E et al., Optimization of Cortisol-Selective Molecularly Imprinted Polymers Enabled by Molecular Dynamics Simulations.
ACS Applied Bio Materials, 4, (9), 7243-7253, (2021)
   
rebinding behavior
Ying XG et al., Effect on rebinding behavior with different composition and structure of the dually imprinted alginate polymer microspheres using proteins and o/w emulsion drops as dual templates.
Journal of Applied Polymer Science, 115, (6), 3516-3526, (2010)
   
Rebinding characteristics
Okutucu B et al., Optimization of serotonin imprinted polymers and recognition study from platelet rich plasma.
Talanta, 76, (5), 1153-1158, (2008)
   
Rebinding experiments
Yang ML et al., Study on the molecularly imprinted polymers with methyl-testosterone as the template.
Talanta, 81, (1-2), 156-161, (2010)
   
Rebinding isotherm
Rodríguez-Dorado R et al., Oxytetracycline recovery from aqueous media using computationally designed molecularly imprinted polymers.
Analytical and Bioanalytical Chemistry, 408, (24), 6845-6856, (2016)
   
Rebinding Properties
Proceeding, Song RY et al, Synthesis of Surface Imprinted Polymer Microspheres with Ultrathin Polymer Shells via Surface-Initiated Iniferter Polymerization,
In: Advanced Materials Research, Zeng Q (Ed.),
68-73, (2013)
   
rebinding specificity
Zhou JJ et al., Ni2+-BSA Directional Coordination-Assisted Magnetic Molecularly Imprinted Microspheres with Enhanced Specific Rebinding to Target Proteins.
ACS Applied Materials & Interfaces, 11, (29), 25682-25690, (2019)
   
rebinding specificity
Qian LW et al., Fabrication of Raspberry-like Cytochrome C Surface-Imprinted Nanoparticles Based on MOF Composites for High-Performance Protein Separation.
ACS Applied Materials & Interfaces, 13, (26), 31010-31020, (2021)
   
rebinding studies
Krishna PG et al., Selective recognition of neodymium(III) using ion imprinted polymer particles.
Journal of Molecular Recognition, 18, (1), 109-116, (2005)
   
rebinding studies
Simões M et al., Tailor-made molecularly imprinted polymers for dimethoate and deltamethrin recognition: synthesis, characterization and chromatographic evaluation.
Journal of Polymer Research, 21, (3), Article No 368-(2014)
   
rebinding study
Ahmed F et al., Preparation and Characterization of Molecular Imprinted Polymer for Detection and Selective Removal of Albendazole from Aqueous Solution.
Sensor Letters, 14, (11), 1089-1093, (2016)
   
Recent progress
Cheong WJ et al., Recent applications of molecular imprinted polymers for enantio-selective recognition.
Talanta, 106, 45-59, (2013)
   
Recent progresses
Cheong WJ et al., Comprehensive overview of recent preparation and application trends of various open tubular capillary columns in separation science.
Journal of Chromatography A, 1308, 1-24, (2013)
   
receptor
Beckett AH et al., Active sites in stereoselective adsorbents as models of drug receptors and enzyme active sites.
Journal of Pharmacy and Pharmacology, 15, 253T-266T, (1963)
   
receptor
Hopkins A et al., Microgels as matrices for molecular receptor and reactive sites - synthesis and reactivity of cavities possessing amino-functions.
Journal of the Chemical Society-Perkin Transactions 2, (6), 891-896, (1983)
   
receptor
Rubinstein I et al., Ionic recognition and selective response in self-assembling monolayer membranes on electrodes.
Nature, 332, (6163), 426-429, (1988)
   
receptor
Braco L et al., Production of abiotic receptors by molecular imprinting of proteins.
Proceedings of the National Academy of Sciences of the United States of America, 87, (1), 274-277, (1990)
   
receptor
Dabulis K et al., Design of novel receptors by molecular imprinting of proteins.
Abstracts of Papers of the American Chemical Society, 200, (BIOT), 28-28, (1990)
   
receptor
Piletskii SA et al., Construction of molecular sensors based on substrate-selective polymeric membranes.
Journal of Analytical Chemistry, 47, (9), 1231-1234, (1992)
   
receptor
Shiomi Y et al., Specific complexation of glucose with a diphenylmethane-3,3-diboronic acid-derivative - correlation between the absolute configuration of monosaccharide and disaccharide and the circular dichroic activity of the complex.
Journal of the Chemical Society-Perkin Transactions 1, (17), 2111-2117, (1993)
   
receptor
Piletsky SA et al., Sensors for low-weight organic-molecules based on molecular imprinting technique.
Sensors and Actuators B: Chemical, 19, (1-3), 629-631, (1994)
   
receptor
Ramström O et al., Synthetic peptide receptor mimics - highly stereoselective recognition in noncovalent molecularly imprinted polymers.
Tetrahedron: Asymmetry, 5, (4), 649-656, (1994)
   
receptor
Matsui J et al., A molecularly imprinted synthetic polymer receptor selective for atrazine.
Analytical Chemistry, 67, (23), 4404-4408, (1995)
   
receptor
Nicholls IA et al., Insights into the role of the hydrogen-bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics.
Journal of Chromatography A, 691, (1-2), 349-353, (1995)
   
receptor
Book chapter, Andersson LIet al., Molecular Imprinting: The current status and future development of polymer-based recognition systems,
In: Biochemical Technology, Part B, Bittar EE, Danielsson B, Bulow L (Eds.)
Elsevier: Amsterdam, 651-670, (1996)    
receptor
Matsui J et al., Highly stereoselective molecularly imprinted polymer synthetic receptors for cinchona alkaloids.
Tetrahedron: Asymmetry, 7, 1357-1361, (1996)
   
receptor
Ramström O et al., Artificial antibodies to corticosteroids prepared by molecular imprinting.
Chemistry & Biology, 3, (6), 471-477, (1996)
   
receptor
Ramström O et al., Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.
Journal of Molecular Recognition, 9, (5-6), 691-696, (1996)
   
receptor
Ratner BD, The engineering of biomaterials exhibiting recognition and specificity.
Journal of Molecular Recognition, 9, (5-6), 617-625, (1996)
   
receptor
Andersson HS et al., Molecular imprinting: Recent innovations in synthetic polymer receptor and enzyme mimics.
Recent Research Developments in Pure & Applied Chemistry, 1, 133-157, (1997)
   
receptor
Asanuma H et al., Molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol.
Chemical Communications, (20), 1971-1972, (1997)
   
receptor
Cheong SH et al., Development of steroid sensors using molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 31-31, (1997)
   
receptor
Daitch CE et al., Phosphate and phosphonate receptors in silicate materials.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 132-132, (1997)
   
receptor
Huc I et al., Virtual combinatorial libraries: Dynamic generation of molecular and supramolecular diversity by self-assembly.
Proceedings of the National Academy of Sciences of the United States of America, 94, (6), 2106-2110, (1997)
   
receptor
Matsui J et al., Solid-phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor.
Analytical Communications, 34, (3), 85-87, (1997)
   
receptor
Matsui J et al., An in-situ approach to molecularly imprinted "tailor-made" separation media.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 157-157, (1997)
   
receptor
Mosbach K, The emerging technique of molecular imprinting and its future impact on biotechnology.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 111-111, (1997)
   
receptor
Sellergren B, Imprinted polymers: Stable, reusable antibody-mimics for highly selective separations.
American Laboratory, 29, 14-14, (1997)
   
receptor
Sellergren B, Important considerations in the design of receptor sites using noncovalent imprinting.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 97-97, (1997)
   
receptor
Sellergren B, Noncovalent molecular imprinting: Antibody-like molecular recognition in polymeric network materials.
TrAC Trends in Analytical Chemistry, 16, (6), 310-320, (1997)
   
receptor
Shea KJ, Molecular imprinting. The de novo synthesis of macromolecular binding and catalytic sites.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 145-145, (1997)
   
receptor
Asanuma H et al., Synthesis of molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol.
Supramolecular Science, 5, (3-4), 417-421, (1998)
   
receptor
Berglund J et al., Selection of phage display combinatorial library peptides with affinity for a yohimbine imprinted methacrylate polymer.
Analytical Communications, 35, (1), 3-7, (1998)
   
receptor
Haupt K et al., Plastic antibodies: developments and applications.
Trends In Biotechnology, 16, (11), 468-475, (1998)
   
receptor
Hwang KO et al., Imprinting for the assembly of artificial receptors on a silica surface.
Journal of Materials Chemistry, 8, (9), 2153-2156, (1998)
   
receptor
Matsui J et al., Molecularly imprinted receptor having metalloporphyrin-based signaling binding site.
Analytical Communications, 35, (7), 225-227, (1998)
   
receptor
Book chapter, Scheller FWet al., New recognition elements in biosensing,
In: Enzyme Engineering XIV, Laskin AI, Li GX, Yu YT (Eds.)
New York Academy of Sciences: New York, 37-45, (1998)    
receptor
Wulff G, Fitting molecules into polymeric receptors.
Chemtech, 28, (11), 19-26, (1998)
   
receptor
Adbo K et al., Enantioselective Trögers base synthetic receptors.
Bioorganic Chemistry, 27, (5), 363-371, (1999)
   
receptor
Allender CJ et al., Preparation of receptor mimics using the technique of molecular imprinting.
Journal of Pharmacy and Pharmacology, 51, (SUPPL.), 261-261, (1999)
   
receptor
Book chapter, Asanuma Het al., Molecularly imprinted cyclodextrin polymers as artificial receptors - The requisites for remarkable imprinting,
In: Proceedings of the 9th International Symposium on Cyclodextrins, Labandeira JJT, Vila-Jato JL (Eds.)
Kluwer Academic Publishers: Dordrecht, 235-238, (1999)    
receptor
Ensing K et al., Tailor-made materials for tailor-made applications: application of molecular imprints in chemical analysis.
TrAC Trends in Analytical Chemistry, 18, (3), 138-145, (1999)
   
receptor
Mirsky VM et al., A spreader-bar approach to molecular architecture: formation of stable artificial chemoreceptors.
Angewandte Chemie International Edition, 38, (8), 1108-1110, (1999)
   
receptor
Proceeding, Panasyuk T et al, Selective films prepared by imprinting electropolymerization of metalloporphyrins,
Di Natale C, DAmico A, Sberveglieri G (Eds.),
25-29, (1999)
   
receptor
Pickup J et al., In vivo glucose sensing for diabetes management: progress towards non-invasive monitoring.
British Medical Journal, 319, (7220), 1289-1U31, (1999)
   
receptor
Piletsky SA et al., Receptor and transport properties of imprinted polymer membranes - a review.
Journal of Membrane Science, 157, (2), 263-278, (1999)
   
receptor
Snowden TS et al., Anion recognition: synthetic receptors for anions and their application in sensors.
Current Opinion in Chemical Biology, 3, 740-746, (1999)
   
receptor
Spivak D et al., Molecular imprinting of carboxylic acids employing novel functional macroporous polymers.
Journal of Organic Chemistry, 64, (13), 4627-4634, (1999)
   
receptor
Steinke JHG et al., A simple polymerisable carboxylic acid receptor: 2-acrylamido pyridine.
TrAC Trends in Analytical Chemistry, 18, (3), 159-164, (1999)
   
receptor
Turner APF et al., In vitro diagnostics in diabetes: Meeting the challenge.
Clinical Chemistry, 45, (9), 1596-1601, (1999)
   
receptor
Allender CJ et al., Pharmaceutical applications for molecularly imprinted polymers.
International Journal of Pharmaceutics, 195, (1-2), 39-43, (2000)
   
receptor
Asanuma H et al., Tailor-made receptors by molecular imprinting.
Advanced Materials, 12, (14), 1019-1030, (2000)
   
receptor
Fukusaki EI et al., An artificial plastic receptor that discriminates axial asymmetry.
Journal of Bioscience and Bioengineering, 90, (6), 665-668, (2000)
   
receptor
Herm M et al., Towards synthetic adrenaline receptors.
Chemistry - A European Journal, 6, (1), 47-53, (2000)
   
receptor
Idziak I et al., A molecularly imprinted polymer for 17a-ethynylestradiol evaluated by immunoassay.
Analyst, 125, (8), 1415-1417, (2000)
   
receptor
Iqbal SS et al., Artificial receptors: molecular imprints discern closely related toxins.
Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 7, 77-81, (2000)
   
receptor
Book chapter, Kempe M, Synthetic oxytocin receptors prepared by molecular imprinting,
In: Peptides for the New Millennium, Fields GB, Tam JP, Barany G (Eds.)
Kluwer Academic Publishers: Dordrecht, 534-535, (2000)    
receptor
Lulka MF et al., Molecular imprinting of Ricin and its A and B chains to organic silanes: fluorescence detection.
Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 11, (2), 101-105, (2000)
   
receptor
Matsui J et al., Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent.
Journal of Chromatography A, 889, (1-2), 25-31, (2000)
   
receptor
Sasaki DY et al., Solid-state 31P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels.
Chemistry of Materials, 12, (5), 1400-1407, (2000)
   
receptor
Weller MG, Immunochromatographic techniques - a critical review.
Fresenius Journal of Analytical Chemistry, 366, (6-7), 635-645, (2000)
   
receptor
Wu C, Molecules leave their mark: Imprinting technique creates plastic receptors that grab specific chemicals.
Science News, 157, (12), 186-188, (2000)
   
receptor
Adbo K et al., Enantioselective solid-phase extraction using Trögers base molecularly imprinted polymers.
Analytica Chimica Acta, 435, (1), 115-120, (2001)
   
receptor
Asanuma H et al., Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests.
Analytica Chimica Acta, 435, (1), 25-33, (2001)
   
receptor
Brüggemann O, Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.
Biomolecular Engineering, 18, (1), 1-7, (2001)
   
receptor
Dickert FL et al., Synthetic receptors as sensor coatings for molecules and living cells.
Analyst, 126, (6), 766-771, (2001)
   
receptor
Gale PA, Anion receptor chemistry: highlights from 1999.
Coordination Chemistry Reviews, 213, (1), 79-128, (2001)
   
receptor
Gao SH et al., Building fluorescent sensors for carbohydrates using template-directed polymerizations.
Bioorganic Chemistry, 29, (5), 308-320, (2001)
   
receptor
Gutierrez-Fernandez S et al., Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor.
Electroanalysis, 13, (17), 1399-1404, (2001)
   
receptor
Haupt K et al., Molecularly imprinted polymers: concept and applications.
Actualité Chimique, (4), 23-32, (2001)
   
receptor
Lavigne JJ et al., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors.
Angewandte Chemie International Edition, 40, (17), 3119-3130, (2001)
   
receptor
Leung MKP et al., A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid.
Journal of Materials Chemistry, 11, (12), 2985-2991, (2001)
   
receptor
Luo CH et al., Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element.
Analytica Chimica Acta, 428, (1), 143-148, (2001)
   
receptor
Martín-Esteban A, Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds.
Fresenius Journal of Analytical Chemistry, 370, (7), 795-802, (2001)
   
receptor
Mirsky VM et al., Chemical sensors based on ultrathin membranes from molecularly imprinted polymers.
Biologicheskie Membrany, 18, (6), 496-501, (2001)
   
receptor
Piletsky SA et al., Molecular imprinting: at the edge of the third millennium.
Trends In Biotechnology, 19, (1), 9-12, (2001)
   
receptor
Rachkov A et al., Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach.
Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1544, (1-2), 255-266, (2001)
   
receptor
Scheller FW et al., Research and development in biosensors.
Current Opinion in Biotechnology, 12, (1), 35-40, (2001)
   
receptor
Striegler S, Selective discrimination of closely related monosaccharides at physiological pH by a polymeric receptor.
Tetrahedron, 57, (12), 2349-2354, (2001)
   
receptor
Book chapter, Theodoridis G, Molecularly imprinted polymers for affinity chromatography,
In: Encyclopedia of Chromatography, Cazes J (Ed.)
Marcel Dekker: New York, 1-6, (2001)    
receptor
Vaidya AA et al., Creating a macromolecular receptor by affinity imprinting.
Journal of Applied Polymer Science, 81, (5), 1075-1083, (2001)
   
receptor
Ye L et al., Towards the development of molecularly imprinted artificial receptors for the screening of estrogenic chemicals.
Analyst, 126, (6), 760-765, (2001)
   
receptor
de Vrese M et al., Searching for new bioactive substances from milk.
Bulletin Of The International Dairy Federation No 375/2002 - Fresh Perspectives On Bioactive Dairy Foods, 47-53, (2002)
   
receptor
Proceeding, Hishiya T et al, Preparation of cyclodextrin assembly by using host-guest complexation for molecular recognition,
In: Polymer Preprints, Japan,
1668, (2002)
   
receptor
Jenkins AL, Imprinted polymer sensors for pesticide detection.
Abstracts of Papers of the American Chemical Society, 224, (ANYL), 156-156, (2002)
   
receptor
Kirchner R et al., Calorimetric investigation of chiral recognition processes in a molecularly imprinted polymer.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 43, (3-4), 279-283, (2002)
   
receptor
Kröger S et al., Biosensors for marine pollution research, monitoring and control.
Marine Pollution Bulletin, 45, (1-12), 24-34, (2002)
   
receptor
Lai JP et al., Chromatographic characterization of molecularly imprinted microspheres synthesized by aqueous microsuspension polymerization: Influences of pH, kinds and concentration of buffer on capacity factors.
Chinese Journal of Chemistry, 20, (10), 1012-1018, (2002)
   
receptor
Lesney MS, Sticking with affinity chromatography.
Modern Drug Discovery, (December), 27-29, (2002)
   
receptor
Matsui J et al., Molecular imprinting in alcohols: utility of a pre-polymer based strategy for synthesizing stereoselective artificial receptor polymers in hydrophilic media.
Analytica Chimica Acta, 466, (1), 11-15, (2002)
   
receptor
Mirsky VM, New electroanalytical applications of self-assembled monolayers.
TrAC Trends in Analytical Chemistry, 21, (6-7), 439-450, (2002)
   
receptor
Panasyuk-Delaney T et al., Capacitive creatinine sensor based on a photografted molecularly imprinted polymer.
Electroanalysis, 14, (3), 221-224, (2002)
   
receptor
Pap T et al., Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction.
Journal of Chromatography A, 973, (1-2), 1-12, (2002)
   
receptor
Piletsky SA et al., Electrochemical sensors based on molecularly imprinted polymers.
Electroanalysis, 14, (5), 317-323, (2002)
   
receptor
Suedee R et al., Stereoselective release behaviors of imprinted bead matrices.
Drug Development and Industrial Pharmacy, 28, (5), 545-554, (2002)
   
receptor
Takeuchi T et al., Synthetic receptors prepared by organized assembly of organic molecules.
IEEE Engineering in Medicine and Biology Magazine, 21, (6), 144-150, (2002)
   
receptor
Ulbricht M et al., Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations.
Desalination, 149, (1-3), 293-295, (2002)
   
receptor
Vaihinger D et al., Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation.
Macromolecular Chemistry And Physics, 203, (13), 1965-1973, (2002)
   
receptor
Yoshikawa M, Molecularly imprinted polymeric membranes.
Bioseparation, 10, (6), 277-286, (2002)
   
receptor
Davidson L et al., Synthesis and evaluation of a solid supported molecular tweezer type receptor for cholesterol.
Journal of Materials Chemistry, 13, (4), 758-766, (2003)
   
receptor
Hall AJ et al., A substructure approach toward polymeric receptors targeting dihydrofolate reductase inhibitors. 2. Molecularly imprinted polymers against Z-L-glutamic acid showing affinity for larger molecules.
Journal of Organic Chemistry, 68, (23), 9132-9135, (2003)
   
receptor
Hayden O et al., Mass-sensitive detection of cells, viruses and enzymes with artificial receptors.
Sensors and Actuators B: Chemical, 91, (1-3), 316-319, (2003)
   
receptor
Kempe M, Studies on the cross-reactivity of synthetic oxytocin receptors prepared by molecular imprinting.
Biopolymers, 71, (3), 383-383, (2003)
   
receptor
Kim H et al., An orthogonal approach to multifunctional molecularly imprinted polymers.
Organic Letters, 5, (19), 3415-3418, (2003)
   
receptor
Lack O et al., Selectivity of molecular recognition displayed by monoclonal antibodies as compared to receptors - a new approach to screen combinatorial libraries.
Helvetica Chimica Acta, 86, (11), 3594-3600, (2003)
   
receptor
Lai JP et al., Separation and determination of the antitumor drug piritrexim by molecularly imprinted microspheres in high-performance liquid chromatography.
Analytical and Bioanalytical Chemistry, 377, (1), 208-213, (2003)
   
receptor
Leung MKP et al., Molecular sensing of 3-chloro-1,2-propanediol by molecular imprinting.
Analytica Chimica Acta, 491, (1), 15-25, (2003)
   
receptor
Luo GM et al., Towards more efficient glutathione peroxidase mimics: Substrate recognition and catalytic group assembly.
Current Medicinal Chemistry, 10, (13), 1151-1183, (2003)
   
receptor
Mena ML et al., Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination.
Analytical and Bioanalytical Chemistry, 376, (1), 18-25, (2003)
   
receptor
Striegler S, Selective carbohydrate recognition by synthetic receptors in aqueous solution.
Current Organic Chemistry, 7, (1), 81-102, (2003)
   
receptor
Viton F et al., Crown-ether functionalised second coordination sphere palladium catalysts by molecular imprinting.
Chemical Communications, (24), 3040-3041, (2003)
   
receptor
Zhu LL et al., Selective separation of active inhibitors of epidermal growth factor receptor from Caragana Jubata by molecularly imprinted solid-phase extraction.
Journal of Chromatography A, 991, (2), 151-158, (2003)
   
receptor
Zhu LL et al., Application of a molecularly imprinted polymer for the effective recognition of different anti-epidermal growth factor receptor inhibitors.
Analytical Chemistry, 75, (23), 6381-6387, (2003)
   
receptor
Asanuma H et al., Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 50, (1-2), 51-55, (2004)
   
receptor
Dickert FL et al., Synthetic receptors for chemical sensors - subnano- and micrometre patterning by imprinting techniques.
Biosensors and Bioelectronics, 20, (6), 1040-1044, (2004)
   
receptor
Gong JL et al., Capacitive chemical sensor for fenvalerate assay based on electropolymerized molecularly imprinted polymer as the sensitive layer.
Analytical and Bioanalytical Chemistry, 379, (2), 302-307, (2004)
   
receptor
Guan JG et al., Impedimetric biosensors.
Journal of Bioscience and Bioengineering, 97, (4), 219-226, (2004)
   
receptor
Guihen E et al., Recent highlights in stationary phase design for open-tubular capillary electrochromatography.
Journal of Chromatography A, 1044, (1-2), 67-81, (2004)
   
receptor
Ikegami T et al., Bisphenol A-recognition polymers prepared by covalent molecular imprinting.
Analytica Chimica Acta, 504, (1), 131-135, (2004)
   
receptor
Kindschy LM et al., A review of molecularly imprinted polymers for biosensor development for food and agricultural applications.
Transactions of the ASAE, 47, (4), 1375-1382, (2004)
   
receptor
Kist TBL et al., Separation of biomolecules using electrophoresis and nanostructures.
Electrophoresis, 25, (21-22), 3492-3497, (2004)
   
receptor
Book chapter, Komiyama Met al., Introduction,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 1-8, (2004)    
receptor
Book chapter, Komiyama Met al., Experimental Methods (2) - Evaluation of Imprinting Efficiency,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 47-52, (2004)    
receptor
Book chapter, Komiyama Met al., Applications of Molecularly Imprinted Polymers,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 75-118, (2004)    
receptor
Book chapter, Komiyama Met al., Recent Challenges and Progress,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 119-139, (2004)    
receptor
Book chapter, Komiyama Met al., Flow Chart of a Typical Molecular Imprinting,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 65-73, (2004)    
receptor
Book chapter, Komiyama Met al., Conclusions and Prospects,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 141, (2004)    
receptor
Book chapter, Komiyama Met al., Experimental Methods (1) - Procedures of Molecular Imprinting,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 21-45, (2004)    
receptor
Book chapter, Komiyama Met al., Spectroscopic Anatomy of Molecular Imprinting Reactions,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 53-64, (2004)    
receptor
Lanza F et al., Molecularly imprinted polymers via high-throughput and combinatorial techniques.
Macromolecular Rapid Communications, 25, (1), 59-68, (2004)
   
receptor
Lavignac N et al., Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays.
Analytica Chimica Acta, 510, (2), 139-145, (2004)
   
receptor
Lehmann M et al., Affinity parameters of amino acid derivative binding to molecularly imprinted nanospheres consisting of poly[(ethylene glycol dimethacrylate)-co-(methacrylic acid)].
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 808, (1), 43-50, (2004)
   
receptor
Lin CI et al., Molecularly imprinted polymeric film on semiconductor nanoparticles - Analyte detection by quantum dot photoluminescence.
Journal of Chromatography A, 1027, (1-2), 259-262, (2004)
   
receptor
Lotierzo M et al., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer.
Biosensors and Bioelectronics, 20, (2), 145-152, (2004)
   
receptor
Manesiotis P et al., An enantioselective imprinted receptor for Z-glutamate exhibiting a binding induced color change.
Chemical Communications, (20), 2278-2279, (2004)
   
receptor
Martin-Esteban A, Molecular imprinting technology: a simple way of synthesizing biomimetic polymeric receptors.
Analytical and Bioanalytical Chemistry, 378, (8), 1875-1875, (2004)
   
receptor
Matsui J et al., Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 223-229, (2004)
   
receptor
Pérez-Moral N et al., Comparative study of imprinted polymer particles prepared by different polymerisation methods.
Analytica Chimica Acta, 504, (1), 15-21, (2004)
   
receptor
Piletska E et al., Biotin-specific synthetic receptors prepared using molecular imprinting.
Analytica Chimica Acta, 504, (1), 179-183, (2004)
   
receptor
Ramanaviciene A et al., Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins.
Biosensors and Bioelectronics, 20, (6), 1076-1082, (2004)
   
receptor
Rosengren JP et al., Enantioselective synthetic thalidomide receptors based upon DNA binding motifs.
Organic & Biomolecular Chemistry, 2, (22), 3374-3378, (2004)
   
receptor
Shinkai S et al., Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions.
Biosensors and Bioelectronics, 20, (6), 1250-1259, (2004)
   
receptor
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
receptor
Szabelski P, A simple model of enantioselective adsorption on chiral stationary phases.
Applied Surface Science, 227, (1-4), 94-103, (2004)
   
receptor
Tong YJ et al., Molecularly imprinted receptor for cholesterol prepared by a sacrificial spacer approach.
Abstracts of Papers of the American Chemical Society, 228, (PMSE), 574-574, (2004)
   
receptor
Vaidya A et al., Altering glucose oxidase to oxidize D-galactose through crosslinking of imprinted protein.
ChemBioChem, 5, (1), 132-135, (2004)
   
receptor
Widstrand C et al., Evaluation of MISPE for the multi-residue extraction of b-agonists from calves urine.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 85-91, (2004)
   
receptor
Xu XJ et al., Separation and screening of compounds of biological origin using molecularly imprinted polymers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 61-69, (2004)
   
receptor
Ogawa T et al., Screening of bitterness-suppressing agents for quinine: The use of molecularly imprinted polymers.
Journal of Pharmaceutical Sciences, 94, (2), 353-362, (2005)
   
receptor
Rick J et al., Imprinting unique motifs formed from protein-protein associations.
Analytica Chimica Acta, 542, (1), 26-31, (2005)
   
receptor
Xu H et al., Application of the new recognition molecular sensors in the small toxins.
Science and Technology of Food Industry, 33, (18), 367-370, (2012)
   
receptor
Guryanov I et al., Receptor-ligand interactions: Advanced biomedical applications.
Materials Science and Engineering: C, 68, 890-903, (2016)
   
receptor
Hayden O, One Binder to Bind Them All.
Sensors, 16, (10), ArticleNo1665-(2016)
   
receptor
Almotiri RA et al., Molecular Imprinted Polyacrylamide as a Receptor for Creatinine Detection.
Advanced Science, Engineering and Medicine, 11, (5), 394-400, (2019)
   
RECEPTOR ANTAGONISTS
Kraft A et al., Noncovalent interactions between acidic heterocycles and amidine bases.
Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 18, (1-2), 9-13, (2001)
   
Receptor arrays
Book chapter, Southard GEet al., Molecularly Imprinted Polymer Receptors for Sensors and Arrays,
In: Recognition Receptors in Biosensors, Zourob M (Ed.)
Springer: 751-775, (2010)    
receptor assay
Takeuchi T, Determination of drugs using natural/synthetic receptors.
Japanese Journal of Clinical Chemistry, 26, (1), 1-6, (1997)
   
Receptor-based assays
Ngundi MM et al., Nonantibody-based recognition: Alternative molecules for detection of pathogens.
Expert Review of Proteomics, 3, (5), 511-524, (2006)
   
RECEPTOR-BINDING
Kempe M et al., Receptor-binding mimetics - a novel molecularly imprinted polymer.
Tetrahedron Letters, 36, (20), 3563-3566, (1995)
   
RECEPTOR-BINDING
Ramström O et al., Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.
Journal of Molecular Recognition, 9, (5-6), 691-696, (1996)
   
RECEPTOR-BINDING
Mosbach K, The emerging technique of molecular imprinting and its future impact on biotechnology.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 111-111, (1997)
   
RECEPTOR-BINDING
Rachkov A et al., Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach.
Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1544, (1-2), 255-266, (2001)
   
RECEPTOR-BINDING
de Vrese M et al., Searching for new bioactive substances from milk.
Bulletin Of The International Dairy Federation No 375/2002 - Fresh Perspectives On Bioactive Dairy Foods, 47-53, (2002)
   
Receptor design
Altintas Z et al., Computationally modelled receptors for drug monitoring using an optical based biomimetic SPR sensor.
Sensors and Actuators B: Chemical, 224, 726-737, (2016)
   
Receptor mimic
Wiklander J et al., Towards a synthetic avidin mimic.
Analytical and Bioanalytical Chemistry, 400, (5), 1397-1404, (2011)
   
Receptor-mimic adsorbent
Yagishita M et al., Efficient extraction of estrogen receptor-active compounds from environmental surface water via a receptor-mimic adsorbent, a hydrophilic PEG-based molecularly imprinted polymer.
Chemosphere, 217, 204-212, (2019)
   
receptor mimics
Allender CJ et al., Preparation of receptor mimics using the technique of molecular imprinting.
Journal of Pharmacy and Pharmacology, 51, (SUPPL.), 261-261, (1999)
   
receptor mimics
Rathbone DL, Molecularly imprinted polymers in the drug discovery process.
Advanced Drug Delivery Reviews, 57, (12), 1854-1874, (2005)
   
RECEPTOR MOLECULES
Shiomi Y et al., Specific complexation of glucose with a diphenylmethane-3,3-diboronic acid-derivative - correlation between the absolute configuration of monosaccharide and disaccharide and the circular dichroic activity of the complex.
Journal of the Chemical Society-Perkin Transactions 1, (17), 2111-2117, (1993)
   
RECEPTOR MOLECULES
Book chapter, Scheller FWet al., New recognition elements in biosensing,
In: Enzyme Engineering XIV, Laskin AI, Li GX, Yu YT (Eds.)
New York Academy of Sciences: New York, 37-45, (1998)    
RECEPTOR MOLECULES
Mirsky VM, New electroanalytical applications of self-assembled monolayers.
TrAC Trends in Analytical Chemistry, 21, (6-7), 439-450, (2002)
   
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Introduction,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 1-8, (2004)    
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Experimental Methods (2) - Evaluation of Imprinting Efficiency,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 47-52, (2004)    
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Applications of Molecularly Imprinted Polymers,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 75-118, (2004)    
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Recent Challenges and Progress,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 119-139, (2004)    
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Flow Chart of a Typical Molecular Imprinting,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 65-73, (2004)    
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Conclusions and Prospects,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 141, (2004)    
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Experimental Methods (1) - Procedures of Molecular Imprinting,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 21-45, (2004)    
RECEPTOR MOLECULES
Book chapter, Komiyama Met al., Spectroscopic Anatomy of Molecular Imprinting Reactions,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 53-64, (2004)    
receptors
Beckett AH et al., Active sites in stereoselective adsorbents as models of drug receptors and enzyme active sites.
Journal of Pharmacy and Pharmacology, 15, 253T-266T, (1963)
   
receptors
Braco L et al., Production of abiotic receptors by molecular imprinting of proteins.
Proceedings of the National Academy of Sciences of the United States of America, 87, (1), 274-277, (1990)
   
receptors
Dabulis K et al., Design of novel receptors by molecular imprinting of proteins.
Abstracts of Papers of the American Chemical Society, 200, (BIOT), 28-28, (1990)
   
receptors
Sellergren B, Imprinted dispersion polymers - a new class of easily accessible affinity stationary phases.
Journal of Chromatography A, 673, (1), 133-141, (1994)
   
receptors
Berglund J et al., Recognition in molecularly imprinted polymer a2-adrenoreceptor mimics.
Bioorganic & Medicinal Chemistry Letters, 6, (18), 2237-2242, (1996)
   
receptors
Matsui J et al., Highly stereoselective molecularly imprinted polymer synthetic receptors for cinchona alkaloids.
Tetrahedron: Asymmetry, 7, 1357-1361, (1996)
   
receptors
Ramström O et al., Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.
Journal of Molecular Recognition, 9, (5-6), 691-696, (1996)
   
receptors
Asanuma H et al., Molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol.
Chemical Communications, (20), 1971-1972, (1997)
   
receptors
Cheong SH et al., Development of steroid sensors using molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 31-31, (1997)
   
receptors
Daitch CE et al., Phosphate and phosphonate receptors in silicate materials.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 132-132, (1997)
   
receptors
Huc I et al., Virtual combinatorial libraries: Dynamic generation of molecular and supramolecular diversity by self-assembly.
Proceedings of the National Academy of Sciences of the United States of America, 94, (6), 2106-2110, (1997)
   
receptors
Matsui J et al., An in-situ approach to molecularly imprinted "tailor-made" separation media.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 157-157, (1997)
   
receptors
Mayes AG et al., Molecularly imprinted polymers: useful materials for analytical chemistry?
TrAC Trends in Analytical Chemistry, 16, (6), 321-332, (1997)
   
receptors
Sellergren B, Imprinted polymers: Stable, reusable antibody-mimics for highly selective separations.
American Laboratory, 29, 14-14, (1997)
   
receptors
Sellergren B, Noncovalent molecular imprinting: Antibody-like molecular recognition in polymeric network materials.
TrAC Trends in Analytical Chemistry, 16, (6), 310-320, (1997)
   
receptors
Shea KJ, Molecular imprinting. The de novo synthesis of macromolecular binding and catalytic sites.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 145-145, (1997)
   
receptors
Yu C et al., Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers.
Journal of Organic Chemistry, 62, (12), 4057-4064, (1997)
   
receptors
Asanuma H et al., Synthesis of molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol.
Supramolecular Science, 5, (3-4), 417-421, (1998)
   
receptors
Cheong SH et al., Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer.
Journal of Polymer Science Part A: Polymer Chemistry, 36, (11), 1725-1732, (1998)
   
receptors
Haupt K et al., Plastic antibodies: developments and applications.
Trends In Biotechnology, 16, (11), 468-475, (1998)
   
receptors
Hwang KO et al., Imprinting for the assembly of artificial receptors on a silica surface.
Journal of Materials Chemistry, 8, (9), 2153-2156, (1998)
   
receptors
Knutsson M et al., Novel chiral recognition elements for molecularly imprinted polymer preparation.
Journal of Molecular Recognition, 11, (1-6), 87-90, (1998)
   
receptors
Nicholls IA, Towards the rational design of molecularly imprinted polymers.
Journal of Molecular Recognition, 11, (1-6), 79-82, (1998)
   
receptors
Wulff G, Fitting molecules into polymeric receptors.
Chemtech, 28, (11), 19-26, (1998)
   
receptors
Yano K et al., Molecularly imprinted polymers which mimic multiple hydrogen bonds between nucleotide bases.
Analytica Chimica Acta, 363, (2-3), 111-117, (1998)
   
receptors
Yu C et al., Insights into the origins of binding and the recognition properties of molecularly imprinted polymers prepared using an amide as the hydrogen-bonding functional group.
Journal of Molecular Recognition, 11, (1-6), 69-74, (1998)
   
receptors
Adbo K et al., Enantioselective Trögers base synthetic receptors.
Bioorganic Chemistry, 27, (5), 363-371, (1999)
   
receptors
Book chapter, Asanuma Het al., Molecularly imprinted cyclodextrin polymers as artificial receptors - The requisites for remarkable imprinting,
In: Proceedings of the 9th International Symposium on Cyclodextrins, Labandeira JJT, Vila-Jato JL (Eds.)
Kluwer Academic Publishers: Dordrecht, 235-238, (1999)    
receptors
Kanekiyo Y et al., "Molecular-imprinting" of AMP utilising the polyion complex formation process as detected by a QCM system.
Journal of the Chemical Society-Perkin Transactions 2, (12), 2719-2722, (1999)
   
receptors
Kanekiyo Y et al., "Molecular-imprinting" in polyion complexes which creates the "memory" for the AMP template.
Journal of the Chemical Society-Perkin Transactions 2, (3), 557-561, (1999)
   
receptors
Klein JU et al., Template-mediated synthesis of a polymeric receptor specific to amino acid sequences.
Angewandte Chemie International Edition, 38, (13/14), 2057-2060, (1999)
   
receptors
Mirsky VM et al., A spreader-bar approach to molecular architecture: formation of stable artificial chemoreceptors.
Angewandte Chemie International Edition, 38, (8), 1108-1110, (1999)
   
receptors
Pickup J et al., In vivo glucose sensing for diabetes management: progress towards non-invasive monitoring.
British Medical Journal, 319, (7220), 1289-1U31, (1999)
   
receptors
Piletsky SA et al., Receptor and transport properties of imprinted polymer membranes - a review.
Journal of Membrane Science, 157, (2), 263-278, (1999)
   
receptors
Snowden TS et al., Anion recognition: synthetic receptors for anions and their application in sensors.
Current Opinion in Chemical Biology, 3, 740-746, (1999)
   
receptors
Steinke JHG et al., A simple polymerisable carboxylic acid receptor: 2-acrylamido pyridine.
TrAC Trends in Analytical Chemistry, 18, (3), 159-164, (1999)
   
receptors
Turner APF et al., In vitro diagnostics in diabetes: Meeting the challenge.
Clinical Chemistry, 45, (9), 1596-1601, (1999)
   
receptors
Zhou J et al., Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine.
Analytica Chimica Acta, 381, (1), 85-91, (1999)
   
receptors
Asanuma H et al., Tailor-made receptors by molecular imprinting.
Advanced Materials, 12, (14), 1019-1030, (2000)
   
receptors
Guo HS et al., Study of the binding characteristics of molecular imprinted polymer selective for cefalexin in aqueous media.
Fresenius Journal of Analytical Chemistry, 368, (5), 461-465, (2000)
   
receptors
Herm M et al., Towards synthetic adrenaline receptors.
Chemistry - A European Journal, 6, (1), 47-53, (2000)
   
receptors
Iqbal SS et al., Artificial receptors: molecular imprints discern closely related toxins.
Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 7, 77-81, (2000)
   
receptors
Kanekiyo Y et al., Novel nucleotide-responsive hydrogels designed from copolymers of boronic acid and cationic units and their applications as a QCM resonator system to nucleotide sensing.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (8), 1302-1310, (2000)
   
receptors
Book chapter, Kempe M, Synthetic oxytocin receptors prepared by molecular imprinting,
In: Peptides for the New Millennium, Fields GB, Tam JP, Barany G (Eds.)
Kluwer Academic Publishers: Dordrecht, 534-535, (2000)    
receptors
Lulka MF et al., Molecular imprinting of Ricin and its A and B chains to organic silanes: fluorescence detection.
Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 11, (2), 101-105, (2000)
   
receptors
Markowitz MA et al., Effects of added organosilanes on the formation and adsorption properties of silicates surface-imprinted with an organophosphonate.
Langmuir, 16, (15), 6148-6155, (2000)
   
receptors
Oral E et al., Molecular imprinting in biological systems.
Stp Pharma Sciences, 10, (4), 261-267, (2000)
   
receptors
Sellergren B et al., Application of imprinted synthetic polymers in binding assay development.
Methods-A Companion To Methods In Enzymology, 22, (1), 92-106, (2000)
   
receptors
Sellergren B, Imprinted polymers with memory for small molecules, proteins, or crystals.
Angewandte Chemie International Edition, 39, (6), 1031-1037, (2000)
   
receptors
Wu C, Molecules leave their mark: Imprinting technique creates plastic receptors that grab specific chemicals.
Science News, 157, (12), 186-188, (2000)
   
receptors
Akiyama T et al., Molecular imprinting of cyclodextrin on silica-gel support for the stationary phase of high-performance-liquid-chromatography.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 41, (1-4), 149-153, (2001)
   
receptors
Brüggemann O, Catalytically active polymers obtained by molecular imprinting and their application in chemical reaction engineering.
Biomolecular Engineering, 18, (1), 1-7, (2001)
   
receptors
Dickert FL et al., Synthetic receptors as sensor coatings for molecules and living cells.
Analyst, 126, (6), 766-771, (2001)
   
receptors
Gale PA, Anion receptor chemistry: highlights from 1999.
Coordination Chemistry Reviews, 213, (1), 79-128, (2001)
   
receptors
Lavigne JJ et al., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors.
Angewandte Chemie International Edition, 40, (17), 3119-3130, (2001)
   
receptors
Luo CH et al., Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element.
Analytica Chimica Acta, 428, (1), 143-148, (2001)
   
receptors
Piletsky SA et al., Molecular imprinting: at the edge of the third millennium.
Trends In Biotechnology, 19, (1), 9-12, (2001)
   
receptors
Rachkov A et al., Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach.
Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1544, (1-2), 255-266, (2001)
   
receptors
Book chapter, Theodoridis G, Molecularly imprinted polymers for affinity chromatography,
In: Encyclopedia of Chromatography, Cazes J (Ed.)
Marcel Dekker: New York, 1-6, (2001)    
receptors
Ye L et al., Towards the development of molecularly imprinted artificial receptors for the screening of estrogenic chemicals.
Analyst, 126, (6), 760-765, (2001)
   
receptors
Zheng N et al., Chromatographic characterization of sulfonamide imprinted polymers.
Microchemical Journal, 69, (2), 153-158, (2001)
   
receptors
Zhong N et al., Hydrophilic cholesterol-binding molecular imprinted polymers.
Tetrahedron Letters, 42, (10), 1839-1841, (2001)
   
receptors
Ansell RJ, MIP-ligand binding assays (pseudo-immunoassays).
Bioseparation, 10, (6), 365-377, (2002)
   
receptors
Byrne ME et al., Networks for recognition of biomolecules: Molecular imprinting and micropatterning poly(ethylene glycol)-containing films.
Polymers for Advanced Technologies, 13, (10-12), 798-816, (2002)
   
receptors
de Vrese M et al., Searching for new bioactive substances from milk.
Bulletin Of The International Dairy Federation No 375/2002 - Fresh Perspectives On Bioactive Dairy Foods, 47-53, (2002)
   
receptors
Hishiya T et al., Molecular imprinting of cyclodextrins leading to synthetic antibodies.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44, (1-4), 365-367, (2002)
   
receptors
Proceeding, Hishiya T et al, Preparation of cyclodextrin assembly by using host-guest complexation for molecular recognition,
In: Polymer Preprints, Japan,
1668, (2002)
   
receptors
Jenkins AL, Imprinted polymer sensors for pesticide detection.
Abstracts of Papers of the American Chemical Society, 224, (ANYL), 156-156, (2002)
   
receptors
Lesney MS, Sticking with affinity chromatography.
Modern Drug Discovery, (December), 27-29, (2002)
   
receptors
Matsui J et al., Molecular imprinting in alcohols: utility of a pre-polymer based strategy for synthesizing stereoselective artificial receptor polymers in hydrophilic media.
Analytica Chimica Acta, 466, (1), 11-15, (2002)
   
receptors
Piletsky SA et al., Electrochemical sensors based on molecularly imprinted polymers.
Electroanalysis, 14, (5), 317-323, (2002)
   
receptors
Takeuchi T et al., Synthetic receptors prepared by organized assembly of organic molecules.
IEEE Engineering in Medicine and Biology Magazine, 21, (6), 144-150, (2002)
   
receptors
Tong AJ et al., Molecular imprinting-based fluorescent chemosensor for histamine using zinc (II)-protoporphyrin as a functional monomer.
Analytica Chimica Acta, 466, (1), 31-37, (2002)
   
receptors
Ulbricht M et al., Novel molecularly imprinted polymer (MIP) composite membranes via controlled surface and pore functionalizations.
Desalination, 149, (1-3), 293-295, (2002)
   
receptors
Vaihinger D et al., Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation.
Macromolecular Chemistry And Physics, 203, (13), 1965-1973, (2002)
   
receptors
Batra D et al., Combinatorial methods in molecular imprinting.
Current Opinion in Chemical Biology, 7, (3), 434-442, (2003)
   
receptors
Davidson L et al., Synthesis and evaluation of a solid supported molecular tweezer type receptor for cholesterol.
Journal of Materials Chemistry, 13, (4), 758-766, (2003)
   
receptors
Dong H et al., Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 59, (2), 279-284, (2003)
   
receptors
Hall AJ et al., A substructure approach toward polymeric receptors targeting dihydrofolate reductase inhibitors. 2. Molecularly imprinted polymers against Z-L-glutamic acid showing affinity for larger molecules.
Journal of Organic Chemistry, 68, (23), 9132-9135, (2003)
   
receptors
Hayden O et al., Mass-sensitive detection of cells, viruses and enzymes with artificial receptors.
Sensors and Actuators B: Chemical, 91, (1-3), 316-319, (2003)
   
receptors
Kempe M, Studies on the cross-reactivity of synthetic oxytocin receptors prepared by molecular imprinting.
Biopolymers, 71, (3), 383-383, (2003)
   
receptors
Lack O et al., Selectivity of molecular recognition displayed by monoclonal antibodies as compared to receptors - a new approach to screen combinatorial libraries.
Helvetica Chimica Acta, 86, (11), 3594-3600, (2003)
   
receptors
Leung MKP et al., Molecular sensing of 3-chloro-1,2-propanediol by molecular imprinting.
Analytica Chimica Acta, 491, (1), 15-25, (2003)
   
receptors
Li P et al., Morphologies and binding characteristics of molecularly imprinted polymers prepared by precipitation polymerization.
Polymer International, 52, (12), 1799-1806, (2003)
   
receptors
Lin CY et al., Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor.
Chemistry - A European Journal, 9, (20), 5107-5110, (2003)
   
receptors
Luo GM et al., Towards more efficient glutathione peroxidase mimics: Substrate recognition and catalytic group assembly.
Current Medicinal Chemistry, 10, (13), 1151-1183, (2003)
   
receptors
Mukawa T et al., Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates.
Journal of Pharmaceutical and Biomedical Analysis, 30, (6), 1943-1947, (2003)
   
receptors
Nopper D et al., Amidine-based molecularly imprinted polymers - new sensitive elements for chiral chemosensors.
Analytical and Bioanalytical Chemistry, 377, (4), 608-613, (2003)
   
receptors
Striegler S, Selective carbohydrate recognition by synthetic receptors in aqueous solution.
Current Organic Chemistry, 7, (1), 81-102, (2003)
   
receptors
Ansell RJ, Molecularly imprinted polymers in pseudoimmunoassay.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 151-165, (2004)
   
receptors
Asanuma H et al., Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 50, (1-2), 51-55, (2004)
   
receptors
Dickert FL et al., Synthetic receptors for chemical sensors - subnano- and micrometre patterning by imprinting techniques.
Biosensors and Bioelectronics, 20, (6), 1040-1044, (2004)
   
receptors
Dickert FL et al., QCM array for on-line-monitoring of composting procedures.
Analyst, 129, (5), 432-437, (2004)
   
receptors
Gore MA et al., Enhanced capacities and selectivities for cholesterol in aqueous media by molecular imprinting: role of novel cross-linkers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 211-221, (2004)
   
receptors
Guan JG et al., Impedimetric biosensors.
Journal of Bioscience and Bioengineering, 97, (4), 219-226, (2004)
   
receptors
Ikegami T et al., Covalent molecular imprinting of bisphenol A using its diesters followed by the reductive cleavage with LiAlH4.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 197-201, (2004)
   
receptors
Ikegami T et al., Bisphenol A-recognition polymers prepared by covalent molecular imprinting.
Analytica Chimica Acta, 504, (1), 131-135, (2004)
   
receptors
Kempe H et al., Novel method for the synthesis of molecularly imprinted polymer bead libraries.
Macromolecular Rapid Communications, 25, (1), 315-320, (2004)
   
receptors
Kindschy LM et al., A review of molecularly imprinted polymers for biosensor development for food and agricultural applications.
Transactions of the ASAE, 47, (4), 1375-1382, (2004)
   
receptors
Kist TBL et al., Separation of biomolecules using electrophoresis and nanostructures.
Electrophoresis, 25, (21-22), 3492-3497, (2004)
   
receptors
Book chapter, Komiyama Met al., Introduction,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 1-8, (2004)    
receptors
Book chapter, Komiyama Met al., Experimental Methods (2) - Evaluation of Imprinting Efficiency,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 47-52, (2004)    
receptors
Book chapter, Komiyama Met al., Applications of Molecularly Imprinted Polymers,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 75-118, (2004)    
receptors
Book chapter, Komiyama Met al., Recent Challenges and Progress,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 119-139, (2004)    
receptors
Book chapter, Komiyama Met al., Flow Chart of a Typical Molecular Imprinting,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 65-73, (2004)    
receptors
Book chapter, Komiyama Met al., Conclusions and Prospects,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 141, (2004)    
receptors
Book chapter, Komiyama Met al., Experimental Methods (1) - Procedures of Molecular Imprinting,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 21-45, (2004)    
receptors
Book chapter, Komiyama Met al., Spectroscopic Anatomy of Molecular Imprinting Reactions,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 53-64, (2004)    
receptors
Lin CI et al., Molecularly imprinted polymeric film on semiconductor nanoparticles - Analyte detection by quantum dot photoluminescence.
Journal of Chromatography A, 1027, (1-2), 259-262, (2004)
   
receptors
Lotierzo M et al., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer.
Biosensors and Bioelectronics, 20, (2), 145-152, (2004)
   
receptors
Martin-Esteban A, Molecular imprinting technology: a simple way of synthesizing biomimetic polymeric receptors.
Analytical and Bioanalytical Chemistry, 378, (8), 1875-1875, (2004)
   
receptors
Matsui J et al., Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 223-229, (2004)
   
receptors
Piletska E et al., Biotin-specific synthetic receptors prepared using molecular imprinting.
Analytica Chimica Acta, 504, (1), 179-183, (2004)
   
receptors
Rosengren JP et al., Enantioselective synthetic thalidomide receptors based upon DNA binding motifs.
Organic & Biomolecular Chemistry, 2, (22), 3374-3378, (2004)
   
receptors
Shinkai S et al., Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions.
Biosensors and Bioelectronics, 20, (6), 1250-1259, (2004)
   
receptors
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
receptors
Szabelski P, A simple model of enantioselective adsorption on chiral stationary phases.
Applied Surface Science, 227, (1-4), 94-103, (2004)
   
receptors
Theodoridis G et al., Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 43-51, (2004)
   
receptors
Book chapter, Ulubayram K, Molecularly imprinted polymers,
In: Biomaterials: From Molecules To Engineered Tissues, Hasirci N, Hasirici V (Eds.)
Springer: 123-138, (2004)    
receptors
Xu XJ et al., Separation and screening of compounds of biological origin using molecularly imprinted polymers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 61-69, (2004)
   
receptors
Zimmerman SC et al., Synthetic hosts via molecular imprinting - are universal synthetic antibodies realistically possible?
Chemical Communications, (1), 5-14, (2004)
   
receptors
Manesiotis P et al., An artificial riboflavin receptor prepared by a template analogue imprinting strategy.
Angewandte Chemie International Edition, 44, (25), 3902-3906, (2005)
   
receptors
Nguyen BT et al., Indicator-displacement assays.
Coordination Chemistry Reviews, 250, (23-24), 3118-3127, (2006)
   
receptors
Liang RN et al., Potentiometric Sensing of Neutral Species Based on a Uniform-Sized Molecularly Imprinted Polymer as a Receptor.
Angewandte Chemie International Edition, 49, (14), 2556-2559, (2010)
   
receptors
Schillinger E et al., An Artificial Estrogen Receptor through Combinatorial Imprinting.
Chemistry - A European Journal, 18, (46), 14773-14783, (2012)
   
receptors
Shinde S et al., Imprinted Polymers Displaying High Affinity for Sulfated Protein Fragments.
Angewandte Chemie International Edition, 51, (33), 8326-8329, (2012)
   
receptors
Awino JK et al., Water-Soluble Molecularly Imprinted Nanoparticles (MINPs) with Tailored, Functionalized, Modifiable Binding Pockets.
Chemistry - A European Journal, 21, (2), 655-661, (2015)
   
receptors
Proceeding, Wang HY et al, Preparation of Molecularly Imprinted Polymers Functionalized with Core-shell Magnetic Nanoparticles for the Recognition of Glycoprotein,
Zhang Z (Ed.),
668-672, (2015)
   
receptors
Motib A et al., Modulation of Quorum Sensing in a Gram-Positive Pathogen by Linear Molecularly Imprinted Polymers with Anti-infective Properties.
Angewandte Chemie International Edition, 56, (52), 16555-16558, (2017)
   
receptors
Zhao Y, Sequence-Selective Recognition of Peptides in Aqueous Solution: A Supramolecular Approach through Micellar Imprinting.
Chemistry - A European Journal, 24, (53), 14001-14009, (2018)
   
receptor site mimics
Book chapter, Hart BRet al., Molecularly Imprinted Polymers,
In: Encyclopedia of Polymer Science and Technology,
John Wiley & Sons, Inc.: (2002)    
RECIPIENTS
Morissette P et al., A specific artificial antibody toward mycophenolic acid prepared by molecular imprinting.
Clinical Chemistry, 46, (9), 1516-1518, (2000)
   
Recognition
Galinskaya VI et al., Possible use of specifically formed silica gel for evaluating the degree of molecule structural similarity.
Doklady Akademii Nauk SSSR, 210, (2), 468-471, (1973)
   
Recognition
Damen J et al., Memory of synthesized vinyl polymers for their origins.
Journal of Organic Chemistry, 45, (8), 1382-1387, (1980)
   
Recognition
Norrlöw O et al., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates.
Journal of Chromatography, 299, (1), 29-41, (1984)
   
Recognition
Glad M et al., Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica.
Journal of Chromatography, 347, (1), 11-23, (1985)
   
Recognition
Book chapter, Wulff Get al., Design and Synthesis of Organic Molecules Based on Molecular Recognition, von Binst G (Ed.)
Springer-Verlag: Berlin, 229-233, (1986)    
Recognition
Dougherty TK et al., Molecular recognition on synthetic-polymers.
Abstracts of Papers of the American Chemical Society, 196, (OLY), 124-124, (1988)
   
Recognition
Kim JH et al., Electrochemical and Raman characterization of molecular recognition sites in self-assembled monolayers.
Journal of Physical Chemistry, 92, (20), 5575-5578, (1988)
   
Recognition
Rubinstein I et al., Ionic recognition and selective response in self-assembling monolayer membranes on electrodes.
Nature, 332, (6163), 426-429, (1988)
   
Recognition
Tao YT et al., Molecular recognition in a monolayer matrix on silica-gel.
Journal of the Chemical Society-Chemical Communications, (6), 417-418, (1988)
   
Recognition
Yamamura K et al., Guest selective molecular recognition by an octadecylsilyl monolayer covalently bound on an SnO2 electrode.
Journal of the Chemical Society-Chemical Communications, (2), 79-81, (1988)
   
Recognition
Moradian A et al., Preparation of a functional, highly selective polymer by molecular imprinting. A demonstration with L-p-aminophenylalanine anilide as a template molecule allowing multiple points of attachment.
Journal of Molecular Recognition, 2, (4), 167-169, (1989)
   
Recognition
OShannessy DJ et al., Molecular recognition in synthetic polymers. Enantiomeric resolution of amide derivatives of amino acids on molecularly imprinted polymers.
Journal of Molecular Recognition, 2, (1), 1-5, (1989)
   
Recognition
OShannessy DJ et al., Recent advances in the preparation and use of molecularly imprinted polymers for enantiomeric resolution of amino-acid derivatives.
Journal of Chromatography, 470, (2), 391-399, (1989)
   
Recognition
Andersson LI et al., Molecular recognition in synthetic-polymers - preparation of chiral stationary phases by molecular imprinting of amino-acid amides.
Journal of Chromatography A, 513, (1), 167-179, (1990)
   
Recognition
Sellergren B et al., Molecular recognition in macroporous polymers prepared by a substrate-analog imprinting strategy.
Journal of Organic Chemistry, 55, (10), 3381-3383, (1990)
   
Recognition
Wulff G et al., On the chemistry of binding-sites .7. Enantioselective binding using chiral boronic acids.
Recueil Des Travaux Chimiques Des Pays-Bas-Journal Of The Royal Netherlands Chemical Society, 109, 216-221, (1990)
   
Recognition
Rosatzin T et al., Preparation of Ca2+ selective sorbents by molecular imprinting using polymerizable ionophores.
Journal of the Chemical Society-Perkin Transactions 2, (8), 1261-1265, (1991)
   
Recognition
Book chapter, Wulff G, Polymer assisted molecular recognition: The current understanding of the molecular imprinting procedure,
In: Bioorganic Chemistry in Healthcare and Technology, Pandit UK, Alderweireldt FC (Eds.)
Plenum Press: New York, 55-68, (1991)    
Recognition
Wulff G et al., Enzyme-analog-built polymers .27. Racemic-resolution of free sugars with macroporous polymers prepared by molecular imprinting - selectivity dependence on the arrangement of functional-groups versus requirements.
Journal of Organic Chemistry, 56, (1), 395-400, (1991)
   
Recognition
Chailapakul O et al., Synthesis and characterization of simple self-assembling, nanoporous monolayer assemblies - A new strategy for molecular recognition.
Langmuir, 9, (4), 884-888, (1993)
   
Recognition
Kempe M et al., Chiral separation using molecularly imprinted heteroatomic polymers.
Journal of Molecular Recognition, 6, (1), 25-29, (1993)
   
Recognition
Mallik S et al., Molecular recognition of protein analogs.
Abstracts of Papers of the American Chemical Society, 206, (ORGN), 107-107, (1993)
   
Recognition
Ramström O et al., Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting.
Journal of Organic Chemistry, 58, (26), 7562-7564, (1993)
   
Recognition
Sellergren B et al., Influence of polymer morphology on the ability of imprinted network polymers to resolve enantiomers.
Journal of Chromatography, 635, (1), 31-49, (1993)
   
Recognition
Sellergren B et al., Chiral ion-exchange chromatography - correlation between solute retention and a theoretical ion-exchange model using imprinted polymers.
Journal of Chromatography A, 654, (1), 17-28, (1993)
   
Recognition
Wulff G, The role of binding-site interactions in the molecular imprinting of polymers.
Trends In Biotechnology, 11, (3), 85-87, (1993)
   
Recognition
Arnold FH, New routes to biological recognition and organization using metal-ion binding.
Abstracts of Papers of the American Chemical Society, 208, (BIOL), 53-53, (1994)
   
Recognition
Arnold FH et al., Molecular recognition based on metal-ion patterning and template polymerization.
Abstracts of Papers of the American Chemical Society, 208, (OLY), 469-469, (1994)
   
Recognition
Kempe M et al., Chiral recognition of N-a-protected amino-acids and derivatives in noncovalently molecularly imprinted polymers.
International Journal of Peptide and Protein Research, 44, 603-606, (1994)
   
Recognition
Kempe M et al., Direct resolution of naproxen on a noncovalently molecularly imprinted chiral stationary-phase.
Journal of Chromatography A, 664, (2), 276-279, (1994)
   
Recognition
Li K et al., New crown-ether resins prepared by cationic template polymerization.
Macromolecular Chemistry And Physics, 195, (2), 391-399, (1994)
   
Recognition
Marx-Tibbon S et al., Photostimulated imprinted polymers - a light-regulated medium for transport of amino-acids.
Journal of the Chemical Society-Chemical Communications, (10), 1261-1262, (1994)
   
Recognition
Mayes AG et al., Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting.
Analytical Biochemistry, 222, (2), 483-488, (1994)
   
Recognition
Nilsson K et al., Imprinted polymers as antibody mimetics and new affinity gels for selective separations in capillary electrophoresis.
Journal of Chromatography A, 680, (1), 57-61, (1994)
   
Recognition
Ohkubo K et al., Homogeneous and heterogeneous esterolytic catalyzes of imidazole-containing polymers prepared by molecular imprinting of a transition-state analog.
Journal of Molecular Catalysis, 87, (1), L21-L24, (1994)
   
Recognition
Okahata Y et al., Imprinted chiral molecular recognition in dipeptide crystals immobilized on a quartz-crystal microbalance.
Journal of the Chemical Society-Chemical Communications, (4), 469-470, (1994)
   
Recognition
Ramström O et al., Synthetic peptide receptor mimics - highly stereoselective recognition in noncovalent molecularly imprinted polymers.
Tetrahedron: Asymmetry, 5, (4), 649-656, (1994)
   
Recognition
Sellergren B, Imprinted dispersion polymers - a new class of easily accessible affinity stationary phases.
Journal of Chromatography A, 673, (1), 133-141, (1994)
   
Recognition
Shimada T et al., Footprint catalysis .10. Surface modification of molecular footprint catalysts and its effects on their molecular recognition and catalysis.
Bulletin of the Chemical Society of Japan, 67, (1), 227-235, (1994)
   
Recognition
Tahmassebi DC et al., Synthesis of a new trialdehyde template for molecular imprinting.
Journal of Organic Chemistry, 59, (3), 679-681, (1994)
   
Recognition
Chailapakul O et al., Interactions between organized, surface-confined monolayers and liquid-phase probe molecules .4. Synthesis and characterization of nanoporous molecular assemblies - mechanism of probe penetration.
Langmuir, 11, (4), 1329-1340, (1995)
   
Recognition
Gamez P et al., Molecular imprinting effect in the synthesis of immobilized rhodium complex catalyst (IRC cat).
Tetrahedron Letters, 36, (48), 8779-8782, (1995)
   
Recognition
Glad M et al., Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) Particles for efficient enantiomeric separations.
Reactive Polymers, 25, (1), 47-54, (1995)
   
Recognition
Kempe M et al., Receptor-binding mimetics - a novel molecularly imprinted polymer.
Tetrahedron Letters, 36, (20), 3563-3566, (1995)
   
Recognition
Kriz D et al., Competitive amperometric morphine sensor-based on an agarose immobilized molecularly imprinted polymer.
Analytica Chimica Acta, 300, (1-3), 71-75, (1995)
   
Recognition
Kriz D et al., Preparation and characterization of composite polymers exhibiting both selective molecular recognition and electrical conductivity.
Biomimetics, 3, (2), 81-90, (1995)
   
Recognition
Matsui J et al., A molecularly imprinted synthetic polymer receptor selective for atrazine.
Analytical Chemistry, 67, (23), 4404-4408, (1995)
   
Recognition
Muldoon MT et al., Polymer synthesis and characterization of a molecularly imprinted sorbent assay for atrazine.
Journal of Agricultural and Food Chemistry, 43, (6), 1424-1427, (1995)
   
Recognition
Nicholls IA et al., Recognition and enantioselection of drugs and biochemicals using molecularly imprinted polymer technology.
Trends In Biotechnology, 13, (2), 47-51, (1995)
   
Recognition
Nicholls IA et al., Insights into the role of the hydrogen-bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics.
Journal of Chromatography A, 691, (1-2), 349-353, (1995)
   
Recognition
Plunkett SD et al., Molecularly imprinted polymers on silica: selective supports for high-performance ligand-exchange chromatography.
Journal of Chromatography A, 708, (1), 19-29, (1995)
   
Recognition
Sellergren B et al., Origin of peak asymmetry and the effect of temperature on solute retention in enantiomer separations on imprinted chiral stationary phases.
Journal of Chromatography A, 690, (1), 29-39, (1995)
   
Recognition
Steinke J et al., Imprinting of synthetic polymers using molecular templates.
Advances in Polymer Science, 123, 81-125, (1995)
   
Recognition
Tanabe K et al., Recognition of barbiturates in molecularly imprinted copolymers using multiple hydrogen-bonding.
Journal of the Chemical Society-Chemical Communications, (22), 2303-2304, (1995)
   
Recognition
Yoshikawa M et al., Molecularly imprinted polymeric membranes for optical resolution.
Journal of Membrane Science, 108, (1-2), 171-175, (1995)
   
Recognition
Ahmad WR et al., Transesterification on imprinted silica.
Catalysis Letters, 40, 109-114, (1996)
   
Recognition
Andersson HS et al., Study of the nature of recognition in molecularly imprinted polymers.
Journal of Molecular Recognition, 9, (5-6), 675-682, (1996)
   
Recognition
Book chapter, Andersson LIet al., Molecular Imprinting: The current status and future development of polymer-based recognition systems,
In: Biochemical Technology, Part B, Bittar EE, Danielsson B, Bulow L (Eds.)
Elsevier: Amsterdam, 651-670, (1996)    
Recognition
Andersson LI et al., Molecular imprinting of the endogenous neuropeptide Leu(5)-enkephalin and some derivatives thereof.
Macromolecular Rapid Communications, 17, (1), 65-71, (1996)
   
Recognition
Ansell RJ et al., Molecularly imprinted polymers for bioanalysis: Chromatography, binding assays and biomimetic sensors.
Current Opinion in Biotechnology, 7, (1), 89-94, (1996)
   
Recognition
Baba Y, Capillary affinity gel electrophoresis - New tool for detection of the mutation on DNA.
Molecular Biotechnology, 6, (2), 143-153, (1996)
   
Recognition
Berglund J et al., Recognition in molecularly imprinted polymer a2-adrenoreceptor mimics.
Bioorganic & Medicinal Chemistry Letters, 6, (18), 2237-2242, (1996)
   
Recognition
Dauwe C et al., Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers.
Journal of Chromatography A, 753, (2), 191-200, (1996)
   
Recognition
Dickert FL et al., Molecularly imprinted polymers for optochemical sensors.
Advanced Materials, 8, (12), 987-990, (1996)
   
Recognition
Hosoya K et al., Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography - Structural contribution of cross-linked polymer network on specific molecular recognition.
Journal of Chromatography A, 728, (1-2), 139-147, (1996)
   
Recognition
Kempe M, Antibody-mimicking polymers as chiral stationary phases in HPLC.
Analytical Chemistry, 68, (11), 1948-1953, (1996)
   
Recognition
Kriz D et al., Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors.
Sensors and Actuators B: Chemical, 33, (1-3), 178-181, (1996)
   
Recognition
Matsui J et al., Metal ion mediated recognition in molecularly imprinted polymers.
Analytica Chimica Acta, 335, (1-2), 71-77, (1996)
   
Recognition
Matsui J et al., Highly stereoselective molecularly imprinted polymer synthetic receptors for cinchona alkaloids.
Tetrahedron: Asymmetry, 7, 1357-1361, (1996)
   
Recognition
Morita M et al., Selective electrochemical detection of catechol and catecholamines on modified electrodes with molecular template.
Denki Kagaku, 64, 1239-1243, (1996)
   
Recognition
Muldoon MT et al., Plastic antibodies: Molecularly-imprinted polymers.
Chemistry and Industry, 204-207, (1996)
   
Recognition
Book chapter, Nicholls IA, An approach to the semiquantitation of molecular recognition phenomena in molecularly imprinted polymer systems: Consequences for molecularly imprinted polymer design,
In: Biochemical Technology, Bittar EE, Danielsson B, Bulow L (Eds.)
Elsevier: Amsterdam, 671-679, (1996)    
Recognition
Nicholls IA et al., Some recent developments in the preparation of novel recognition systems: A recognition site for the selective catalysis of an aldol condensation using molecular imprinting and specific affinity motifs for a-chymotrypsin using a phage display peptide library.
Journal of Molecular Recognition, 9, (5-6), 652-657, (1996)
   
Recognition
Philp D et al., Self-assembly in natural and unnatural systems.
Angewandte Chemie International Edition, 35, (11), 1155-1196, (1996)
   
Recognition
Ramström O et al., Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.
Journal of Molecular Recognition, 9, (5-6), 691-696, (1996)
   
Recognition
Ratner BD, The engineering of biomaterials exhibiting recognition and specificity.
Journal of Molecular Recognition, 9, (5-6), 617-625, (1996)
   
Recognition
Siemann M et al., Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers.
Journal of Agricultural and Food Chemistry, 44, (1), 141-145, (1996)
   
Recognition
Vorderbruggen MA et al., Use of cationic aerosol photopolymerization to form silicone microbeads in the presence of molecular templates.
Chemistry of Materials, 8, (5), 1106-1111, (1996)
   
Recognition
Allender CJ et al., Mobile phase effects on enantiomer resolution using molecularly imprinted polymers.
Chirality, 9, (3), 238-242, (1997)
   
Recognition
Allender CJ et al., Binding cross-reactivity of Boc-phenylalanine enantiomers on molecularly imprinted polymers.
Chirality, 9, (3), 233-237, (1997)
   
Recognition
Andersson HS et al., Spectroscopic evaluation of molecular imprinting polymerization systems.
Bioorganic Chemistry, 25, (3), 203-211, (1997)
   
Recognition
Ansell RJ et al., Molecularly imprinted polymers by suspension polymerisation in perfluorocarbon liquids, with emphasis on the influence of the porogenic solvent.
Journal of Chromatography A, 787, (1-2), 55-66, (1997)
   
Recognition
Arnold FH, Imprinting with metal complexes: Selective adsorbents and sensors for aqueous media.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 128-128, (1997)
   
Recognition
Asanuma H et al., Molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol.
Chemical Communications, (20), 1971-1972, (1997)
   
Recognition
Baggiani C et al., Chromatographic characterization of a molecularly imprinted polymer binding theophylline in aqueous buffers.
Journal of Chromatography A, 786, (1), 23-29, (1997)
   
Recognition
Brady PA et al., Selection approaches to catalytic systems.
Chemical Society Reviews, 26, (5), 327-336, (1997)
   
Recognition
Chen H et al., Metal-ion-templated polymers: Synthesis and structure of N-(4- vinylbenzyl)-1,4,7-triazacyclononanezinc(II) complexes, their copolymerization with divinylbenzene, and metal-ion selectivity studies of the demetalated resins - Evidence for a sandwich complex in the polymer matrix.
Angewandte Chemie International Edition, 36, (6), 642-645, (1997)
   
Recognition
Haupt K et al., Binding assays for drugs and herbicides using molecularly imprinted polymer particles as recognition elements in different assay formats.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 32-32, (1997)
   
Recognition
Book chapter, Hernandez Eet al., Biologically inspired recognition chemistry for biosensors. Design of recognition for ion-selective electrodes (ISEs),
In: Biosensors for Direct Monitoring of Environmental Pollutants in Field, Nikolelis DP, Krull UJ, Wang J, Mascini M (Eds.)
Kluwer Academic Publishers: Dordrecht, 97-106, (1997)    
Recognition
Hosoya K et al., Study on molecular recognition by molecular imprinting.
Kuromatogurafi, 18, (2), 104-105, (1997)
   
Recognition
Hosoya K et al., Development of uniformly sized, molecularly imprinted stationary phases for HPLC.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 156-156, (1997)
   
Recognition
Kodakari N et al., Silica overlayers prepared using organic template molecules on tin oxide and its molecular sieving property.
Chemical Vapor Deposition, 3, (1), 59-66, (1997)
   
Recognition
Kodakari N et al., Molecular sieving property of silica overlayer on tin oxide generated by organic template.
Applied Surface Science, 121-122, (1), 292-295, (1997)
   
Recognition
Lin JM et al., Capillary electrochromatographic separation of amino acid enantiomers with molecularly imprinted polymers as chiral recognition agents.
Fresenius Journal of Analytical Chemistry, 357, (1), 130-132, (1997)
   
Recognition
Lin JM et al., Capillary electrochromatographic separation of amino acid enantiomers using on-column prepared molecularly imprinted polymer.
Journal of Pharmaceutical and Biomedical Analysis, 15, (9-10), 1351-1358, (1997)
   
Recognition
Lin JM et al., Temperature effect on chiral recognition of some amino acids with molecularly imprinted polymer filled capillary electrochromatography.
Biomedical Chromatography, 11, (5), 298-302, (1997)
   
Recognition
Matsui J et al., 2-(trifluoromethyl)acrylic acid: A novel functional monomer in non-covalent molecular imprinting.
Analytica Chimica Acta, 343, (1-2), 1-4, (1997)
   
Recognition
Mayes AG et al., Molecularly imprinted polymers: useful materials for analytical chemistry?
TrAC Trends in Analytical Chemistry, 16, (6), 321-332, (1997)
   
Recognition
Milojkovic SS et al., Radiation induced synthesis of molecularly imprinted polymers.
Polymer, 38, (11), 2853-2855, (1997)
   
Recognition
Morihara K, Molecular recognition over footprint cavities.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 98-98, (1997)
   
Recognition
Mosbach K, The emerging technique of molecular imprinting and its future impact on biotechnology.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 111-111, (1997)
   
Recognition
Ramström O et al., Molecularly imprinted materials - Their use in separations, immunoassay-type analyses and syntheses.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 129-129, (1997)
   
Recognition
Schweitz L et al., Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics.
Journal of Chromatography A, 792, (1-2), 401-409, (1997)
   
Recognition
Sellergren B et al., Solvent dependent specific driving forces in the molecular recognition in imprinted polymers.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 27-27, (1997)
   
Recognition
Sellergren B, Noncovalent molecular imprinting: Antibody-like molecular recognition in polymeric network materials.
TrAC Trends in Analytical Chemistry, 16, (6), 310-320, (1997)
   
Recognition
Sreenivasan K, Imparting cholesterol recognition sites in radiation polymerised poly(2-hydroxyethyl methacrylate) by molecular imprinting.
Polymer International, 42, (2), 169-172, (1997)
   
Recognition
Wallimann P et al., Steroids in molecular recognition.
Chemical Reviews, 97, (5), 1567-1608, (1997)
   
Recognition
Yano K et al., Stereoselective recognition of dipeptide derivatives in molecularly imprinted polymers which incorporate an L-valine derivative as a novel functional monomer.
Analytica Chimica Acta, 357, (1-2), 91-98, (1997)
   
Recognition
Yoshida M et al., A novel bifunctional organophosphorus monomer for metal ion-imprinted polymers by surface template polymerization.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 25-25, (1997)
   
Recognition
Yoshikawa M, Molecularly imprinted polymeric membranes for optical resolution.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 154-154, (1997)
   
Recognition
Yu C et al., Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers.
Journal of Organic Chemistry, 62, (12), 4057-4064, (1997)
   
Recognition
Andersson HS et al., Crown ethers as a tool for the preparation of molecularly imprinted polymers.
Journal of Molecular Recognition, 11, (1-6), 103-106, (1998)
   
Recognition
Asanuma H et al., Synthesis of molecularly imprinted polymer of b-cyclodextrin for the efficient recognition of cholesterol.
Supramolecular Science, 5, (3-4), 417-421, (1998)
   
Recognition
Berglund J et al., Selection of phage display combinatorial library peptides with affinity for a yohimbine imprinted methacrylate polymer.
Analytical Communications, 35, (1), 3-7, (1998)
   
Recognition
Boeckl MS et al., Template-assisted nano-patterning of solid surfaces.
Biopolymers, 47, (2), 185-193, (1998)
   
Recognition
Cheong SH et al., Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer.
Journal of Polymer Science Part A: Polymer Chemistry, 36, (11), 1725-1732, (1998)
   
Recognition
Dickert FL et al., Molecular imprinting in chemical sensing - Detection of aromatic and halogenated hydrocarbons as well as polar solvent vapors.
Fresenius Journal of Analytical Chemistry, 360, (7/8), 759-762, (1998)
   
Recognition
Book chapter, Favre-Reguillon Aet al., Caesium-selective imprinted phenolic resins,
In: Molecular Recognition and Inclusion, Coleman AW (Ed.)
Kluwer Academic Publishers: Dordrecht, 329-332, (1998)    
Recognition
Haginaka J et al., Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen - Comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques.
Journal of Chromatography A, 816, (2), 113-121, (1998)
   
Recognition
Haupt K et al., Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element.
Analytical Chemistry, 70, (3), 628-631, (1998)
   
Recognition
Haupt K et al., Plastic antibodies: developments and applications.
Trends In Biotechnology, 16, (11), 468-475, (1998)
   
Recognition
Hong JM, Separation of chemically similar molecules by molecular recognition.
Journal of Industrial and Engineering Chemistry, 4, (3), 226-230, (1998)
   
Recognition
Hong JM et al., Selectively-permeable ultrathin film composite membranes based on molecularly-imprinted polymers.
Chemistry of Materials, 10, (4), 1029-1033, (1998)
   
Recognition
Hosoya K et al., Molecular recognition towards coplanar polychlorinated biphenyls based on the porogen imprinting effects of xylenes.
Journal of Chromatography A, 828, (1-2), 91-94, (1998)
   
Recognition
Kim JM et al., Molecular recognition by hydroquinidine-imprinted polymers.
Bulletin of the Korean Chemical Society, 19, (2), 143-145, (1998)
   
Recognition
Knutsson M et al., Novel chiral recognition elements for molecularly imprinted polymer preparation.
Journal of Molecular Recognition, 11, (1-6), 87-90, (1998)
   
Recognition
Kobayashi T et al., Molecular imprint membranes of polyacrylonitrile copolymers with different acrylic acid segments.
Analytica Chimica Acta, 365, (1-3), 81-88, (1998)
   
Recognition
Liao Y et al., Enantioselective polymeric transporters for tryptophan, phenylalanine, and histidine prepared using molecular imprinting techniques.
Bioorganic Chemistry, 26, (6), 309-322, (1998)
   
Recognition
Lin JM et al., Enantiomeric resolution of dansyl amino acids by capillary electrochromatography based on molecular imprinting method.
Chromatographia, 47, (11-12), 625-629, (1998)
   
Recognition
Lin JM et al., Recent advances in the preparation and use of molecularly imprinted polymers for molecular recognition.
Memoirs of the Graduate School of Engineering, Tokyo Metropolitan University, 47, 5603-5614, (1998)
   
Recognition
Makote R et al., Dopamine recognition in templated silicate films.
Chemical Communications, (3), 425-426, (1998)
   
Recognition
Makote R et al., Template recognition in inorganic-organic hybrid films prepared by the sol-gel process.
Chemistry of Materials, 10, (9), 2440-2445, (1998)
   
Recognition
Matsui J et al., Molecular recognition in cinchona alkaloid molecular imprinted polymer rods.
Analytica Chimica Acta, 365, (1-3), 89-93, (1998)
   
Recognition
Matsui J et al., Molecularly imprinted receptor having metalloporphyrin-based signaling binding site.
Analytical Communications, 35, (7), 225-227, (1998)
   
Recognition
Nicholls IA, Towards the rational design of molecularly imprinted polymers.
Journal of Molecular Recognition, 11, (1-6), 79-82, (1998)
   
Recognition
Norell MC et al., Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism.
Journal of Molecular Recognition, 11, (1-6), 98-102, (1998)
   
Recognition
Piletsky SA et al., The rational use of hydrophobic effect-based recognition in molecularly imprinted polymers.
Journal of Molecular Recognition, 11, (1-6), 94-97, (1998)
   
Recognition
Ramström O et al., Applications of molecularly imprinted materials as selective adsorbents: Emphasis on enzymatic equilibrium shifting and library screening.
Chromatographia, 47, (7-8), 465-469, (1998)
   
Recognition
Ramström O et al., Molecular imprinting technology: Challenges and prospects for the future.
Chirality, 10, (3), 195-209, (1998)
   
Recognition
Ramström O et al., Chiral recognition by molecularly imprinted polymers in aqueous media.
Chromatographia, 48, (3-4), 197-202, (1998)
   
Recognition
Sabourin L et al., Molecularly imprinted polymer combinatorial libraries for multiple simultaneous chiral separations.
Analytical Communications, 35, (9), 285-287, (1998)
   
Recognition
Santora BP et al., Toward the molecular imprinting of titanium Lewis acids: Demonstration of Diels-Alder catalysis.
Organometallics, 17, (15), 3138-3140, (1998)
   
Recognition
Book chapter, Scheller FWet al., New recognition elements in biosensing,
In: Enzyme Engineering XIV, Laskin AI, Li GX, Yu YT (Eds.)
New York Academy of Sciences: New York, 37-45, (1998)    
Recognition
Sreenivasan K, Synthesis and evaluation of a molecularly imprinted polyurethane-poly(HEMA) semi-interpenetrating polymer networks as membrane.
Journal of Applied Polymer Science, 70, (1), 19-22, (1998)
   
Recognition
Sreenivasan K, Synthesis and evaluation of a b-cyclodextrin-based molecularly imprinted copolymer.
Journal of Applied Polymer Science, 70, (1), 15-18, (1998)
   
Recognition
Sreenivasan K, Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids.
Journal of Applied Polymer Science, 68, (11), 1863-1866, (1998)
   
Recognition
Svenson J et al., Spectroscopic studies of the molecular imprinting self-assembly process.
Journal of Molecular Recognition, 11, (1-6), 83-86, (1998)
   
Recognition
Wulff G, Fitting molecules into polymeric receptors.
Chemtech, 28, (11), 19-26, (1998)
   
Recognition
Yano K et al., Molecularly imprinted polymers which mimic multiple hydrogen bonds between nucleotide bases.
Analytica Chimica Acta, 363, (2-3), 111-117, (1998)
   
Recognition
Yoshikawa M et al., Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward amino acids.
Analytica Chimica Acta, 365, (1-3), 59-67, (1998)
   
Recognition
Yoshikawa M et al., Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique.
Polymer Bulletin, 40, (4-5), 517-524, (1998)
   
Recognition
Yu C et al., Insights into the origins of binding and the recognition properties of molecularly imprinted polymers prepared using an amide as the hydrogen-bonding functional group.
Journal of Molecular Recognition, 11, (1-6), 69-74, (1998)
   
Recognition
Book chapter, Zeng XFet al., Imprinted polymers for the selective sequestering and sensing of metal ions,
In: Molecular and Ionic Recognition with Imprinted Polymers, Bartsch RA, Maeda M (Eds.)
The American Chemical Society: Washington DC, 218-237, (1998)    
Recognition
Adbo K et al., Enantioselective Trögers base synthetic receptors.
Bioorganic Chemistry, 27, (5), 363-371, (1999)
   
Recognition
Arnold BR et al., Progress in the development of molecularly imprinted polymer sensors.
Johns Hopkins APL Technical Digest, 20, (2), 190-198, (1999)
   
Recognition
Brune BJ et al., Correlation between adsorption and small molecule hydrogen bonding.
Langmuir, 15, (11), 3987-3992, (1999)
   
Recognition
Cormack PAG et al., Molecular imprinting: recent developments and the road ahead.
Reactive and Functional Polymers, 41, (1-3), 115-124, (1999)
   
Recognition
de Boer T et al., Selectivity in capillary electrokinetic separations.
Electrophoresis, 20, (15-16), 2989-3010, (1999)
   
Recognition
Dickert FL et al., Molecular imprinting in chemical sensing.
TrAC Trends in Analytical Chemistry, 18, (3), 192-199, (1999)
   
Recognition
Dickert FL et al., Imprinting with sensor development - On the way to synthetic antibodies.
Fresenius Journal of Analytical Chemistry, 364, (6), 506-511, (1999)
   
Recognition
Dzgoev A et al., Enantioselective molecularly imprinted polymer membranes.
Chirality, 11, (5-6), 465-469, (1999)
   
Recognition
Ensing K et al., Tailor-made materials for tailor-made applications: application of molecular imprints in chemical analysis.
TrAC Trends in Analytical Chemistry, 18, (3), 138-145, (1999)
   
Recognition
Book chapter, Guo YZet al., Nanostructured sol-gel composites for electroanalysis,
In: Proceedings of the Symposium on New Directions in Electroanalytical Chemistry II, Leddy J, Vanysek P, Porter MD (Eds.)
Electroanalytical Society: Pennington, 210-216, (1999)    
Recognition
Guzman NA, On-line bioaffinity molecular recognition, and preconcentration in CE technology.
Lc Gc North America, 17, (1), 16-+, (1999)
   
Recognition
Haupt K et al., Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance.
Analytical Communications, 36, (12), 391-393, (1999)
   
Recognition
Hosoya K et al., An unexpected molecular imprinting effect for a polyaromatic hydrocarbon, anthracene, using uniform size ethylene dimethacrylate particles.
HRC - Journal of High Resolution Chromatography, 22, (5), 256-260, (1999)
   
Recognition
Joshi VP et al., Effect of solvents on selectivity in separation using molecularly imprinted adsorbents: Separation of phenol and bisphenol A.
Industrial & Engineering Chemistry Research, 38, (11), 4417-4423, (1999)
   
Recognition
Joshi VP et al., Molecularly imprinted adsorbents for positional isomer separation.
Journal of Chromatography A, 849, (2), 319-330, (1999)
   
Recognition
Kanekiyo Y et al., "Molecular-imprinting" of AMP utilising the polyion complex formation process as detected by a QCM system.
Journal of the Chemical Society-Perkin Transactions 2, (12), 2719-2722, (1999)
   
Recognition
Kanekiyo Y et al., "Molecular-imprinting" in polyion complexes which creates the "memory" for the AMP template.
Journal of the Chemical Society-Perkin Transactions 2, (3), 557-561, (1999)
   
Recognition
Komiyama M et al., Selective recognition of steroids and peptides in aqueous media by molecularly imprinted polymers of cyclodextrins.
Abstracts of Papers of the American Chemical Society, 217, (BIOT), 19-19, (1999)
   
Recognition
Liu XC et al., Sugar acrylate-based polymers as chiral molecularly imprintable hydrogels.
Journal of Polymer Science Part A: Polymer Chemistry, 37, (11), 1665-1671, (1999)
   
Recognition
Meng ZH et al., Molecule imprinting chiral stationary phase.
Biomedical Chromatography, 13, (6), 389-393, (1999)
   
Recognition
Meng ZH et al., Making high selective molecule imprinting polymer (MIP) in polar solvent.
Chinese Chemical Letters, 10, (1), 69-72, (1999)
   
Recognition
Mohr GJ et al., Reversible chemical reactions as the basis for optical sensors used to detect amines, alcohols and humidity.
Journal of Materials Chemistry, 9, (9), 2259-2264, (1999)
   
Recognition
Owens PK et al., Molecular imprinting for bio-and pharmaceutical analysis.
TrAC Trends in Analytical Chemistry, 18, (3), 146-154, (1999)
   
Recognition
Pichon V et al., Immunosorbents: natural molecular recognition materials for sample preparation of complex environmental matrices.
TrAC Trends in Analytical Chemistry, 18, (3), 219-235, (1999)
   
Recognition
Piletsky SA et al., Application of non-specific fluorescent dyes for monitoring enantio-selective ligand binding to molecularly imprinted polymers.
Fresenius Journal of Analytical Chemistry, 364, (6), 512-516, (1999)
   
Recognition
Piletsky SA et al., Molecularly imprinted self-assembled films with specificity to cholesterol.
Sensors and Actuators B: Chemical, 60, (2-3), 216-220, (1999)
   
Recognition
Piletsky SA et al., Receptor and transport properties of imprinted polymer membranes - a review.
Journal of Membrane Science, 157, (2), 263-278, (1999)
   
Recognition
Ramström O et al., Synthesis and catalysis by molecularly imprinted materials.
Current Opinion in Chemical Biology, 3, (6), 759-764, (1999)
   
Recognition
Ratner BD et al., Recognition templates for biomaterials with engineered bioreactivity.
Current Opinion in Solid State & Materials Science, 4, (4), 395-402, (1999)
   
Recognition
Schweitz L et al., Molecular imprinting for chiral separations and drug screening purposes using monolithic stationary phases in CEC.
Chromatographia, 49, (Supplement 1), S93-S94, (1999)
   
Recognition
Sellergren B, Polymer- and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions.
TrAC Trends in Analytical Chemistry, 18, (3), 164-174, (1999)
   
Recognition
Skudar K et al., Selective recognition and separation of b-lactam antibiotics using molecularly imprinted polymers.
Analytical Communications, 36, (9), 327-331, (1999)
   
Recognition
Snowden TS et al., Anion recognition: synthetic receptors for anions and their application in sensors.
Current Opinion in Chemical Biology, 3, 740-746, (1999)
   
Recognition
Spivak D et al., Molecular imprinting of carboxylic acids employing novel functional macroporous polymers.
Journal of Organic Chemistry, 64, (13), 4627-4634, (1999)
   
Recognition
Sreenivasan K, On the application of molecularly imprinted poly(HEMA) as a template responsive release system.
Journal of Applied Polymer Science, 71, (11), 1819-1821, (1999)
   
Recognition
Sreenivasan K et al., Imparting recognition sites in poly(HEMA) for two compounds through molecular imprinting.
Journal of Applied Polymer Science, 71, (11), 1823-1826, (1999)
   
Recognition
Stevenson D, Molecular imprinted polymers for solid-phase extraction.
TrAC Trends in Analytical Chemistry, 18, (3), 154-158, (1999)
   
Recognition
Suárez-Rodríguez JL et al., Molecularly imprinted polymers for developing biomimetic optical sensors.
Quimica Analitica, 18, (Suppl 1), 20-22, (1999)
   
Recognition
Suedee R et al., Direct enantioseparation of adrenergic drugs via thin-layer chromatography using molecularly imprinted polymers.
Journal of Pharmaceutical and Biomedical Analysis, 19, (3), 519-527, (1999)
   
Recognition
Suedee R et al., Chiral determination of various adrenergic drugs by thin-layer chromatography using molecularly imprinted chiral stationary phases prepared with a-agonists.
Analyst, 124, (7), 1003-1009, (1999)
   
Recognition
Takeuchi T et al., Separation and sensing based on molecular recognition using molecularly imprinted polymers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 728, (1), 1-20, (1999)
   
Recognition
Turner APF et al., In vitro diagnostics in diabetes: Meeting the challenge.
Clinical Chemistry, 45, (9), 1596-1601, (1999)
   
Recognition
Uezu K et al., Molecular recognition using surface template polymerization.
Chemtech, 29, (4), 12-18, (1999)
   
Recognition
Yano K et al., Molecularly imprinted polymers for biosensor applications.
TrAC Trends in Analytical Chemistry, 18, (3), 199-204, (1999)
   
Recognition
Yilmaz E et al., Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays.
Analytical Communications, 36, (5), 167-170, (1999)
   
Recognition
Yoshida M et al., Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions.
Journal of Applied Polymer Science, 73, (7), 1223-1230, (1999)
   
Recognition
Yoshikawa M et al., Alternative molecular imprinting, a facile way to introduce chiral recognition sites.
Reactive and Functional Polymers, 42, (1), 93-102, (1999)
   
Recognition
Yoshikawa M et al., Molecularly imprinted polymeric membranes having EFF derivatives as a chiral recognition site.
Macromolecular Chemistry And Physics, 200, (6), 1458-1465, (1999)
   
Recognition
Yoshikawa M et al., Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate.
Journal of Applied Polymer Science, 72, (4), 493-499, (1999)
   
Recognition
Zhan SZ et al., Synthesis, recognition and separation of print molecule in molecularly imprinted polymers.
Analytical Letters, 32, (4), 677-687, (1999)
   
Recognition
Zhou J et al., Binding study on 5,5-diphenylhydantoin imprinted polymer constructed by utilizing an amide functional group.
Analytica Chimica Acta, 394, (2-3), 353-359, (1999)
   
Recognition
Zhou J et al., Study of the nature of recognition in molecularly imprinted polymer selective for 2-aminopyridine.
Analytica Chimica Acta, 381, (1), 85-91, (1999)
   
Recognition
Allender CJ et al., Pharmaceutical applications for molecularly imprinted polymers.
International Journal of Pharmaceutics, 195, (1-2), 39-43, (2000)
   
Recognition
Andersson LI, Molecular imprinting for drug bioanalysis - A review on the application of imprinted polymers to solid-phase extraction and binding assay.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 739, (1), 163-173, (2000)
   
Recognition
Asanuma H et al., Tailor-made receptors by molecular imprinting.
Advanced Materials, 12, (14), 1019-1030, (2000)
   
Recognition
Baggiani C et al., Chromatographic characterization of molecularly imprinted polymers binding the herbicide 2,4,5-trichlorophenoxyacetic acid.
Journal of Chromatography A, 883, (1-2), 119-126, (2000)
   
Recognition
Duffy DJ et al., Molecularly imprinted polymer systems for selective recognition via hydrogen-bonding interactions.
Abstracts of Papers of the American Chemical Society, 219, (MSE), 151-151, (2000)
   
Recognition
Ellwanger A et al., Application of molecularly imprinted polymers in supercritical fluid chromatography.
Journal of Chromatography A, 897, (1-2), 317-327, (2000)
   
Recognition
Guo HS et al., Study of the binding characteristics of molecular imprinted polymer selective for cefalexin in aqueous media.
Fresenius Journal of Analytical Chemistry, 368, (5), 461-465, (2000)
   
Recognition
Guo HS et al., Study of the binding characteristics and transportation properties of a 4-aminopyridine imprinted polymer membrane.
Fresenius Journal of Analytical Chemistry, 368, (8), 763-767, (2000)
   
Recognition
Gübitz G et al., Chiral separation by capillary electrochromatography.
Enantiomer, 5, 5-11, (2000)
   
Recognition
Haginaka J et al., Uniform-sized molecularly imprinted polymer material for (S)-propranolol.
Journal of Pharmaceutical and Biomedical Analysis, 22, (6), 899-907, (2000)
   
Recognition
Idziak I et al., A molecularly imprinted polymer for 17a-ethynylestradiol evaluated by immunoassay.
Analyst, 125, (8), 1415-1417, (2000)
   
Recognition
Kanekiyo Y et al., Novel nucleotide-responsive hydrogels designed from copolymers of boronic acid and cationic units and their applications as a QCM resonator system to nucleotide sensing.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (8), 1302-1310, (2000)
   
Recognition
Katz A et al., Molecular imprinting of bulk, microporous silica.
Nature, 403, (6767), 286-289, (2000)
   
Recognition
Kondo Y et al., Molecularly imprinted polyamide membranes for chiral recognition.
Polymer Bulletin, 44, (5-6), 517-524, (2000)
   
Recognition
Book chapter, Li Pet al., Resolution of amino acid derivative on molecularly imprinted polymer,
In: IEEE-EMBS Asia Pacific Conference on Biomedical Engineering - Proceedings, Pts 1 & 2, Zheng XX, He B, Zhang YT (Eds.)
World Publishing Corporation: Beijing, 419-420, (2000)    
Recognition
Liang CD et al., Bulk acoustic wave sensor for herbicide assay based on molecularly imprinted polymer.
Fresenius Journal of Analytical Chemistry, 367, (6), 551-555, (2000)
   
Recognition
Markowitz MA et al., Effects of added organosilanes on the formation and adsorption properties of silicates surface-imprinted with an organophosphonate.
Langmuir, 16, (15), 6148-6155, (2000)
   
Recognition
Murray GM et al., Portable sensor for illicit cocaine based on a molecularly imprinted polymer.
unknown source, (2000)
   
Recognition
Oral E et al., Molecular imprinting in biological systems.
Stp Pharma Sciences, 10, (4), 261-267, (2000)
   
Recognition
Peng H et al., Bulk acoustic wave sensor using molecularly imprinted polymers as recognition elements for the determination of pyrimethamine.
Talanta, 52, (3), 441-448, (2000)
   
Recognition
Rathbone DL et al., Molecular recognition by fluorescent imprinted polymers.
Tetrahedron Letters, 41, (1), 123-126, (2000)
   
Recognition
Sasaki DY et al., Solid-state 31P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels.
Chemistry of Materials, 12, (5), 1400-1407, (2000)
   
Recognition
Sellergren B et al., Application of imprinted synthetic polymers in binding assay development.
Methods-A Companion To Methods In Enzymology, 22, (1), 92-106, (2000)
   
Recognition
Sellergren B, Imprinted polymers with memory for small molecules, proteins, or crystals.
Angewandte Chemie International Edition, 39, (6), 1031-1037, (2000)
   
Recognition
Severin K, Imprinted polymers with transition metal catalysts.
Current Opinion in Chemical Biology, 4, (6), 710-714, (2000)
   
Recognition
Shi HQ et al., Template recognition of protein-imprinted polymer surfaces.
Journal of Biomedical Materials Research, 49, (1), 1-11, (2000)
   
Recognition
Singh A et al., Towards achieving selectivity in metal ion binding by fixing ligand-chelator complex geometry in polymers.
Reactive and Functional Polymers, 44, (1), 79-89, (2000)
   
Recognition
Subrahmanyam S et al., Bite-and-switch approach to creatine recognition by use of molecularly imprinted polymers.
Advanced Materials, 12, (10), 722-724, (2000)
   
Recognition
Suedee R et al., Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of b-blockers.
Journal of Controlled Release, 66, (2-3), 135-147, (2000)
   
Recognition
Suzuki A et al., Preparation of shape selective acid catalysts by a surface molecular imprinting method.
unknown source, (2000)
   
Recognition
Takeuchi T et al., Miniaturized molecularly imprinted continuous polymer rods.
HRC - Journal of High Resolution Chromatography, 23, (1), 44-46, (2000)
   
Recognition
Tanimura T et al., Molecular shape recognition by a tin oxide chemical sensor coated with a silica overlayer precisely designed using an organic molecule as the template.
Langmuir, 16, (8), 3858-3865, (2000)
   
Recognition
Vallano PT et al., Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents.
Journal of Chromatography A, 887, (1-2), 125-135, (2000)
   
Recognition
Vallano PT et al., Affinity screening by packed capillary high-performance liquid chromatography using molecular imprinted sorbents I. Demonstration of feasibility.
Journal of Chromatography A, 888, (1-2), 23-34, (2000)
   
Recognition
Wistuba D et al., Enantiomer separation of chiral pharmaceuticals by capillary electrochromatography.
Journal of Chromatography A, 875, (1-2), 255-276, (2000)
   
Recognition
Wistuba D et al., Recent progress in enantiomer separation by capillary electrochromatography.
Electrophoresis, 21, (18), 4136-4158, (2000)
   
Recognition
Yilmaz E et al., The use of immobilized templates - A new approach in molecular imprinting.
Angewandte Chemie International Edition, 39, (12), 2115-2118, (2000)
   
Recognition
Yoshida M et al., Chiral-recognition polymer prepared by surface molecular imprinting technique.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169, (1-3), 259-269, (2000)
   
Recognition
Yoshida M et al., Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (4), 689-696, (2000)
   
Recognition
Yoshida M et al., Surface imprinted polymers recognizing amino acid chirality.
Journal of Applied Polymer Science, 78, (4), 695-703, (2000)
   
Recognition
Adbo K et al., Enantioselective solid-phase extraction using Trögers base molecularly imprinted polymers.
Analytica Chimica Acta, 435, (1), 115-120, (2001)
   
Recognition
Asanuma H et al., Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests.
Analytica Chimica Acta, 435, (1), 25-33, (2001)
   
Recognition
Biffis A et al., The synthesis, characterization and molecular recognition properties of imprinted microgels.
Macromolecular Chemistry And Physics, 202, (1), 163-171, (2001)
   
Recognition
Brambilla G et al., Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 759, (1), 27-32, (2001)
   
Recognition
Bures P et al., Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications.
Journal of Controlled Release, 72, (1-3), 25-33, (2001)
   
Recognition
Burleigh MC et al., Imprinted polysilsesquioxanes for the enhanced recognition of metal ions.
Chemistry of Materials, 13, (8), 2537-2546, (2001)
   
Recognition
Cao L et al., Enantioselective sensor based on microgravimetric quartz crystal microbalance with molecularly imprinted polymer film.
Analyst, 126, (2), 184-188, (2001)
   
Recognition
Chen W et al., Molecular recognition of procainamide-imprinted polymer.
Analytica Chimica Acta, 432, (2), 277-282, (2001)
   
Recognition
Chen WY et al., Molecular recognition in imprinted polymers: thermodynamic investigation of analyte binding using microcalorimetry.
Journal of Chromatography A, 923, (1-2), 1-6, (2001)
   
Recognition
Chen YB et al., Influence of the pH on the behavior of an imprinted polymeric stationary phase - supporting evidence for a binding site model.
Journal of Chromatography A, 927, (1-2), 1-17, (2001)
   
Recognition
Dai S, Hierarchically imprinted sorbents.
Chemistry - A European Journal, 7, (4), 763-768, (2001)
   
Recognition
Ensing K et al., Selective sorbents for solid-phase extraction based on molecularly imprinted polymers.
Lc Gc North America, 19, (9), 942-954, (2001)
   
Recognition
Friggeri A et al., From solutions to surfaces: A novel molecular imprinting method based on the conformational changes of boronic-acid-appended poly(L-lysine).
Angewandte Chemie International Edition, 40, (24), 4729-4731, (2001)
   
Recognition
Fu Q et al., Molecularly imprinted polymers from nicotinamide and its positional isomers.
Journal of Molecular Recognition, 14, (3), 151-156, (2001)
   
Recognition
Gill I, Bio-doped nanocomposite polymers: Sol-gel bioencapsulates.
Chemistry of Materials, 13, (10), 3404-3421, (2001)
   
Recognition
Gutierrez-Fernandez S et al., Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor.
Electroanalysis, 13, (17), 1399-1404, (2001)
   
Recognition
Harris L et al., Metal ion imprinted polymers for biomolecular recognition.
Abstracts of Papers of the American Chemical Society, 222, (ANYL), 90-90, (2001)
   
Recognition
Haupt K et al., Molecularly imprinted polymers: concept and applications.
Actualité Chimique, (4), 23-32, (2001)
   
Recognition
Hayden O et al., Selective microorganism detection with cell surface imprinted polymers.
Advanced Materials, 13, (19), 1480-1483, (2001)
   
Recognition
Hirayama K et al., Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique.
Journal of Applied Polymer Science, 81, (14), 3378-3387, (2001)
   
Recognition
Jenkins AL et al., Molecularly imprinted polymers for the detection of chemical agents in water.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 42-42, (2001)
   
Recognition
Kapua A et al., Molecularly imprinted polymer thin films and microstructures.
Abstracts of Papers of the American Chemical Society, 221, (IEC), 403-403, (2001)
   
Recognition
Khasawneh MA et al., Affinity screening by packed capillary high performance liquid chromatography using molecular imprinted sorbents II. Covalent imprinted polymers.
Journal of Chromatography A, 922, (1-2), 87-97, (2001)
   
Recognition
Knopp D et al., Comparison of molecularly imprinted polymers (MIPs) and sol-gel based immunoaffinity supports for the extraction of sulfonylurea herbicides from aqueous samples.
Abstracts of Papers of the American Chemical Society, 221, (AGRO), 61-61, (2001)
   
Recognition
Kobayashi T et al., Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance.
Analytica Chimica Acta, 435, (1), 141-149, (2001)
   
Recognition
Kondo Y et al., Effect of solvent composition on chiral recognition ability of molecularly imprinted DIDE derivatives.
Analyst, 126, (6), 781-783, (2001)
   
Recognition
Lahav M et al., Imprinting of chiral molecular recognition sites in thin TiO2 films associated with field-effect transistors: Novel functionalized devices for chiroselective and chirospecific analyses.
Chemistry - A European Journal, 7, (18), 3992-3997, (2001)
   
Recognition
Lanza F et al., The application of molecular imprinting technology to solid phase extraction.
Chromatographia, 53, (11-12), 599-611, (2001)
   
Recognition
Book chapter, Lanza Fet al., Molecularly imprinted extraction materials for highly selective sample cleanup and analyte enrichment,
In: Advances in Chromatography, Brown PR, Grushka E (Eds.)
Marcel Dekker: 137-173, (2001)    
Recognition
Lavigne JJ et al., Sensing a paradigm shift in the field of molecular recognition: From selective to differential receptors.
Angewandte Chemie International Edition, 40, (17), 3119-3130, (2001)
   
Recognition
Leung MKP et al., A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid.
Journal of Materials Chemistry, 11, (12), 2985-2991, (2001)
   
Recognition
Luo CH et al., Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element.
Analytica Chimica Acta, 428, (1), 143-148, (2001)
   
Recognition
Luppa PB et al., Immunosensors - principles and applications to clinical chemistry.
Clinica Chimica Acta, 314, (1-2), 1-26, (2001)
   
Recognition
Maier G et al., Molecular imprinting and molecular recognition in hyperbranched polymers.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 168-168, (2001)
   
Recognition
Maier NM et al., Separation of enantiomers: needs, challenges, perspectives.
Journal of Chromatography A, 906, (1-2), 3-33, (2001)
   
Recognition
Markowitz MA et al., Influence of quaternary amine organosilane structure on the formation and adsorption properties of surface-imprinted silicates.
Langmuir, 17, (22), 7085-7092, (2001)
   
Recognition
Martín-Esteban A et al., Effect of template size on the selectivity of molecularly imprinted polymers for phenylurea herbicides.
Chromatographia, 53, (Supplement 1), S434-S437, (2001)
   
Recognition
Martín-Esteban A, Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds.
Fresenius Journal of Analytical Chemistry, 370, (7), 795-802, (2001)
   
Recognition
Marx S et al., Molecular imprinting in thin films of organic-inorganic hybrid sol-gel and acrylic polymers.
Chemistry of Materials, 13, (10), 3624-3630, (2001)
   
Recognition
Masci G et al., Synthesis and LC characterization of clenbuterol molecularly imprinted polymers.
Journal of Pharmaceutical and Biomedical Analysis, 25, (2), 211-217, (2001)
   
Recognition
Matsunaga H, Recognition, separation and concentration of metal ions with chelating resins or chelating reagent impregnated resins (Review).
Bunseki Kagaku, 50, (2), 89-106, (2001)
   
Recognition
Mirsky VM et al., Chemical sensors based on ultrathin membranes from molecularly imprinted polymers.
Biologicheskie Membrany, 18, (6), 496-501, (2001)
   
Recognition
Mosbach K, Towards the development of artificial recognition elements in sensor technology vision with emphasis on molecular imprinting.
Electrochemistry, 69, (12), 919-919, (2001)
   
Recognition
Möller K et al., Synthesis and evaluation of molecularly imprinted polymers for extracting hydrolysis products of organophosphate flame retardants.
Journal of Chromatography A, 938, (1-2), 121-130, (2001)
   
Recognition
Muralidharan S et al., Organized molecular self-assemblies for metal ion recognition.
Abstracts of Papers of the American Chemical Society, 222, U373-U374, (2001)
   
Recognition
Nicholls IA et al., Can we rationally design molecularly imprinted polymers?
Analytica Chimica Acta, 435, (1), 9-18, (2001)
   
Recognition
Piletsky SA et al., Molecular imprinting: at the edge of the third millennium.
Trends In Biotechnology, 19, (1), 9-12, (2001)
   
Recognition
Rachkov A et al., Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach.
Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1544, (1-2), 255-266, (2001)
   
Recognition
Rathbone DL et al., Selectivity of response in fluorescent polymers imprinted with N1-benzylidene pyridine-2-carboxamidrazones.
Analytica Chimica Acta, 435, (1), 129-136, (2001)
   
Recognition
Scheller FW et al., Research and development in biosensors.
Current Opinion in Biotechnology, 12, (1), 35-40, (2001)
   
Recognition
Schweitz L et al., Approaches to molecular imprinting based selectivity in capillary electrochromatography.
Electrophoresis, 22, (19), 4053-4063, (2001)
   
Recognition
Sharma AC et al., Surface grafting of cobalt complexes on polymeric supports: Evidence for site isolation and applications to reversible dioxygen binding.
Journal of Polymer Science Part A: Polymer Chemistry, 39, (6), 888-897, (2001)
   
Recognition
Shimizu KD et al., Selective chemical modification of molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 469-469, (2001)
   
Recognition
Spivak DA et al., Molecular imprinting in nanometer scale particles.
Abstracts of Papers of the American Chemical Society, 221, (IEC), 95-95, (2001)
   
Recognition
Sreenivasan K, The use of metal-containing monomer in the preparation of molecularly imprinted polymer to increase the adsorption capacity.
Journal of Applied Polymer Science, 80, (14), 2795-2799, (2001)
   
Recognition
Sreenivasan K, Molecularly imprinted polyacrylic acid containing multiple recognition sites for steroids.
Journal of Applied Polymer Science, 82, (4), 889-893, (2001)
   
Recognition
Suedee R et al., Thin-layer chromatographic separation of chiral drugs on molecularly imprinted chiral stationary phases.
Jpc-Journal Of Planar Chromatography-Modern Tlc, 14, (3), 194-198, (2001)
   
Recognition
Sun BW et al., Molecularly imprinted polymer using p-hydroxybenzoic acid, p- hydroxyphenylacetic acid and p-hydroxyphenylpropionic acid as templates.
Journal of Molecular Recognition, 14, (6), 388-392, (2001)
   
Recognition
Tan YG et al., A piezoelectric biomimetic sensor for aminopyrine with a molecularly imprinted polymer coating.
Analyst, 126, (5), 664-668, (2001)
   
Recognition
Tan YG et al., A study of a bio-mimetic recognition material for the BAW sensor by molecular imprinting and its application for the determination of paracetamol in the human serum and urine.
Talanta, 55, (2), 337-347, (2001)
   
Recognition
Tan YG et al., A new assay system for phenacetin using biomimic bulk acoustic wave sensor with a molecularly imprinted polymer coating.
Sensors and Actuators B: Chemical, 73, (2-3), 179-184, (2001)
   
Recognition
Tarbin JA et al., Development of molecularly imprinted phase for the selective retention of stilbene-type estrogenic compounds.
Analytica Chimica Acta, 433, (1), 71-79, (2001)
   
Recognition
Book chapter, Theodoridis G, Molecularly imprinted polymers for affinity chromatography,
In: Encyclopedia of Chromatography, Cazes J (Ed.)
Marcel Dekker: New York, 1-6, (2001)    
Recognition
Vaidya AA et al., Creating a macromolecular receptor by affinity imprinting.
Journal of Applied Polymer Science, 81, (5), 1075-1083, (2001)
   
Recognition
Villamena FA et al., Caffeine selectivity of divinylbenzene crosslinked polymers in aqueous media.
Journal of Applied Polymer Science, 82, (1), 195-205, (2001)
   
Recognition
Yan M et al., Fabrication of molecularly imprinted polymer microstructures.
Analytica Chimica Acta, 435, (1), 163-167, (2001)
   
Recognition
Ye L et al., Molecular imprinting on microgel spheres.
Analytica Chimica Acta, 435, (1), 187-196, (2001)
   
Recognition
Yoshikawa M et al., Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes.
Macromolecular Materials And Engineering, 286, (1), 52-59, (2001)
   
Recognition
Yoshikawa M et al., Novel membrane materials having EEE derivatives as a chiral recognition site.
European Polymer Journal, 37, (2), 335-342, (2001)
   
Recognition
Yoshikawa M et al., Novel polymeric membranes having chiral recognition sites converted from tripeptide derivatives.
Analyst, 126, (6), 775-780, (2001)
   
Recognition
Yoshikawa M et al., Factors governing chiral recognition ability of molecularly imprinted oligopeptide membranes.
Abstracts of Papers of the American Chemical Society, 222, (COLL), 9-9, (2001)
   
Recognition
Zheng N et al., Chromatographic characterization of sulfonamide imprinted polymers.
Microchemical Journal, 69, (2), 153-158, (2001)
   
Recognition
Zhong N et al., Hydrophilic cholesterol-binding molecular imprinted polymers.
Tetrahedron Letters, 42, (10), 1839-1841, (2001)
   
Recognition
Zhou XZ et al., Synthesis of molecularly imprinted polymer membranes and their application to the selective transport of targeted molecules.
Abstracts of Papers of the American Chemical Society, 221, (ORGN), 377-377, (2001)
   
Recognition
Proceeding, Abe M et al, Novel nylon imprinted assembly for amino acids recognition,
In: Polymer Preprints, Japan,
1671, (2002)
   
Recognition
Andersson LI, Selective solid-phase extraction of bio- and environmental samples using molecularly imprinted polymers.
Bioseparation, 10, (6), 353-364, (2002)
   
Recognition
Andersson LI et al., Towards molecular-imprint based SPE of local anaesthetics.
Chromatographia, 55, (Supplement 1), S65-S69, (2002)
   
Recognition
Ansell RJ, MIP-ligand binding assays (pseudo-immunoassays).
Bioseparation, 10, (6), 365-377, (2002)
   
Recognition
Araki K et al., Enantioselective polymer prepared by surface imprinting technique using a bifunctional molecule.
Analytica Chimica Acta, 469, (2), 173-181, (2002)
   
Recognition
Baggiani C et al., A molecular imprinted polymer with recognition properties towards the carcinogenic mycotoxin ochratoxin A.
Bioseparation, 10, (6), 389-394, (2002)
   
Recognition
Becker JJ et al., Metallo-dendrimers in molecular imprinting.
Abstracts of Papers of the American Chemical Society, 224, (INOR), 408-408, (2002)
   
Recognition
Brenner J, Synthesis and characterization of a molecularly imprinted polymer for recognition of S-(-)-Timolol.
Abstracts of Papers of the American Chemical Society, 224, (AGRO), 021-021, (2002)
   
Recognition
Brenner JR et al., A molecularly imprinted polymer for recognition of S-(-)-timolol.
Abstracts of Papers of the American Chemical Society, 223, (IEC), 084-084, (2002)
   
Recognition
Brenner JR et al., A molecularly imprinted polymer for recognition of S-(-)-timolol.
Abstracts of Papers of the American Chemical Society, 223, (ORGN), 174-174, (2002)
   
Recognition
Brenner JR et al., A molecularly imprinted polymer for recognition of S-(-)-timolol.
Abstracts of Papers of the American Chemical Society, 223, (ANYL), 022-022, (2002)
   
Recognition
Brunet E, Asymmetric induction under confinement.
Chirality, 14, (2-3), 135-143, (2002)
   
Recognition
Byrne ME et al., Networks for recognition of biomolecules: Molecular imprinting and micropatterning poly(ethylene glycol)-containing films.
Polymers for Advanced Technologies, 13, (10-12), 798-816, (2002)
   
Recognition
Carter SR et al., Surface molecular imprinting in aqueous medium on polymer core-shell particles.
Abstracts of Papers of the American Chemical Society, 224, (COLL), 363-363, (2002)
   
Recognition
Carter SR et al., Molecular recognition of caffeine by shell molecular imprinted core-shell polymer particles in aqueous media.
Advanced Materials, 14, (9), 667-670, (2002)
   
Recognition
Chen YZ et al., Measurement of enantiomeric excess using molecularly imprinted polymers.
Organic Letters, 4, (17), 2937-2940, (2002)
   
Recognition
Chow CF et al., Fluorescent sensing of homocysteine by molecular imprinting.
Analytica Chimica Acta, 466, (1), 17-30, (2002)
   
Recognition
Cui A et al., Enzyme-based molecular imprinting with metals.
Biomacromolecules, 3, (6), 1353-1358, (2002)
   
Recognition
Davidson L et al., Molecular imprinting of biologically active steroidal systems.
Current Organic Chemistry, 6, (3), 265-281, (2002)
   
Recognition
de Boer T et al., Spherical molecularly imprinted polymer particles: A promising tool for molecular recognition in capillary electrokinetic separations.
Electrophoresis, 23, (9), 1296-1300, (2002)
   
Recognition
Dirion B et al., Selective solid phase extraction of a drug lead compound using molecularly imprinted polymers prepared by the target analogue approach.
Chromatographia, 56, (3-4), 237-241, (2002)
   
Recognition
Dong XC et al., Separation of ephedrine stereoisomers by molecularly imprinted polymers - influence of synthetic conditions and mobile phase compositions on the chromatographic performance.
Analyst, 127, (11), 1427-1432, (2002)
   
Recognition
Ensing K et al., Selective sorbents for solid-phase extraction based on molecularly imprinted polymers.
Lc Gc Europe, 15, (1), 16-+, (2002)
   
Recognition
Haginaka J, HPLC-based bioseparations using molecularly imprinted polymers.
Bioseparation, 10, (6), 337-351, (2002)
   
Recognition
Han M et al., Generation of molecular recognition sites using emulsion polymerization on porous membranes.
Abstracts of Papers of the American Chemical Society, 224, (COLL), U445-U446, (2002)
   
Recognition
Herranz MA et al., Metal ion recognition and molecular templating in self-assembled monolayers of cyclic and acyclic polyethers.
Proceedings of the National Academy of Sciences of the United States of America, 99, (8), 5040-5047, (2002)
   
Recognition
Hirayama K et al., Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique.
Sensors and Actuators B: Chemical, 86, (1), 20-25, (2002)
   
Recognition
Hishiya T et al., Molecular imprinting of cyclodextrins leading to synthetic antibodies.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 44, (1-4), 365-367, (2002)
   
Recognition
Proceeding, Hishiya T et al, Preparation of cyclodextrin assembly by using host-guest complexation for molecular recognition,
In: Polymer Preprints, Japan,
1668, (2002)
   
Recognition
Hwang CC et al., Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods.
Journal of Chromatography A, 962, (1-2), 69-78, (2002)
   
Recognition
Jenkins AL, Imprinted polymer sensors for pesticide detection.
Abstracts of Papers of the American Chemical Society, 224, (ANYL), 156-156, (2002)
   
Recognition
Jodlbauer J et al., Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction.
Journal of Chromatography A, 945, (1-2), 45-63, (2002)
   
Recognition
Proceeding, Kamiya Y et al, Optical resolution of chrysanthemic acid derivatives on cellulose and amylose columns,
In: Polymer Preprints, Japan,
1513, (2002)
   
Recognition
Proceeding, Kikuchi T et al, Syntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting techniqueSyntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting technique,
In: Polymer Preprints, Japan,
1665, (2002)
   
Recognition
Kirchner R et al., Calorimetric investigation of chiral recognition processes in a molecularly imprinted polymer.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 43, (3-4), 279-283, (2002)
   
Recognition
Kobayashi T et al., Phase inversion molecular imprinting by using template copolymers for high substrate recognition.
Langmuir, 18, (7), 2866-2872, (2002)
   
Recognition
Kobayashi T et al., Molecularly imprinted polysulfone membranes having acceptor sites for donor dibenzofuran as novel membrane adsorbents: Charge transfer interaction as recognition origin.
Chemistry of Materials, 14, (6), 2499-2505, (2002)
   
Recognition
Proceeding, Kondo F et al, Molecular design of hydrogel catalyst for hydrolysis -Attempt to molecular imprinting in water-,
In: Polymer Preprints, Japan,
1429, (2002)
   
Recognition
Lai JP et al., Chromatographic characterization of molecularly imprinted microspheres for the separation and determination of trimethoprim in aqueous buffers.
Analytical and Bioanalytical Chemistry, 372, (2), 391-396, (2002)
   
Recognition
Book chapter, Li Yet al., Study of the chiral transference and recognition effect in layered aluminophosphates templated by chiral cobalt complexes,
In: Frontiers Of Solid State Chemistry, Feng SH, Chen JS (Eds.)
World Scientific Publishing Co.: 295-301, (2002)    
Recognition
Liang CD et al., Change of pH indicators pKa value via molecular imprinting.
Chemical Communications, (15), 1620-1621, (2002)
   
Recognition
Lu Y et al., Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers.
Journal of Chromatography A, 950, (1-2), 89-97, (2002)
   
Recognition
Masci G et al., Uniform-sized clenbuterol molecularly imprinted polymers prepared with methacrylic acid or acrylamide as an interacting monomer.
Journal of Applied Polymer Science, 83, (12), 2660-2668, (2002)
   
Recognition
Matsui J et al., Molecular imprinting in alcohols: utility of a pre-polymer based strategy for synthesizing stereoselective artificial receptor polymers in hydrophilic media.
Analytica Chimica Acta, 466, (1), 11-15, (2002)
   
Recognition
Minoura N et al., Study of the factors influencing peak asymmetry on chromatography using a molecularly imprinted polymer prepared by the epitope approach.
Bioseparation, 10, (6), 399-407, (2002)
   
Recognition
Proceeding, Minoura N et al, Syntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting technique,
In: Polymer Preprints, Japan,
1706, (2002)
   
Recognition
Moring SE et al., Target specific sample preparation from aqueous extracts with molecular imprinted polymers.
Journal of Pharmaceutical and Biomedical Analysis, 27, (5), 719-728, (2002)
   
Recognition
Nicholls IA et al., Molecular imprinting of surfaces.
Bioseparation, 10, (6), 301-305, (2002)
   
Recognition
OBrien TP et al., Evaluation of the origins of the selectivity of polymers imprinted with a HIV protease inhibitor using infrared spectroscopy and high performance liquid chromatography.
Enantiomer, 7, (2-3), 139-148, (2002)
   
Recognition
Proceeding, Ohta M et al, Recognition characteristics and fabrications of molecular imprint sites for bisphenol A targets by using photografting template polymerization,
In: Polymer Preprints, Japan,
1670, (2002)
   
Recognition
Proceeding, Osawa T et al, Enantioselective recognition of amino acid derivatives by molecularly imprinted cyclodextrin polymer,
In: Polymer Preprints, Japan,
624, (2002)
   
Recognition
Peppas NA et al., Polymers and gels as molecular recognition agents.
Pharmaceutical Research, 19, (5), 578-587, (2002)
   
Recognition
Percival CJ et al., Molecular imprinted polymer coated QCM for the detection of nandrolone.
Analyst, 127, (8), 1024-1026, (2002)
   
Recognition
Pérez-Moral N et al., Novel MIP formats.
Bioseparation, 10, (6), 287-299, (2002)
   
Recognition
Piscopo L et al., Uniformly sized molecularly imprinted polymers (MIPs) for 17b-estradiol.
Macromolecular Chemistry And Physics, 203, (10-11), 1532-1538, (2002)
   
Recognition
Pogorelova SP et al., Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements.
Analyst, 127, (11), 1484-1491, (2002)
   
Recognition
Prasad BB et al., Determination of diquat herbicide by selective enrichment by column chromatography on imprinted polymer immobilised on silica gel.
Chromatographia, 55, (3-4), 171-176, (2002)
   
Recognition
Reddy PS et al., Recognition characteristics of dibenzofuran by molecularly imprinted polymers made of common polymers.
European Polymer Journal, 38, (4), 779-785, (2002)
   
Recognition
Rückert B et al., Molecularly imprinted composite materials via iniferter-modified supports.
Journal of Materials Chemistry, 12, (8), 2275-2280, (2002)
   
Recognition
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting method using helical polymethacrylate as template,
In: Polymer Preprints, Japan,
1508, (2002)
   
Recognition
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting using helical polymethacrylate as template and its chiral recognition ability,
In: Polymer Preprints, Japan,
1708, (2002)
   
Recognition
Seong H et al., Glucose binding to molecularly imprinted polymers.
Journal of Biomaterials Science-Polymer Edition, 13, (6), 637-649, (2002)
   
Recognition
Sneshkoff N et al., An improved molecularly imprinted polymer film for recognition of amino acids.
Journal of Applied Polymer Science, 86, (14), 3611-3615, (2002)
   
Recognition
Spivak DA et al., Development of an aspartic acid-based cross-linking monomer for improved bioseparations.
Bioseparation, 10, (6), 331-336, (2002)
   
Recognition
Book chapter, Srebnik S, Induced porosity in cross-linked polymer networks: Mean field theory and simulations,
In: Characterization Of Porous Solids VI, Rodríguez-Reinoso F, McEnaney B, Rouquerol J, Unger KK (Eds.)
Elsevier: Amsterdam, 43-50, (2002)    
Recognition
Sreenivasan K, Molecularly imprinted polymer as storage medium for an analyte.
Bioseparation, 10, (6), 395-398, (2002)
   
Recognition
Striegler S et al., Investigation of sugar-binding sites in ternary ligand-copper(II)-carbohydrate complexes.
European Journal of Inorganic Chemistry, (2), 487-495, (2002)
   
Recognition
Striegler S, Investigation of disaccharide recognition by molecularly imprinted polymers.
Bioseparation, 10, (6), 307-314, (2002)
   
Recognition
Szabelski P et al., Energetic heterogeneity of the surface of a molecularly imprinted polymer studied by high-performance liquid chromatography.
Journal of Chromatography A, 964, (1-2), 99-111, (2002)
   
Recognition
Proceeding, Takeuchi A et al, Modification of cell surfaces with polymer chains for introducing chemically reactive sites and application to tissue regeneration,
In: Polymer Preprints, Japan,
768, (2002)
   
Recognition
Takeuchi T et al., Synthetic receptors prepared by organized assembly of organic molecules.
IEEE Engineering in Medicine and Biology Magazine, 21, (6), 144-150, (2002)
   
Recognition
Tong AJ et al., Molecular imprinting-based fluorescent chemosensor for histamine using zinc (II)-protoporphyrin as a functional monomer.
Analytica Chimica Acta, 466, (1), 31-37, (2002)
   
Recognition
Tovar GEM et al., Molecularly imprinted nanospheres as synthetic affinity material for biotechnical application.
Abstracts of Papers of the American Chemical Society, 224, (COLL), 364-364, (2002)
   
Recognition
Trotta F et al., Molecular imprinted polymeric membrane for naringin recognition.
Journal of Membrane Science, 201, (1-2), 77-84, (2002)
   
Recognition
Tsunemori H et al., Surface imprinting polymers for the recognition of nucleotides.
Bioseparation, 10, (6), 315-321, (2002)
   
Recognition
Vaihinger D et al., Molecularly imprinted polymer nanospheres as synthetic affinity receptors obtained by miniemulsion polymerisation.
Macromolecular Chemistry And Physics, 203, (13), 1965-1973, (2002)
   
Recognition
Wandelt B et al., Fluorescent molecularly imprinted polymer studied by time-resolved fluorescence spectroscopy.
Polymer, 43, (9), 2777-2785, (2002)
   
Recognition
Weber A et al., Isothermal titration calorimetry of molecularly imprinted polymer nanospheres.
Macromolecular Rapid Communications, 23, (14), 824-828, (2002)
   
Recognition
Wulff G et al., Stoichiometric noncovalent interaction in molecular imprinting.
Bioseparation, 10, (6), 257-276, (2002)
   
Recognition
Book chapter, Wulff G, Molecular imprinting - a way to prepare effective mimics of natural antibodies and enzymes,
In: Nanoporous Materials III, Sayari A, Jaroniec M (Eds.)
Elsevier: Amsterdam, 35-44, (2002)    
Recognition
Xie JC et al., Affinitive separation and on-line identification of antitumor components from Peganum nigellastrum by coupling a chromatographic column of target analogue imprinted polymer with mass spectrometry.
Analytical Chemistry, 74, (10), 2352-2360, (2002)
   
Recognition
Proceeding, Yamashita K et al, Dependence of gel structure on the molecular recognition ability of stimuli-responsive imprinting hydrogel,
In: Polymer Preprints, Japan,
1843, (2002)
   
Recognition
Proceeding, Yamashita K et al, Attempts to imprinting of hydrogel in aqueous system,
In: Polymer Preprints, Japan,
684, (2002)
   
Recognition
Yan MD, Molecularly imprinted polymers as antibody mimics: Applications in immunoassays and recent developments.
Journal of Clinical Ligand Assay, 25, (2), 234-236, (2002)
   
Recognition
Proceeding, Yoshikawa M et al, Chiral recognition ability of molecularly imprinted membranes with oligopeptide derivative tweezers,
In: Polymer Preprints, Japan,
331, (2002)
   
Recognition
Yoshikawa M et al., Relationship between enantioselectivity of alternative molecularly imprinted polymeric membranes and species of amino acid residues composing chiral recognition sites.
Bioseparation, 10, (6), 323-330, (2002)
   
Recognition
Proceeding, Yoshikawa M et al, Chiral recognition ability of oligopeptide derivatives consisiting of glutamyl residues,
In: Polymer Preprints, Japan,
625, (2002)
   
Recognition
Yoshikawa M et al., Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution.
Desalination, 149, (1-3), 287-292, (2002)
   
Recognition
Zayats M et al., Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors.
Tetrahedron, 58, (4), 815-824, (2002)
   
Recognition
Zhang LY et al., Molecular selectivity of tyrosine-imprinted polymers prepared by seed swelling and suspension polymerization.
Polymer International, 51, (8), 687-692, (2002)
   
Recognition
Zhang TL et al., Molecular recognition properties of salicylic acid-imprinted polymers.
Chromatographia, 55, (7-8), 447-451, (2002)
   
Recognition
Zheng N et al., Sulfonamide imprinted polymers using co-functional monomers.
Analytica Chimica Acta, 452, (2), 277-283, (2002)
   
Recognition
Zhu QZ et al., Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer.
Environmental Science & Technology, 36, (24), 5411-5420, (2002)
   
Recognition
Alexander C et al., Imprinted polymers: artificial molecular recognition materials with applications in synthesis and catalysis.
Tetrahedron, 59, (12), 2025-2057, (2003)
   
Recognition
Blanco-López MC et al., Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes.
Analytical and Bioanalytical Chemistry, 377, (2), 257-261, (2003)
   
Recognition
Book chapter, Cabanilla Set al., Piezoelectric biomimetic sensor for caffeine based on electrosynthesized polypyrrole,
In: Sensors: Asiasense 2003 - Asian Conference On Sensors, Ahmad M, Heng LY, Salimon J, Ghodgaonkar DK, Yousof RW, Surif S, Taib MN (Eds.)
IEEE: New York, 105-109, (2003)    
Recognition
Cacho C et al., Clean-up of triazines in vegetable extracts by molecularly-imprinted solid-phase extraction using a propazine-imprinted polymer.
Analytical and Bioanalytical Chemistry, 376, (4), 491-496, (2003)
   
Recognition
Cederfur J et al., Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G.
Journal of Combinatorial Chemistry, 5, (1), 67-72, (2003)
   
Recognition
Conrad PGI et al., Functional molecularly imprinted polymer microstructures fabricated using microstereolithography.
Advanced Materials, 15, (18), 1541-1544, (2003)
   
Recognition
Daniel S et al., Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application.
Analytica Chimica Acta, 488, (2), 173-182, (2003)
   
Recognition
Das K et al., Selective picomolar detection of hexachlorobenzene in water using a quartz crystal microbalance coated with a molecularly imprinted polymer thin film.
Langmuir, 19, (9), 3921-3925, (2003)
   
Recognition
Davidson L et al., Synthesis and evaluation of a solid supported molecular tweezer type receptor for cholesterol.
Journal of Materials Chemistry, 13, (4), 758-766, (2003)
   
Recognition
Davis ME, Reflections on routes to enantioselective solid catalysts.
Topics In Catalysis, 25, (1-4), 3-7, (2003)
   
Recognition
Dickert FL et al., Sensor strategies for microorganism detection - from physical principles to imprinting procedures.
Analytical and Bioanalytical Chemistry, 377, (3), 540-549, (2003)
   
Recognition
Dong H et al., Syntheses of steroid-based molecularly imprinted polymers and their molecular recognition study with spectrometric detection.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 59, (2), 279-284, (2003)
   
Recognition
Du JX et al., Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material.
Analytica Chimica Acta, 489, (2), 183-189, (2003)
   
Recognition
Feng RT et al., Review on enzyme mimics.
Chinese Journal of Organic Chemistry, 23, (8), 893-899, (2003)
   
Recognition
Güney O, Multiple-point adsorption of terbium ions by lead ion templated thermosensitive gel: elucidating recognition of conformation in gel by terbium probe.
Journal of Molecular Recognition, 16, (2), 67-71, (2003)
   
Recognition
Haginaka J et al., Highly stereoselective, uniformly sized molecularly imprinted polymers for cinchona alkaloids in hydro-organic mobile phases.
Analytical Sciences, 19, (1), 39-42, (2003)
   
Recognition
Hall AJ et al., A substructure approach toward polymeric receptors targeting dihydrofolate reductase inhibitors. 2. Molecularly imprinted polymers against Z-L-glutamic acid showing affinity for larger molecules.
Journal of Organic Chemistry, 68, (23), 9132-9135, (2003)
   
Recognition
Hennion MC et al., Immuno-based sample preparation for trace analysis.
Journal of Chromatography A, 1000, (1-2), 29-52, (2003)
   
Recognition
Kim H et al., An orthogonal approach to multifunctional molecularly imprinted polymers.
Organic Letters, 5, (19), 3415-3418, (2003)
   
Recognition
Book chapter, Kobayashi Tet al., Molecularly imprinted membranes having amphiphilic scaffold media for target molecule recognition,
In: Membranes-Preparation, Properties and Applications, Burganos VN, Noble RD, Asaeda M, Ayral A, Le Roux JD (Eds.)
Materials Research Society: Warrendale, 39-43, (2003)    
Recognition
Kondo Y et al., Effect of constituting amino acid residue numbers on molecularly imprinted chiral recognition sites.
Chirality, 15, (6), 498-503, (2003)
   
Recognition
Koter I et al., Kinetic resolution of chiral alcohols in bifunctional membrane exhibiting enzyme activity and enantioselective permeation.
Journal of Molecular Catalysis B: Enzymatic, 24-25, (1), 17-26, (2003)
   
Recognition
Lack O et al., Selectivity of molecular recognition displayed by monoclonal antibodies as compared to receptors - a new approach to screen combinatorial libraries.
Helvetica Chimica Acta, 86, (11), 3594-3600, (2003)
   
Recognition
Lai JP et al., Preparative separation and determination of matrine from the Chinese medicinal plant Sophora flavescens Ait by molecularly imprinted solid-phase extraction.
Analytical and Bioanalytical Chemistry, 375, (2), 264-269, (2003)
   
Recognition
Lin CI et al., Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine.
Analytica Chimica Acta, 481, (2), 175-180, (2003)
   
Recognition
Lin CY et al., Discrimination of peptides by using a molecularly imprinted piezoelectric biosensor.
Chemistry - A European Journal, 9, (20), 5107-5110, (2003)
   
Recognition
Lu SL et al., Preparation of molecularly imprinted Fe3O4/P(St-DVB) composite beads with magnetic susceptibility and their characteristics of molecular recognition for amino acid.
Journal of Applied Polymer Science, 89, (14), 3790-3796, (2003)
   
Recognition
Luo GM et al., Towards more efficient glutathione peroxidase mimics: Substrate recognition and catalytic group assembly.
Current Medicinal Chemistry, 10, (13), 1151-1183, (2003)
   
Recognition
Mitchell-Koch JT et al., Immobilization of a europium salen complex within porous organic hosts: Modulation of luminescence properties in different chemical environments.
Chemistry of Materials, 15, (18), 3490-3495, (2003)
   
Recognition
Mukawa T et al., Novel strategy for molecular imprinting of phenolic compounds utilizing disulfide templates.
Journal of Pharmaceutical and Biomedical Analysis, 30, (6), 1943-1947, (2003)
   
Recognition
Nakamura H et al., Current research activity in biosensors.
Analytical and Bioanalytical Chemistry, 377, (3), 446-468, (2003)
   
Recognition
Nopper D et al., Amidine-based molecularly imprinted polymers - new sensitive elements for chiral chemosensors.
Analytical and Bioanalytical Chemistry, 377, (4), 608-613, (2003)
   
Recognition
Patel A et al., Enantioselective molecularly imprinted polymers via ring-opening metathesis polymerisation.
Chemical Communications, (1), 88-89, (2003)
   
Recognition
Pogorelova SP et al., Analysis of NAD(P)+/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals.
Analytical Chemistry, 75, (3), 509-517, (2003)
   
Recognition
Prasad BB et al., Preparation, characterization and performance of a silica gel bonded molecularly imprinted polymer for selective recognition and enrichment of b-lactam antibiotics.
Reactive and Functional Polymers, 55, (2), 159-169, (2003)
   
Recognition
Robertson GP et al., Modified polysulfones. VI. Preparation of polymer membrane materials containing benzimine and benzylamine groups as precursors for molecularly imprinted sensor devices.
Journal of Polymer Science Part A: Polymer Chemistry, 41, (9), 1316-1329, (2003)
   
Recognition
Sanbe H et al., Uniformly sized molecularly imprinted polymers for bisphenol A and b-estradiol: retention and molecular recognition properties in hydro-organic mobile phases.
Journal of Pharmaceutical and Biomedical Analysis, 30, (6), 1835-1844, (2003)
   
Recognition
Sanbe H et al., Restricted access media-molecularly imprinted polymer for propranolol and its application to direct injection analysis of b-blockers in biological fluids.
Analyst, 128, (6), 593-597, (2003)
   
Recognition
Sanbe H et al., Preparation of uniformly sized molecularly imprinted polymers for phenolic compounds and their application to the assay of bisphenol A in river water.
Analytical Sciences, 19, (5), 715-719, (2003)
   
Recognition
Serizawa T et al., Recognition of stereoregular polymers by using structurally regulated ultrathin polymer films.
Angewandte Chemie International Edition, 42, (10), 1118-1121, (2003)
   
Recognition
Shepherd RE, Chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands.
Coordination Chemistry Reviews, 247, (1-2), 147-184, (2003)
   
Recognition
Shiigi H et al., Molecularly imprinted overoxidized polypyrrole colloids: Promising materials for molecular recognition.
Microchimica Acta, 143, (2-3), 155-162, (2003)
   
Recognition
Shimizu KD, Understanding the fundamental recognition behavior of molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 226, (POLY), 519-519, (2003)
   
Recognition
Sibrian-Vazquez M et al., Improving the strategy and performance of molecularly imprinted polymers using cross-linking functional monomers.
Journal of Organic Chemistry, 68, (25), 9604-9611, (2003)
   
Recognition
Sobhi DJ et al., Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application.
Analytica Chimica Acta, 488, (2), 173-182, (2003)
   
Recognition
Stanley S et al., Enantioselective detection of L-serine.
Sensors and Actuators B: Chemical, 89, (1-2), 103-106, (2003)
   
Recognition
Striegler S, Selective carbohydrate recognition by synthetic receptors in aqueous solution.
Current Organic Chemistry, 7, (1), 81-102, (2003)
   
Recognition
Taniwaki K et al., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy.
Analytica Chimica Acta, 489, (2), 191-198, (2003)
   
Recognition
Titirici MM et al., Hierarchical imprinting using crude solid phase peptide synthesis products as templates.
Chemistry of Materials, 15, (4), 822-824, (2003)
   
Recognition
Turiel E et al., Assessment of the cross-reactivity and binding sites characterisation of a propazine-imprinted polymer using the Langmuir-Freundlich isotherm.
Analyst, 128, (2), 137-141, (2003)
   
Recognition
Waldvogel SR, Caffeine - A drug with a surprise.
Angewandte Chemie International Edition, 42, (6), 604-605, (2003)
   
Recognition
Wandelt B et al., Steady-state and time-resolved fluorescence studies of fluorescent imprinted polymers.
Journal of Luminescence, 102-103, (1), 774-781, (2003)
   
Recognition
Wu LQ et al., Picolinamide-Cu(Ac)2-imprinted polymer with high potential for recognition of picolinamide-copper acetate complex.
Analytica Chimica Acta, 482, (2), 175-181, (2003)
   
Recognition
Wu LQ et al., Study properties of molecular imprinting polymer using a computational approach.
Analyst, 128, (7), 944-949, (2003)
   
Recognition
Yoshikawa M et al., Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules.
Macromolecular Bioscience, 3, (9), 487-498, (2003)
   
Recognition
Zhang LY et al., Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization.
Reactive and Functional Polymers, 56, (3), 167-173, (2003)
   
Recognition
Zhou YX et al., Potentiometric sensing of chiral amino acids.
Chemistry of Materials, 15, (14), 2774-2779, (2003)
   
Recognition
Zhou YX et al., Chiral surface imprinting: Integrated recognition and transduction.
Abstracts of Papers of the American Chemical Society, 225, (ANYL), 132-132, (2003)
   
Recognition
Zhou YX et al., Chiral surface imprinting: Integrated recognition and transduction.
Abstracts of Papers of the American Chemical Society, 225, (COLL), 495-495, (2003)
   
Recognition
Zhu LL et al., Selective separation of active inhibitors of epidermal growth factor receptor from Caragana Jubata by molecularly imprinted solid-phase extraction.
Journal of Chromatography A, 991, (2), 151-158, (2003)
   
Recognition
Zhu LL et al., Application of a molecularly imprinted polymer for the effective recognition of different anti-epidermal growth factor receptor inhibitors.
Analytical Chemistry, 75, (23), 6381-6387, (2003)
   
Recognition
Zimmerman SC et al., Monomolecular imprinting: Synthetic hosts via molecular imprinting inside of dendrimers.
Abstracts of Papers of the American Chemical Society, 226, (POLY), 479-479, (2003)
   
Recognition
Zuo XB et al., Molecularly imprinted polymers for the specific rebinding of macrocyclic metal complexes via non-covalent interactions.
Abstracts of Papers of the American Chemical Society, 225, (NUCL), 26-26, (2003)
   
Recognition
Adhikari B et al., Polymers in sensor applications.
Progress in Polymer Science, 29, (7), 699-766, (2004)
   
Recognition
Andaç M et al., Molecular recognition based cadmium removal from human plasma.
Journal of Chromatography B, 811, (2), 119-126, (2004)
   
Recognition
Aoki S et al., A zinc(II) complex-conjugated polymer for selective recognition and separation of phosphates.
Journal of Physical Organic Chemistry, 17, (6-7), 489-497, (2004)
   
Recognition
Asanuma H et al., Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 50, (1-2), 51-55, (2004)
   
Recognition
Baggiani C et al., Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 31-41, (2004)
   
Recognition
Baggiani C et al., Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template - Indirect evidence of the formation of template clusters in the binding site.
Analytica Chimica Acta, 504, (1), 43-52, (2004)
   
Recognition
Blanco-López MC et al., Electrochemical sensing with electrodes modified with molecularly imprinted polymer films.
Analytical and Bioanalytical Chemistry, 378, (8), 1922-1928, (2004)
   
Recognition
Cai LS et al., Molecularly imprinted polymer for theophylline retention and molecular recognition properties in capillary electrochromatography.
Wuhan University Journal of Natural Sciences, 9, (3), 359-365, (2004)
   
Recognition
Cai WS et al., Molecularly-imprinted polymers selective for tetracycline binding.
Separation and Purification Technology, 35, (3), 215-221, (2004)
   
Recognition
Carter SR et al., Surface molecularly imprinted polymer core-shell particles.
Advanced Functional Materials, 14, (6), 553-561, (2004)
   
Recognition
Ciardelli G et al., Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest.
Biosensors and Bioelectronics, 20, (6), 1083-1090, (2004)
   
Recognition
Cristallini C et al., Acrylonitrile-acrylic acid copolymer membrane imprinted with uric acid for clinical uses.
Macromolecular Bioscience, 4, (1), 31-38, (2004)
   
Recognition
Dickert FL et al., Synthetic receptors for chemical sensors - subnano- and micrometre patterning by imprinting techniques.
Biosensors and Bioelectronics, 20, (6), 1040-1044, (2004)
   
Recognition
Dickert FL et al., Bioimprinted QCM sensors for virus detection - screening of plant sap.
Analytical and Bioanalytical Chemistry, 378, (8), 1929-1934, (2004)
   
Recognition
Dickert FL et al., QCM array for on-line-monitoring of composting procedures.
Analyst, 129, (5), 432-437, (2004)
   
Recognition
Ebarvia BS et al., Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer.
Analytical and Bioanalytical Chemistry, 378, (5), 1331-1337, (2004)
   
Recognition
Feng L et al., Biosensor for the determination of sorbitol based on molecularly imprinted electro synthesized polymers.
Biosensors and Bioelectronics, 19, (11), 1513-1519, (2004)
   
Recognition
Feng LA et al., Molecularly imprinted TiO2 thin film by liquid phase deposition for the determination of L-glutamic acid.
Langmuir, 20, (5), 1786-1790, (2004)
   
Recognition
Feng SY et al., Molecularly imprinted solid-phase extraction for the screening of antihyperglycemic biguanides.
Journal of Chromatography A, 1027, (1-2), 155-160, (2004)
   
Recognition
Gladis JM et al., Effect of porogen type on the synthesis of uranium ion imprinted polymer materials for the preconcentration/separation of traces of uranium.
Microchimica Acta, 146, (3-4), 251-258, (2004)
   
Recognition
Gong SL et al., Dye-molecular-imprinted polysiloxanes. II. Preparation, characterization, and recognition behavior.
Journal of Applied Polymer Science, 93, (2), 637-643, (2004)
   
Recognition
Greene NT et al., Molecularly imprinted polymer sensor arrays.
Chemical Communications, (10), 1172-1173, (2004)
   
Recognition
Guan JG et al., Impedimetric biosensors.
Journal of Bioscience and Bioengineering, 97, (4), 219-226, (2004)
   
Recognition
Habaue S et al., Synthesis of polymer gel with chiral helical cavity by molecular imprinting using bifunctional vinyl monomers.
Polymer, 45, (15), 5095-5100, (2004)
   
Recognition
Haginaka J et al., Chiral resolution of derivatized amino acids using uniformly sized molecularly imprinted polymers in hydro-organic mobile phases.
Analytical and Bioanalytical Chemistry, 378, (8), 1907-1912, (2004)
   
Recognition
Haginaka J et al., Retentivity and enantioselectivity of uniformly sized molecularly imprinted polymers for d-chlorpheniramine and - brompheniramine in hydro-organic mobile phases.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 19-24, (2004)
   
Recognition
Hedin-Dahlström J et al., Stereoselective reduction of menthone by molecularly imprinted polymers.
Tetrahedron: Asymmetry, 15, (15), 2431-2436, (2004)
   
Recognition
Hosoya K et al., A molecular recognition strategy towards tetra-chlorinated dibenzo-p-dioxins, TCDDs.
Biosensors and Bioelectronics, 20, (6), 1185-1189, (2004)
   
Recognition
Huan SY et al., Enantioselective recognition of amino acid by differential pulse voltammetry in molecularly imprinted monolayers assembled on Au electrodes.
Electroanalysis, 16, (12), 1019-1023, (2004)
   
Recognition
Huan SY et al., Selective electrochemical molecular recognition of benzenediol isomers using molecularly imprinted TiO2 film electrodes.
Analytica Chimica Acta, 506, (1), 31-39, (2004)
   
Recognition
Huang YC et al., Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography.
Electrophoresis, 25, (4-5), 554-561, (2004)
   
Recognition
Ikegami T et al., Covalent molecular imprinting of bisphenol A using its diesters followed by the reductive cleavage with LiAlH4.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 197-201, (2004)
   
Recognition
Ikegami T et al., Bisphenol A-recognition polymers prepared by covalent molecular imprinting.
Analytica Chimica Acta, 504, (1), 131-135, (2004)
   
Recognition
Jiang Y et al., Synthesis of molecularly imprinted microspheres for recognition of trans-aconitic acid.
Journal of Applied Polymer Science, 94, (2), 542-547, (2004)
   
Recognition
Karlsson JG et al., The roles of template complexation and ligand binding conditions on recognition in bupivacaine molecularly imprinted polymers.
Analyst, 129, (5), 456-462, (2004)
   
Recognition
Kindschy LM et al., A review of molecularly imprinted polymers for biosensor development for food and agricultural applications.
Transactions of the ASAE, 47, (4), 1375-1382, (2004)
   
Recognition
Book chapter, Komiyama Met al., Recent Challenges and Progress,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 119-139, (2004)    
Recognition
Book chapter, Komiyama Met al., Conclusions and Prospects,
In: Molecular Imprinting, Komiyama M, Takeuchi T, Mukawa T, Asanuma H (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 141, (2004)    
Recognition
Kornysova O et al., A simplified synthesis of polymeric nonparticulate stationary phases with macrocyclic antibiotic as chiral selector for capillary electrochromatography.
Electrophoresis, 25, (16), 2825-2829, (2004)
   
Recognition
Kubo H et al., Chiral recognition of octadentate Na+ complex with tetra-armed cyclen by molecularly imprinted polymers.
Analytica Chimica Acta, 504, (1), 137-140, (2004)
   
Recognition
Kubo T et al., Interval immobilization technique for recognition toward a highly hydrophilic cyanobacterium toxin.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 806, (2), 229-235, (2004)
   
Recognition
Kubo T et al., Target-selective ion-exchange media for highly hydrophilic compounds: a possible solution by use of the "interval immobilization technique".
Analytical and Bioanalytical Chemistry, 378, (1), 84-88, (2004)
   
Recognition
Kubo T et al., Recognition of hepatotoxic homologues of Microcystin using a combination of selective adsorption media.
Journal of Separation Science, 27, (4), 316-324, (2004)
   
Recognition
Kubo T et al., Polymer-based adsorption medium prepared using a fragment imprinting technique for homologues of chlorinated bisphenol A produced in the environment.
Journal of Chromatography A, 1029, (1-2), 37-41, (2004)
   
Recognition
Kubo T et al., Toxicity recognition of hepatotoxin, homologues of microcystin with artificial trapping devices.
Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 39, (10), 2597-2614, (2004)
   
Recognition
Kunitake T et al., Molecular imprinting in ultrathin titania gel films via surface sol-gel process.
Analytica Chimica Acta, 504, (1), 1-6, (2004)
   
Recognition
Proceeding, Kuzmic AE et al, Molecularly imprinted crosslinked copolymers prepared by thermal degradation of poly(N-methacryl-N,N-dicyclohexylurea-co-ethylene glycol dimethacrylate),
2679-2685, (2004)
   
Recognition
Lai JP et al., Separation and determination of astaxanthin from microalgal and yeast samples by molecularly imprinted microspheres.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 25-30, (2004)
   
Recognition
Lanza F et al., Molecularly imprinted polymers via high-throughput and combinatorial techniques.
Macromolecular Rapid Communications, 25, (1), 59-68, (2004)
   
Recognition
Li P et al., Study on the binding characteristic of S-naproxen imprinted polymer and the interactions between templates and monomers.
Journal of Analytical Chemistry, 59, (10), 939-944, (2004)
   
Recognition
Lin TY et al., Determination of albumin concentration by MIP-QCM sensor.
Biosensors and Bioelectronics, 20, (1), 75-81, (2004)
   
Recognition
Lisichkin GV et al., Chemically modified oxide surfaces capable of molecular recognition.
Colloid Journal, 66, (4), 387-399, (2004)
   
Recognition
Liu CY et al., An insight into molecularly imprinted polymers for capillary electrochromatography.
Electrophoresis, 25, (23-24), 3997-4007, (2004)
   
Recognition
Liu ZS et al., Chiral separation of binaphthol enantiomers on molecularly imprinted polymer monolith by capillary electrochromatography.
Analytical Sciences, 20, (4), 673-678, (2004)
   
Recognition
Liu ZS et al., Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography.
Analytica Chimica Acta, 523, (2), 243-250, (2004)
   
Recognition
Lotierzo M et al., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer.
Biosensors and Bioelectronics, 20, (2), 145-152, (2004)
   
Recognition
Lu YK et al., An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution.
Analytical Chemistry, 76, (2), 453-457, (2004)
   
Recognition
Machtejevas E et al., Screening of oxazepine indole enantiomers by means of high performance liquid chromatography with imprinted polymer stationary phase.
Journal of Separation Science, 27, (7-8), 547-551, (2004)
   
Recognition
Maier NM et al., Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 103-111, (2004)
   
Recognition
Maier P et al., Scanning force microscopy study of the morphology of spin-cast molecular-imprinted nylon thin films.
Surface And Interface Analysis, 36, (9), 1340-1343, (2004)
   
Recognition
Malaisamy R et al., Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions.
Separation and Purification Technology, 39, (3), 211-219, (2004)
   
Recognition
Manesiotis P et al., An enantioselective imprinted receptor for Z-glutamate exhibiting a binding induced color change.
Chemical Communications, (20), 2278-2279, (2004)
   
Recognition
Marty JD et al., Liquid crystalline networks: Potential uses in molecular imprinting technique.
Molecular Crystals And Liquid Crystals, 411, 561-568, (2004)
   
Recognition
Matsui J et al., Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 223-229, (2004)
   
Recognition
Metilda P et al., Influence of binary/ternary complex of imprint ion on the preconcentration of uranium(VI) using ion imprinted polymer materials.
Analytica Chimica Acta, 512, (1), 63-73, (2004)
   
Recognition
Monk DJ et al., Optical fiber-based biosensors.
Analytical and Bioanalytical Chemistry, 379, (7-8), 931-945, (2004)
   
Recognition
Navarro-Villoslada F et al., Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A.
Analytica Chimica Acta, 504, (1), 149-162, (2004)
   
Recognition
Nilsson J et al., Molecularly imprinted polymer formats for capillary electrochromatography.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 3-12, (2004)
   
Recognition
Oral E et al., Responsive and recognitive hydrogels using star polymers.
Journal of Biomedical Materials Research Part A, 68A, (3), 439-447, (2004)
   
Recognition
Ou SH et al., Polyacrylamide gels with electrostatic functional groups for the molecular imprinting of lysozyme.
Analytica Chimica Acta, 504, (1), 163-166, (2004)
   
Recognition
Pap T et al., Binding assays with molecularly imprinted polymers - why do they work?
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 167-172, (2004)
   
Recognition
Park JK et al., Separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly(acrylic acid)-poly(acryl amide) terpolymer membrane.
Korean Journal of Chemical Engineering, 21, (5), 994-998, (2004)
   
Recognition
Patel A et al., Novel stereoselective molecularly imprinted polymers via ring-opening metathesis polymerisation.
Analytica Chimica Acta, 504, (1), 53-62, (2004)
   
Recognition
Pestov D et al., Molecular imprinting using monomers with solid-state polymerization.
Analytica Chimica Acta, 504, (1), 31-35, (2004)
   
Recognition
Piletska E et al., Biotin-specific synthetic receptors prepared using molecular imprinting.
Analytica Chimica Acta, 504, (1), 179-183, (2004)
   
Recognition
Piletsky S et al., Custom synthesis of molecular imprinted polymers for biotechnological application - Preparation of a polymer selective for tylosin.
Analytica Chimica Acta, 504, (1), 123-130, (2004)
   
Recognition
Pogorelova SP et al., Development of ion-sensitive field-effect transistor-based sensors for benzylphosphonic acids and thiophenols using molecularly imprinted TiO2 films.
Analytica Chimica Acta, 504, (1), 113-122, (2004)
   
Recognition
Raitman OA et al., Analysis of NAD(P)+ and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: A surface plasmon resonance study.
Analytica Chimica Acta, 504, (1), 101-111, (2004)
   
Recognition
Ramanaviciene A et al., Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins.
Biosensors and Bioelectronics, 20, (6), 1076-1082, (2004)
   
Recognition
Rosengren JP et al., Enantioselective synthetic thalidomide receptors based upon DNA binding motifs.
Organic & Biomolecular Chemistry, 2, (22), 3374-3378, (2004)
   
Recognition
Shim YH et al., Chiral recognition and separation of b2-amino acids using noncovalently molecularly imprinted polymers.
Analyst, 129, (12), 1211-1215, (2004)
   
Recognition
Shinkai S et al., Molecular design of synthetic receptors with dynamic, imprinting, and allosteric functions.
Biosensors and Bioelectronics, 20, (6), 1250-1259, (2004)
   
Recognition
Silvestri D et al., Molecularly imprinted bioartificial membranes for the selective recognition of biological molecules.
Journal of Biomaterials Science-Polymer Edition, 15, (3), 255-278, (2004)
   
Recognition
Simon RL et al., Performance analysis of molecularly imprinted polymers for carboxylate and aminophosphate templates using commercially available basic functional monomers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 203-209, (2004)
   
Recognition
Smith RK et al., Patterning self-assembled monolayers.
Progress in Surface Science, 75, (1-2), 1-68, (2004)
   
Recognition
Spivak DA et al., Evidence for shape selectivity in non-covalently imprinted polymers.
Analytica Chimica Acta, 504, (1), 23-30, (2004)
   
Recognition
Striegler S, Designing selective sites in templated polymers utilizing coordinative bonds.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 183-195, (2004)
   
Recognition
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
Recognition
Sun RF et al., Construction and application of a stoichiometric displacement model for retention in chiral recognition of molecular imprinting.
Journal of Chromatography A, 1055, (1-2), 1-9, (2004)
   
Recognition
Syu MJ et al., Towards bilirubin imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) for the specific binding of a-bilirubin.
Analytica Chimica Acta, 504, (1), 167-177, (2004)
   
Recognition
Szabelski P, A simple model of enantioselective adsorption on chiral stationary phases.
Applied Surface Science, 227, (1-4), 94-103, (2004)
   
Recognition
Theodoridis G et al., Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 43-51, (2004)
   
Recognition
Turner NW et al., Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A.
Biosensors and Bioelectronics, 20, (6), 1060-1067, (2004)
   
Recognition
Uezu K et al., Lanthanoid element recognition on surface-imprinted polymers containing dioleylphosphoric acid as a functional host.
Analytical Sciences, 20, (11), 1593-1597, (2004)
   
Recognition
Book chapter, Ulubayram K, Molecularly imprinted polymers,
In: Biomaterials: From Molecules To Engineered Tissues, Hasirci N, Hasirici V (Eds.)
Springer: 123-138, (2004)    
Recognition
Wang D et al., Solid extraction of caffeine and theophylline from green tea by molecular imprinted polymers.
Korean Journal of Chemical Engineering, 21, (4), 853-857, (2004)
   
Recognition
Wang HY et al., Molecularly imprinted copolymer membranes functionalized by phase inversion imprinting for uracil recognition and permselective binding.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 127-134, (2004)
   
Recognition
Watabe Y et al., Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device.
Journal of Chromatography A, 1032, (1-2), 45-49, (2004)
   
Recognition
Widstrand C et al., Evaluation of MISPE for the multi-residue extraction of b-agonists from calves urine.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 85-91, (2004)
   
Recognition
Wu LQ et al., Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches.
Journal of Molecular Recognition, 17, (6), 567-574, (2004)
   
Recognition
Wu LQ et al., Metal ion-mediated molecular-imprinting polymer for indirect recognition of formate, acetate and propionate.
Analytica Chimica Acta, 517, (1-2), 145-151, (2004)
   
Recognition
Xu XJ et al., Separation and screening of compounds of biological origin using molecularly imprinted polymers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 61-69, (2004)
   
Recognition
Zhang YH et al., Synthesis of molecularly imprinted polymer with 7-chloroethyl-theophylline-immobilized silica gel as template and its molecular recognition function.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 60, (1-2), 241-244, (2004)
   
Recognition
Zheng N et al., Sulfamethoxazole-imprinted polymer for selective determination of sulfamethoxazole in tablets.
Journal of Chromatography A, 1033, (1), 179-182, (2004)
   
Recognition
Zhou YX et al., Potentiometric sensor for dipicolinic acid.
Abstracts of Papers of the American Chemical Society, 228, (ANYL), 054-054, (2004)
   
Recognition
Pang XS et al., Bovine serum albumin-imprinted polyacrylamide gel beads prepared via inverse-phase seed suspension polymerization.
Analytica Chimica Acta, 550, (1-2), 13-17, (2005)
   
Recognition
Syu MJ et al., Binding specificity of α-bilirubin-imprinted poly(methacrylic acid-co-ethylene glycol dimethylacrylate) toward α-bilirubin.
Biomaterials, 26, (22), 4684-4692, (2005)
   
Recognition
Kobayashi T et al., Molecularly imprinted polymer membranes having selective binding and separation properties.
Polymer Preprints, Japan, 55, (2), 5032-5033, (2006)
   
Recognition
Luo Y et al., Chromatographic Separation of the Enantiomers of a Series of C2-Asymmetric Bi-Naphthyl Compounds by Molecularly Imprinted Polymers.
Chromatographia, 64, (7-8), 393-397, (2006)
   
Recognition
Matsui J et al., Molecularly-imprinted polymeric logic gates selective for predetermined chemical input species.
Chemical Communications, (30), 3217-3219, (2006)
   
Recognition
Pang XS et al., Soft-wet polyacrylamide gel beads with the imprinting of bovine serum albumin.
Reactive and Functional Polymers, 66, (10), 1182-1188, (2006)
   
Recognition
Takátsy A et al., Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses, and cells (bacteria): II. Gel antibodies against virus (Semliki Forest Virus).
Journal of Separation Science, 29, (18), 2810-2815, (2006)
   
Recognition
Urraca JL et al., A Stoichiometric Molecularly Imprinted Polymer for the Class-Selective Recognition of Antibiotics in Aqueous Media.
Angewandte Chemie International Edition, 45, (31), 5158-5161, (2006)
   
Recognition
Wang JC et al., Preparation of molecularly imprinted polymer and its recognition property for phenylurea herbicides.
Chemical Journal of Chinese Universities, 27, (7), 1227-1231, (2006)
   
Recognition
Bossi A et al., Patterned gallium surfaces as molecular mirrors.
Biosensors and Bioelectronics, 23, (2), 290-294, (2007)
   
Recognition
Zheng XM et al., Synthesis and Recognition Capabilities of Quinazoline Molecularly-Imprinted Polymeric Microspheres.
Journal of South China University of Technology (Natural Science Edition), 35, (4), 25-29+34, (2007)
   
Recognition
Bayer CL et al., Advances in recognitive, conductive and responsive delivery systems.
Journal of Controlled Release, 132, (3), 216-221, (2008)
   
Recognition
Du D et al., Recognition of dimethoate carried by bi-layer electrodeposition of silver nanoparticles and imprinted poly-o-phenylenediamine.
Electrochimica Acta, 53, (22), 6589-6595, (2008)
   
Recognition
He CY et al., Molecularly imprinted silica prepared with immiscible ionic liquid as solvent and porogen for selective recognition of testosterone.
Talanta, 74, (5), 1126-1131, (2008)
   
Recognition
Hung CY et al., Molecular recognition and identification of sulfapyridine and sulfadimethoxine by high performance liquid chromatography with molecularly imprinted polymer as the stationary phase.
Journal of Food and Drug Analysis, 16, (4), 8-14, (2008)
   
Recognition
Kan XW et al., Molecularly imprinted polymers microsphere prepared by precipitation polymerization for hydroquinone recognition.
Talanta, 75, (1), 22-26, (2008)
   
Recognition
Lee MH et al., Recognition of creatinine by poly(ethylene-co-vinylalcohol) molecular imprinting membrane.
Desalination, 234, (1-3), 126-133, (2008)
   
Recognition
Li Q et al., Preparation and Properties of Salicylic Acid-Imprinted Polymers from Emulsions.
Macromolecular Symposia, 261, (1), 91-96, (2008)
   
Recognition
Shen RL et al., Study on the Recognition Property of Molecularly Imprinted Polymers with Methyltestosterone as Template.
Modern Scientific Instruments, (6), 76-(2008)
   
Recognition
Yao W et al., Recognition of Staphylococcus enterotoxin via molecularly imprinted beads.
Journal of Separation Science, 31, (2), 413-418, (2008)
   
Recognition
Zhao HL et al., Hemoglobin-imprinted polymer gel prepared using modified glucosamine as functional monomer.
Chinese Chemical Letters, 19, (2), 233-236, (2008)
   
Recognition
Zhao KY et al., Rebinding and recognition properties of protein-macromolecularly imprinted calcium phosphate/alginate hybrid polymer microspheres.
Reactive and Functional Polymers, 68, (3), 732-741, (2008)
   
Recognition
Atta NF et al., Smart electrochemical sensor for some neurotransmitters using imprinted sol-gel films.
Talanta, 80, (2), 511-518, (2009)
   
Recognition
Lee MH et al., Formation and Recognition Characteristics of Albumin-imprinted Poly(Ethylene-co-Vinyl-Alcohol) Membranes.
Journal of Nanoscience and Nanotechnology, 9, (6), 3469-3477, (2009)
   
Recognition
Li YQ et al., Selective recognition of veterinary drugs residues by artificial antibodies designed using a computational approach.
Biomaterials, 30, (18), 3205-3211, (2009)
   
Recognition
Meng AC et al., Multi-analyte imprinting capability of OMNiMIPs versus traditional molecularly imprinted polymers.
Journal of Molecular Recognition, 22, (2), 121-128, (2009)
   
Recognition
Pasetto P et al., Simple spectroscopic method for titration of binding sites in molecularly imprinted nanogels with hydrolase activity.
Biosensors and Bioelectronics, 25, (3), 572-578, (2009)
   
Recognition
Kan XW et al., Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination.
Microchimica Acta, 171, (3), 423-429, (2010)
   
Recognition
Proceeding, Yu JY et al, Molecularly imprinted polymer microspheres prepared by precipitation polymerization for atenolol recognition,
Liu XH, Jiang ZY, Han JT (Eds.),
1192-1198, (2010)
   
Recognition
Zhang W et al., Protein imprinted polymer using acryloyl-β-cyclodextrin and acrylamide as monomers.
Applied Surface Science, 256, (9), 3000-3005, (2010)
   
Recognition
Gao BJ et al., Constructing chiral caves and efficiently separating enantiomers of glutamic acid with novel surface-imprinting technique.
Journal of Chromatography A, 1218, (32), 5441-5448, (2011)
   
Recognition
Huang JX et al., Development of metal complex imprinted solid-phase microextraction fiber for 2,2-dipyridine recognition in aqueous medium.
Talanta, 83, (5), 1721-1729, (2011)
   
Recognition
Kong Y et al., Enantioselective recognition of amino acids based on molecularly imprinted polyaniline electrode column.
Electrochimica Acta, 56, (11), 4070-4074, (2011)
   
Recognition
Ye T et al., One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol.
Chinese Chemical Letters, 22, (10), 1253-1256, (2011)
   
Recognition
Zhang W et al., Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c.
Biosensors and Bioelectronics, 26, (5), 2553-2558, (2011)
   
Recognition
Zhu LY et al., Synthesis and adsorption performance of lead ion-imprinted micro-beads with combination of two functional monomers.
Journal of Environmental Sciences, 22, (12), 1955-1961, (2011)
   
Recognition
Asadi E et al., Cyproterone Synthesis, Recognition and Controlled Release by Molecularly Imprinted Nanoparticle.
Applied Biochemistry and Biotechnology, 167, (7), 2076-2087, (2012)
   
Recognition
Chen ZD et al., Preparation of molecularly imprinted polypyrrole/Fe3O4 composite material and its application in recognition of tryptophan enantiomers.
Chinese Journal of Chromatography, 30, (4), 423-427, (2012)
   
Recognition
Huang MX et al., A target analogue imprinted polymer for the recognition of antiplatelet active ingredients in Radix Salviae Miltiorrhizae by LC/MS/MS.
Journal of Pharmaceutical and Biomedical Analysis, 58, (1), 12-18, (2012)
   
Recognition
Kan XW et al., Three Dimensional Ordered Macroporous Electrochemical Sensor for Dopamine Recognition and Detection.
American Journal of Biomedical Sciences, 4, (3), 184-193, (2012)
   
Recognition
Kan XW et al., Imprinted electrochemical sensor for dopamine recognition and determination based on a carbon nanotube/polypyrrole film.
Electrochimica Acta, 63, (1), 69-75, (2012)
   
Recognition
Kan XW et al., Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition.
Sensors and Actuators B: Chemical, 168, (1), 395-401, (2012)
   
Recognition
Nicolescu TV et al., Tailor-made polymer beads for gallic acid recognition and separation.
Journal of Polymer Research, 19, (12), Article No. 2-(2012)
   
Recognition
Ran D et al., Bovine serum albumin recognition via thermosensitive molecular imprinted macroporous hydrogels prepared at two different temperatures.
Analytica Chimica Acta, 723, (1), 45-53, (2012)
   
Recognition
Schillinger E et al., An Artificial Estrogen Receptor through Combinatorial Imprinting.
Chemistry - A European Journal, 18, (46), 14773-14783, (2012)
   
Recognition
Tang ML et al., Development of chiral stationary phases for high-performance liquid chromatographic separation.
TrAC Trends in Analytical Chemistry, 39, 180-194, (2012)
   
Recognition
Yun YB et al., Synthesis and Adsorption Performance of Molecularly Imprinted Microspheres for Quercetin by Suspension Polymerization.
Pharmaceutica Analytica Acta, 3, (3), Art.No. 151-(2012)
   
Recognition
Cui WK et al., Adsorption properties of dye imprinted polysiloxane composite microspheres using strong basic anion-exchange resin as matrix.
Desalination and Water Treatment, 51, (40-42), 7604-7611, (2013)
   
Recognition
Forouzani M et al., Recognition and Release of Nalidixic Acid Using Uniformly Sized-Imprinted Nanospheres: Methacrylic Acid to Methyl Methacrylate Different Mole Ratios.
Iranica Journal of Energy & Environment, 4, (1), 28-35, (2013)
   
Recognition
Lin Z et al., One-pot preparation of a molecularly imprinted hybrid monolithic capillary column for selective recognition and capture of lysozyme.
Journal of Chromatography A, 1284, 8-16, (2013)
   
Recognition
Lin ZA et al., Preparation of boronate-functionalized molecularly imprinted monolithic column with polydopamine coating for glycoprotein recognition and enrichment.
Journal of Chromatography A, 1319, 141-147, (2013)
   
Recognition
Lv YQ et al., Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules.
Biotechnology Advances, 31, (8), 1172-1186, (2013)
   
Recognition
Zhu CY et al., Molecular Imprinted Polysulfone Membranes for the Sieving, Binding, and Recognition of Bisphenol A.
International Journal of Polymeric Materials, 62, (1), 17-22, (2013)
   
Recognition
Gao FX et al., Preparation of boronic acid functionalized magnetic surface molecularly imprinted polymer and its recognition of the target glycoprotein.
Chinese Journal of Analysis Laboratory, 33, (2), 125-128, (2014)
   
Recognition
He C et al., Molecularly imprinted polyethersulfone membranes for the sieving, binding and recognition of bisphenol A.
Desalination and Water Treatment, 52, (31-33), 5781-5789, (2014)
   
Recognition
Xu GL et al., Imprinted sol-gel electrochemical sensor for melamine direct recognition and detection.
Journal of Electroanalytical Chemistry, 713, 112-118, (2014)
   
Recognition
Yao W et al., Polyacrylamide gel beads for the recognition of staphylococcal enterotoxin B.
Polymers for Advanced Technologies, 25, (8), 900-904, (2014)
   
Recognition
Zhang CJ et al., Thermosensitive molecularly imprinted hydrogel cross-linked with N-malely chitosan for the recognition and separation of BSA.
Journal of Separation Science, 37, (4), 419-426, (2014)
   
Recognition
Chang ZQ et al., Synthesis and study on adsorption property of congo red molecularly imprinted polymer nanospheres.
Environmental Science, 36, (7), 2564-2572, (2015)
   
Recognition
Jia XH et al., Design, preparation, surface recognition properties, and characteristics of icariin molecularly imprinted polymers.
Cogent Chemistry, 1, (1), 1059597-(2015)
   
Recognition
Song RY et al., Synthesis of glutathione imprinted polymer particles via controlled living radical precipitation polymerization.
Chinese Journal of Polymer Science, 33, (3), 404-415, (2015)
   
Recognition
Wei X et al., Specific recognition and fluorescent determination of aspirin by using core-shell CdTe quantum dot-imprinted polymers.
Microchimica Acta, 182, (7-8), 1527-1534, (2015)
   
Recognition
Zhang W et al., Synthesis, recognition characteristics and properties of l-3-n-butylphthalide molecularly imprinted polymers as sorbent for solid-phase extraction through precipitation polymerization.
Materials Science and Engineering: C, 53, 166-174, (2015)
   
Recognition
Zhao KY et al., Adsorption and recognition of protein molecular imprinted calcium alginate/polyacrylamide hydrogel film with good regeneration performance and high toughness.
Reactive and Functional Polymers, 87, 7-14, (2015)
   
Recognition
Ahmed F et al., Preparation and Characterization of Molecular Imprinted Polymer for Detection and Selective Removal of Albendazole from Aqueous Solution.
Sensor Letters, 14, (11), 1089-1093, (2016)
   
Recognition
Dai YL et al., Voltammetric determination of paracetamol using a glassy carbon electrode modified with Prussian Blue and a molecularly imprinted polymer, and ratiometric read-out of two signals.
Microchimica Acta, 183, (10), 2771-2778, (2016)
   
Recognition
Okutucu B et al., Decolorization of textile wastewater by dye-imprinted polymer.
Desalination and Water Treatment, 57, (45), 21577-21584, (2016)
   
Recognition
Anwar A et al., Synthesis and Characterization of Molecular Imprinted Polymer for the Recognition and Removal of Cephradine.
Sensor Letters, 15, (1), 32-36, (2017)
   
Recognition
Duan GW et al., The preparation of Fe3O4/molecular-imprinted nanocomposite and the application on the recognition and separation of glyphosate.
Inorganic and Nano-Metal Chemistry, 47, (4), 481-487, (2017)
   
Recognition
Ghorbani-Bidkorbeh F, Molecular Imprinting of Peptides and Proteins.
Trends in Peptide and Protein Sciences, 1, (3), 99-108, (2017)
   
Recognition
Teng Y et al., Voltammetric dopamine sensor based on three-dimensional electrosynthesized molecularly imprinted polymers and polypyrrole nanowires.
Microchimica Acta, 184, (8), 2515-2522, (2017)
   
Recognition
Fan JP et al., Preparation of a novel supermacroporous molecularly imprinted cryogel membrane with a specific ionic liquid for protein recognition and permselectivity.
Journal of Applied Polymer Science, 135, (41), ArticleNo46740-(2018)
   
Recognition
Pan XH et al., Molecularly imprinted mesoporous silica nanoparticles for specific extraction and efficient identification of Amadori compounds.
Analytica Chimica Acta, 1019, 65-73, (2018)
   
Recognition
Wang ZH et al., The synthesis of molecular recognition polymer particles via miniemulsion polymerization.
Reactive and Functional Polymers, 126, 1-8, (2018)
   
Recognition
Xu KJ et al., Preparation of magnetic molecularly imprinted polymers based on a deep eutectic solvent as the functional monomer for specific recognition of lysozyme.
Microchimica Acta, 185, (2), ArticleNo146-(2018)
   
Recognition
Zhang XM et al., Silicon nanoparticles coated with an epitope-imprinted polymer for fluorometric determination of cytochrome c.
Microchimica Acta, 185, (3), ArticleNo173-(2018)
   
Recognition
Hu X et al., Thermosensitive molecular imprinted polymer monolith for the selective recognition of quercetin.
Separation Science and Technology, 54, (5), 696-704, (2019)
   
Recognition
Liu YC et al., Dummy-template molecularly imprinted micro-solid-phase extraction coupled with high-performance liquid chromatography for bisphenol A determination in environmental water samples.
Microchemical Journal, 145, 337-344, (2019)
   
Recognition
Ding SC et al., Integrating ionic liquids with molecular imprinting technology for biorecognition and biosensing: A review.
Biosensors and Bioelectronics, 149, Article111830-(2020)
   
Recognition
Zhao QY et al., Strategy of Fusion Covalent Organic Frameworks and Molecularly Imprinted Polymers: A Surprising Effect in Recognition and Loading of Cyanidin-3-O-glucoside.
ACS Applied Materials & Interfaces, 12, (7), 8751-8760, (2020)
   
Recognition
Garza-Montelongo E et al., Molecularly Imprinted Polymer for the Binding and Recognition of Basic Blue 41 Dye.
Journal of the Chilean Chemical Society, 66, (2), 5215-5219, (2021)
   
Recognition
Niu jS et al., Antibody Mimics as Bio-orthogonal Catalysts for Highly Selective Bacterial Recognition and Antimicrobial Therapy.
ACS Nano, 15, (10), 15841-15849, (2021)
   
Recognition
Ullah B et al., 4-Nitrophenol imprinted core-shell poly(N-isopropylacrylamide-acrylic acid)/poly(acrylic acid) microgels loaded with cadmium nanoparticles: A novel catalyst.
Materials Chemistry and Physics, 260, Article124156-(2021)
   
Recognition
Yuan Y et al., Dummy molecularly imprinted membranes based on an eco-friendly synthesis approach for recognition and extraction of enrofloxacin and ciprofloxacin in egg samples.
Journal of Chromatography A, 1653, Article462411-(2021)
   
Recognition
Yuan J et al., Probing the molecular basis for sulfonamides recognition in surface molecularly imprinted polymers using computational and experimental approaches.
Reactive and Functional Polymers, 170, Article105105-(2022)
   
recognition ability
Yoshikawa M et al., Factors governing chiral recognition ability of molecularly imprinted oligopeptide membranes.
Abstracts of Papers of the American Chemical Society, 222, (COLL), 9-9, (2001)
   
recognition ability
Proceeding, Kamiya Y et al, Optical resolution of chrysanthemic acid derivatives on cellulose and amylose columns,
In: Polymer Preprints, Japan,
1513, (2002)
   
recognition ability
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting method using helical polymethacrylate as template,
In: Polymer Preprints, Japan,
1508, (2002)
   
recognition ability
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting using helical polymethacrylate as template and its chiral recognition ability,
In: Polymer Preprints, Japan,
1708, (2002)
   
recognition ability
Proceeding, Yamashita K et al, Dependence of gel structure on the molecular recognition ability of stimuli-responsive imprinting hydrogel,
In: Polymer Preprints, Japan,
1843, (2002)
   
recognition ability
Proceeding, Yamashita K et al, Attempts to imprinting of hydrogel in aqueous system,
In: Polymer Preprints, Japan,
684, (2002)
   
recognition ability
Proceeding, Yoshikawa M et al, Chiral recognition ability of molecularly imprinted membranes with oligopeptide derivative tweezers,
In: Polymer Preprints, Japan,
331, (2002)
   
recognition ability
Proceeding, Yoshikawa M et al, Chiral recognition ability of oligopeptide derivatives consisiting of glutamyl residues,
In: Polymer Preprints, Japan,
625, (2002)
   
recognition ability
Habaue S et al., Synthesis of polymer gel with chiral helical cavity by molecular imprinting using bifunctional vinyl monomers.
Polymer, 45, (15), 5095-5100, (2004)
   
recognition ability
Haginaka J et al., Chiral resolution of derivatized amino acids using uniformly sized molecularly imprinted polymers in hydro-organic mobile phases.
Analytical and Bioanalytical Chemistry, 378, (8), 1907-1912, (2004)
   
recognition ability
Kubo T et al., Interval immobilization technique for recognition toward a highly hydrophilic cyanobacterium toxin.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 806, (2), 229-235, (2004)
   
recognition ability
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
recognition ability
Xiao SJ et al., Application of molecularly imprinted polymers in separation fields.
New Chemical Materials, 35, (2), 4-5,8, (2007)
   
recognition ability
Huo SX et al., Synthesis and Characterization of p-Hydroxyacetophenone Molecularly Imprinted Polymer.
Journal of Instrumental Analysis, 27, (8), 866-869, (2008)
   
recognition ability
Xu ZF et al., Exploiting β-cyclodextrin as functional monomer in molecular imprinting for achieving recognition in aqueous media.
Materials Science and Engineering: C, 28, (8), 1516-1521, (2008)
   
recognition ability
Tak HY et al., Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch.
Carbohydrate Polymers, 208, 261-268, (2019)
   
Recognition and release
Xu L et al., Preparation of hydrophilic molecularly imprinted nano-spheres and the properties on the drug release and recognition.
Acta Scientiarum Naturalium Universitatis Sunyatseni, 49, (3), 61-69, (2010)
   
Recognition and selective adsorption
Hemmati K et al., Tragacanth gum-based nanogel as a superparamagnetic molecularly imprinted polymer for quercetin recognition and controlled release.
Carbohydrate Polymers, 136, 630-640, (2016)
   
Recognition and separation
Liu YJ et al., Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.
Analytica Chimica Acta, 936, 168-178, (2016)
   
recognition capability
Zheng XM et al., Influential Factors of Capabilities of Combination and Recognition in Molecularly Imprinted Polymers.
Materials Review, 18, (10), 57-59, (2004)
   
recognition character
Sun ZA et al., Preparation of magnetic surface molecularly imprinted polymers for melamine and its application in milk samples.
Chinese Journal of Chromatography, 36, (8), 716-722, (2018)
   
recognition characteristics
Liu YC et al., Comparison between two commercial uranium resins and a uranyl sulphate imprinted resin based on self-assembling MIT.
Frontiers of Chemical Engineering in China, 1, (4), 327-331, (2007)
   
recognition characteristics
Shan JJ et al., Preparation of Quercetin-Cu(II) Complex Molecularly Imprinted Polymer and Its Binding Characteristics.
Acta Polymerica Sinica, (1), 100-106, (2011)
   
recognition characteristics
Wang ZX et al., Preparation of Atrazine Molecularly Imprinted Polymers and Recognition Characteristics.
Acta Chimica Sinica, 69, (22), 2717-2722, (2011)
   
Recognition coefficient
Yang KG et al., Molecularly imprinted polyethersulfone microspheres for the binding and recognition of bisphenol A.
Analytica Chimica Acta, 546, (1), 30-36, (2005)
   
Recognition component
Binet C et al., First approach to the use of liquid crystal elastomers for chemical sensors.
Talanta, 69, (3), 757-762, (2006)
   
recognition effect
Wang P et al., Advance in the Molecular Imprinting Based Protein Recognition.
Chemistry & Bioengineering, 25, (9), 1-4, (2008)
   
recognition effect
Zelikovich D et al., Shell-Matrix Interaction in Nanoparticle-Imprinted Matrices: Implications for Selective Nanoparticle Detection and Separation.
ACS Applied Nano Materials, 4, (10), 10819-10827, (2021)
   
recognition element
Kriz D et al., Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors.
Sensors and Actuators B: Chemical, 33, (1-3), 178-181, (1996)
   
recognition element
Haupt K et al., Binding assays for drugs and herbicides using molecularly imprinted polymer particles as recognition elements in different assay formats.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 32-32, (1997)
   
recognition element
Book chapter, Hernandez Eet al., Biologically inspired recognition chemistry for biosensors. Design of recognition for ion-selective electrodes (ISEs),
In: Biosensors for Direct Monitoring of Environmental Pollutants in Field, Nikolelis DP, Krull UJ, Wang J, Mascini M (Eds.)
Kluwer Academic Publishers: Dordrecht, 97-106, (1997)    
recognition element
Mosbach K, The emerging technique of molecular imprinting and its future impact on biotechnology.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 111-111, (1997)
   
recognition element
Ramström O et al., Molecularly imprinted materials - Their use in separations, immunoassay-type analyses and syntheses.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 129-129, (1997)
   
recognition element
Haupt K et al., Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element.
Analytical Chemistry, 70, (3), 628-631, (1998)
   
recognition element
Knutsson M et al., Novel chiral recognition elements for molecularly imprinted polymer preparation.
Journal of Molecular Recognition, 11, (1-6), 87-90, (1998)
   
recognition element
Ramström O et al., Molecular imprinting technology: Challenges and prospects for the future.
Chirality, 10, (3), 195-209, (1998)
   
recognition element
Book chapter, Scheller FWet al., New recognition elements in biosensing,
In: Enzyme Engineering XIV, Laskin AI, Li GX, Yu YT (Eds.)
New York Academy of Sciences: New York, 37-45, (1998)    
recognition element
Dzgoev A et al., Enantioselective molecularly imprinted polymer membranes.
Chirality, 11, (5-6), 465-469, (1999)
   
recognition element
Haupt K et al., Imprinted polymer-based enantioselective acoustic sensor using a quartz crystal microbalance.
Analytical Communications, 36, (12), 391-393, (1999)
   
recognition element
Murray GM et al., Portable sensor for illicit cocaine based on a molecularly imprinted polymer.
unknown source, (2000)
   
recognition element
Peng H et al., Bulk acoustic wave sensor using molecularly imprinted polymers as recognition elements for the determination of pyrimethamine.
Talanta, 52, (3), 441-448, (2000)
   
recognition element
Cao L et al., Enantioselective sensor based on microgravimetric quartz crystal microbalance with molecularly imprinted polymer film.
Analyst, 126, (2), 184-188, (2001)
   
recognition element
Gutierrez-Fernandez S et al., Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor.
Electroanalysis, 13, (17), 1399-1404, (2001)
   
recognition element
Luo CH et al., Thickness-shear mode acoustic sensor for atrazine using molecularly imprinted polymer as recognition element.
Analytica Chimica Acta, 428, (1), 143-148, (2001)
   
recognition element
Masci G et al., Synthesis and LC characterization of clenbuterol molecularly imprinted polymers.
Journal of Pharmaceutical and Biomedical Analysis, 25, (2), 211-217, (2001)
   
recognition element
Mosbach K, Towards the development of artificial recognition elements in sensor technology vision with emphasis on molecular imprinting.
Electrochemistry, 69, (12), 919-919, (2001)
   
recognition element
Scheller FW et al., Research and development in biosensors.
Current Opinion in Biotechnology, 12, (1), 35-40, (2001)
   
recognition element
Tan YG et al., A piezoelectric biomimetic sensor for aminopyrine with a molecularly imprinted polymer coating.
Analyst, 126, (5), 664-668, (2001)
   
recognition element
Book chapter, Theodoridis G, Molecularly imprinted polymers for affinity chromatography,
In: Encyclopedia of Chromatography, Cazes J (Ed.)
Marcel Dekker: New York, 1-6, (2001)    
recognition element
Ansell RJ, MIP-ligand binding assays (pseudo-immunoassays).
Bioseparation, 10, (6), 365-377, (2002)
   
recognition element
Jenkins AL, Imprinted polymer sensors for pesticide detection.
Abstracts of Papers of the American Chemical Society, 224, (ANYL), 156-156, (2002)
   
recognition element
Percival CJ et al., Molecular imprinted polymer coated QCM for the detection of nandrolone.
Analyst, 127, (8), 1024-1026, (2002)
   
recognition element
Xu WJ et al., Biomimetic chemsensor based on molecular imprinting technology.
Polymer Materials Science and Engineering, 18, (6), 16-19, (2002)
   
recognition element
Yan MD, Molecularly imprinted polymers as antibody mimics: Applications in immunoassays and recent developments.
Journal of Clinical Ligand Assay, 25, (2), 234-236, (2002)
   
recognition element
Book chapter, Cabanilla Set al., Piezoelectric biomimetic sensor for caffeine based on electrosynthesized polypyrrole,
In: Sensors: Asiasense 2003 - Asian Conference On Sensors, Ahmad M, Heng LY, Salimon J, Ghodgaonkar DK, Yousof RW, Surif S, Taib MN (Eds.)
IEEE: New York, 105-109, (2003)    
recognition element
Nakamura H et al., Current research activity in biosensors.
Analytical and Bioanalytical Chemistry, 377, (3), 446-468, (2003)
   
recognition element
Stanley S et al., Enantioselective detection of L-serine.
Sensors and Actuators B: Chemical, 89, (1-2), 103-106, (2003)
   
recognition element
Baggiani C et al., Binding properties of 2,4,5-trichlorophenoxyacetic acid-imprinted polymers prepared with different molar ratios between template and functional monomer.
Talanta, 62, (5), 1029-1034, (2004)
   
recognition element
Blanco-López MC et al., Electrochemical sensing with electrodes modified with molecularly imprinted polymer films.
Analytical and Bioanalytical Chemistry, 378, (8), 1922-1928, (2004)
   
recognition element
Feng L et al., Biosensor for the determination of sorbitol based on molecularly imprinted electro synthesized polymers.
Biosensors and Bioelectronics, 19, (11), 1513-1519, (2004)
   
recognition element
Lavignac N et al., Current status of molecularly imprinted polymers as alternatives to antibodies in sorbent assays.
Analytica Chimica Acta, 510, (2), 139-145, (2004)
   
recognition element
Lin TY et al., Determination of albumin concentration by MIP-QCM sensor.
Biosensors and Bioelectronics, 20, (1), 75-81, (2004)
   
recognition element
Monk DJ et al., Optical fiber-based biosensors.
Analytical and Bioanalytical Chemistry, 379, (7-8), 931-945, (2004)
   
recognition element
Nilsson J et al., Molecularly imprinted polymer formats for capillary electrochromatography.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 3-12, (2004)
   
recognition element
Liu ZH et al., Progress of electrochemical sensor based on molecular imprinting.
Chemical Sensors (China), 25, (4), 1-8, (2005)
   
recognition element
Sadeghi S et al., Potentiometric sensing of levamisole hydrochloride based on molecularly imprinted polymer.
Sensors and Actuators B: Chemical, 122, (1), 158-164, (2007)
   
recognition element
Justino CIL et al., Recent developments in recognition elements for chemical sensors and biosensors.
TrAC Trends in Analytical Chemistry, 68, 2-17, (2015)
   
recognition element
Peltomaa R et al., Bioinspired recognition elements for mycotoxin sensors.
Analytical and Bioanalytical Chemistry, 410, (3), 747-771, (2018)
   
recognition element
Yan X et al., Review of optical sensors for pesticides.
TrAC Trends in Analytical Chemistry, 103, 1-20, (2018)
   
recognition elements
Kriz D et al., Introduction of molecularly imprinted polymers as recognition elements in conductometric chemical sensors.
Sensors and Actuators B: Chemical, 33, (1-3), 178-181, (1996)
   
recognition elements
Haupt K et al., Binding assays for drugs and herbicides using molecularly imprinted polymer particles as recognition elements in different assay formats.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 32-32, (1997)
   
recognition elements
Book chapter, Hernandez Eet al., Biologically inspired recognition chemistry for biosensors. Design of recognition for ion-selective electrodes (ISEs),
In: Biosensors for Direct Monitoring of Environmental Pollutants in Field, Nikolelis DP, Krull UJ, Wang J, Mascini M (Eds.)
Kluwer Academic Publishers: Dordrecht, 97-106, (1997)    
recognition elements
Mosbach K, The emerging technique of molecular imprinting and its future impact on biotechnology.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 111-111, (1997)
   
recognition elements
Ramström O et al., Molecularly imprinted materials - Their use in separations, immunoassay-type analyses and syntheses.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 129-129, (1997)
   
recognition elements
Knutsson M et al., Novel chiral recognition elements for molecularly imprinted polymer preparation.
Journal of Molecular Recognition, 11, (1-6), 87-90, (1998)
   
recognition elements
Ramström O et al., Molecular imprinting technology: Challenges and prospects for the future.
Chirality, 10, (3), 195-209, (1998)
   
recognition elements
Book chapter, Scheller FWet al., New recognition elements in biosensing,
In: Enzyme Engineering XIV, Laskin AI, Li GX, Yu YT (Eds.)
New York Academy of Sciences: New York, 37-45, (1998)    
recognition elements
Dzgoev A et al., Enantioselective molecularly imprinted polymer membranes.
Chirality, 11, (5-6), 465-469, (1999)
   
recognition elements
Haupt K et al., Molecularly imprinted polymers in chemical and biological sensing.
Biochemical Society Transactions, 27, 344-350, (1999)
   
recognition elements
Liao Y et al., Building fluorescent sensors by template polymerization: The preparation of a fluorescent sensor for L-tryptophan.
Bioorganic Chemistry, 27, (6), 463-476, (1999)
   
recognition elements
Haupt K et al., Molecularly imprinted polymers and their use in biomimetic sensors.
Chemical Reviews, 100, (7), 2495-2504, (2000)
   
recognition elements
Peng H et al., Bulk acoustic wave sensor using molecularly imprinted polymers as recognition elements for the determination of pyrimethamine.
Talanta, 52, (3), 441-448, (2000)
   
recognition elements
Gao SH et al., Building fluorescent sensors for carbohydrates using template-directed polymerizations.
Bioorganic Chemistry, 29, (5), 308-320, (2001)
   
recognition elements
Leung MKP et al., A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid.
Journal of Materials Chemistry, 11, (12), 2985-2991, (2001)
   
recognition elements
Marx S et al., Molecular imprinting in thin films of organic-inorganic hybrid sol-gel and acrylic polymers.
Chemistry of Materials, 13, (10), 3624-3630, (2001)
   
recognition elements
Masci G et al., Synthesis and LC characterization of clenbuterol molecularly imprinted polymers.
Journal of Pharmaceutical and Biomedical Analysis, 25, (2), 211-217, (2001)
   
recognition elements
Mosbach K, Towards the development of artificial recognition elements in sensor technology vision with emphasis on molecular imprinting.
Electrochemistry, 69, (12), 919-919, (2001)
   
recognition elements
Scheller FW et al., Research and development in biosensors.
Current Opinion in Biotechnology, 12, (1), 35-40, (2001)
   
recognition elements
Book chapter, Theodoridis G, Molecularly imprinted polymers for affinity chromatography,
In: Encyclopedia of Chromatography, Cazes J (Ed.)
Marcel Dekker: New York, 1-6, (2001)    
recognition elements
Jenkins AL, Imprinted polymer sensors for pesticide detection.
Abstracts of Papers of the American Chemical Society, 224, (ANYL), 156-156, (2002)
   
recognition elements
Lai JP et al., Chromatographic characterization of molecularly imprinted microspheres synthesized by aqueous microsuspension polymerization: Influences of pH, kinds and concentration of buffer on capacity factors.
Chinese Journal of Chemistry, 20, (10), 1012-1018, (2002)
   
recognition elements
Yan MD, Molecularly imprinted polymers as antibody mimics: Applications in immunoassays and recent developments.
Journal of Clinical Ligand Assay, 25, (2), 234-236, (2002)
   
recognition elements
Nakamura H et al., Current research activity in biosensors.
Analytical and Bioanalytical Chemistry, 377, (3), 446-468, (2003)
   
recognition elements
Blanco-López MC et al., Electrochemical sensing with electrodes modified with molecularly imprinted polymer films.
Analytical and Bioanalytical Chemistry, 378, (8), 1922-1928, (2004)
   
recognition elements
Feng L et al., Biosensor for the determination of sorbitol based on molecularly imprinted electro synthesized polymers.
Biosensors and Bioelectronics, 19, (11), 1513-1519, (2004)
   
recognition elements
Nilsson J et al., Molecularly imprinted polymer formats for capillary electrochromatography.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 3-12, (2004)
   
recognition elements
Van Dorst B et al., Recent advances in recognition elements of food and environmental biosensors: A review.
Biosensors and Bioelectronics, 26, (4), 1178-1194, (2010)
   
recognition elements
Weber P et al., Nano-MIP based sensor for penicillin G: Sensitive layer and analytical validation.
Sensors and Actuators B: Chemical, 267, 26-33, (2018)
   
Recognition in aqueous media
Wang XJ et al., Molecular recognition in aqueous media with molecular imprinting technique.
Progress In Chemistry, 19, (5), 805-812, (2007)
   
Recognition in aqueous media
Ma XL et al., Preparation of molecularly imprinted CS membrane for recognizing naringin in aqueous media.
Polymer Bulletin, 66, (6), 853-863, (2011)
   
recognition in aqueous medium
Fan ZL et al., Aminoantipyrine imprinted column prepared by in-situ polymerization and investigation of binding character in aqueous medium.
Acta Chimica Sinica, 62, (12), 1176-1179, (2004)
   
Recognition in aqueous phase
Ma XL et al., Preparation and Recognition of Naringin Molecularly Imprinted Membranes in Aqueous Media.
Acta Polymerica Sinica, (4), 416-422, (2010)
   
recognition interaction
Liu Y et al., Recognition interactions of metal-complexing imprinted polymer.
Chinese Chemical Letters, 16, (6), 797-800, (2005)
   
Recognition in water
Silvestri D et al., Polymeric devices containing imprinted nanospheres: a novel approach to improve recognition in water for clinical uses.
Analytica Chimica Acta, 542, (1), 3-13, (2005)
   
Recognition in water
Silvestri D et al., Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium.
Journal of Membrane Science, 282, (1-2), 284-295, (2006)
   
Recognition in water
Wang XJ et al., Preparation and Aqueous Recognition of Metal Complex Imprinted Polymer Using N-vinyl-2-pyrrolidone as Functional Monomer.
Chinese Journal of Chemical Engineering, 15, (4), 595-599, (2007)
   
recognition in water medium
Zhang GQ et al., In-situ polymerization of aminopyrine imprinted column and investigation of binding character in aqueous medium.
Chinese Journal of Analytical Chemistry, 33, (10), 1393-1396, (2005)
   
recognition layers
Mujahid A et al., Surface Acoustic Wave (SAW) for Chemical Sensing Applications of Recognition Layers.
Sensors, 17, (12), ArticleNo2716-(2017)
   
Recognition material
Lian HX et al., Novel metal ion-mediated complex imprinted membrane for selective recognition and direct determination of naproxen in pharmaceuticals by solid surface fluorescence.
Talanta, 116, 460-467, (2013)
   
RECOGNITION MATERIALS
Dmitrienko SG et al., Use of molecular imprinted polymers for the separation and preconcentration of organic compounds.
Journal of Analytical Chemistry, 59, (9), 808-817, (2004)
   
recognition mechanism
Book chapter, Li Pet al., Resolution of amino acid derivative on molecularly imprinted polymer,
In: IEEE-EMBS Asia Pacific Conference on Biomedical Engineering - Proceedings, Pts 1 & 2, Zheng XX, He B, Zhang YT (Eds.)
World Publishing Corporation: Beijing, 419-420, (2000)    
recognition mechanism
Lu Y et al., Study on the mechanism of chiral recognition with molecularly imprinted polymers.
Analytica Chimica Acta, 489, (1), 33-43, (2003)
   
recognition mechanism
Baggiani C et al., Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template - Indirect evidence of the formation of template clusters in the binding site.
Analytica Chimica Acta, 504, (1), 43-52, (2004)
   
recognition mechanism
Sun RF et al., Construction and application of a stoichiometric displacement model for retention in chiral recognition of molecular imprinting.
Journal of Chromatography A, 1055, (1-2), 1-9, (2004)
   
recognition mechanism
Widstrand C et al., Evaluation of MISPE for the multi-residue extraction of b-agonists from calves urine.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 85-91, (2004)
   
recognition mechanism
Liu ZS et al., Mechanism of molecular recognition on molecular imprinted monolith by capillary electrochromatography.
Journal of Chromatography A, 1087, (1-2), 20-28, (2005)
   
recognition mechanism
Shen ZL et al., Study on the Binding Characteristic of Methamidophos-specific Molecularly Imprinted Polymer and the Interactions between Template and Monomers.
Journal of the Chinese Chemical Society, 55, (3), 587-593, (2008)
   
recognition mechanism
Zheng C et al., Mechanism of Molecular Recognition on Tetrapetide-imprinted Monolith by Capillary Electrochromatography.
Chinese Journal of Chemistry, 26, (10), 1857-1862, (2008)
   
recognition mechanism
Li M et al., Investigation of enantiomer recognition of molecularly imprinted polymeric monoliths in pressurized capillary electrochromatography screening the amino acids and their derivatives.
Journal of Chromatography A, 1216, (27), 5320-5326, (2009)
   
recognition mechanism
Peng C et al., Preparation of a fragment imprinted polymer for recognition of triazole pesticides and its application to solid-phase extraction.
Chemical Journal of Chinese Universities, 30, (11), 2159-2164, (2009)
   
recognition mechanism
Zhou X et al., Optimum Conditions of Separation Selectivity Based on Molecularly Imprinted Polymers of Bovine Serum Albumin Formed on Surface of Aminosilica.
Chinese Journal of Analytical Chemistry, 37, (2), 174-180, (2009)
   
recognition mechanism
Zhu XF et al., Preparation and Recognition Mechanism of Gallic Acid Imprinted Polymers.
Helvetica Chimica Acta, 92, (1), 78-87, (2009)
   
recognition mechanism
Scorrano S et al., Synthesis of Molecularly Imprinted Polymers for Amino Acid Derivates by Using Different Functional Monomers.
International Journal of Molecular Sciences, 12, (3), 1735-1743, (2011)
   
recognition mechanism
Alizadeh T, Application of electrochemical impedance spectroscopy and conventional rebinding experiments for the investigation of recognition characteristic of bulky and nano-sized imprinted polymers.
Materials Chemistry and Physics, 135, (2-3), 1012-1023, (2012)
   
recognition mechanism
Yi N et al., Research Progress of Sensor Based Molecularly imprinted polymers.
Development and Application of Materials, (1), 117-124, (2013)
   
recognition mechanism
Zhang L et al., Study on the preparation of two kinds of chlorpyrifos imprinted polymers and its recognition properties.
Journal of Food Safety and Quality, 4, (1), 61-70, (2013)
   
recognition mechanism
Liu PX et al., Selective recognition mechanism of molybdenum(VI) ions binding onto ion-imprinted particle in the water.
Chemical Engineering Journal, 349, 176-183, (2018)
   
recognition mechanism and characteristic
Fang YJ et al., Recognition mechanism and affinity assessment of maleic hydrazide molecularly imprinted polymers.
Journal of Preventive Medicine of Chinese Peoples Liberation Army, 24, (3), 171-174, (2006)
   
recognition mechanisms
Wang SQ et al., Preparation and Recognition Mechanism of Vanillin Molecularly Imprinted Polymer Microspheres.
Food Science, 33, (23), 1-7, (2012)
   
recognition of proteins
Book chapter, Sedzik Jet al., Gels Mimicking Antibodies in Their Selective Recognition of Proteins and Its Potential Use for Protein Crystallization,
In: Molecules: Nucleation, Aggregation And Crystallization, Sedzik J, Riccio P (Eds.)
World Scientific: 11-34, (2009)    
recognition performance
Huang M et al., Synthesis of Thiophene Molecularly Imprinted Polymer and Its Molecule Recognition Capability.
Journal of Instrumental Analysis, 31, (11), 1401-1405, (2012)
   
recognition performance
Fan YN et al., Recognition performance of dye surface imprinted polysiloxane prepared with different carriers.
Journal of Functional Materials, 44, (13), 1892-1895, (2013)
   
recognition performance
Proceeding, Shen HX et al, Preparation and Recognition Performance of Chloramphenicol Molecularly Imprinted Polymer,
In: Applied Mechanics and Materials, Sun MJ, Zhang YJ (Eds.),
192-196, (2013)
   
recognition performance
Proceeding, Zhou DB et al, Preparation and Recognition Performance of Molecularly Imprinted Polymers for Cadmium with Surface-Imprinting Technique,
In: Advanced Materials Research, Liu ZL, Dong XF, Liu ZT, Liu QH (Eds.),
461-465, (2013)
   
recognition performance
Proceeding, Tang SR et al, Preparation and Recognition Performance of Pb(II)-Imprinted Polymers with Surface-Imprinting Technique,
In: Advanced Materials Research, Zhao J, Wang AJ, Li XY, Wang XY (Eds.),
1245-1249, (2014)
   
recognition performance
Zhang LP et al., Preparation, characterization, and application of soluble liquid crystalline molecularly imprinted polymer in electrochemical sensor.
Analytical and Bioanalytical Chemistry, 412, (26), 7321-7332, (2020)
   
Recognition process
Yang L et al., Capacitive biosensor for glutathione detection based on electropolymerized molecularly imprinted polymer and kinetic investigation of the recognition process.
Electroanalysis, 17, (11), 969-977, (2005)
   
Recognition process
Xu W et al., Preparation and performance of sensing films of molecularly imprinted electrochemical sensor for L-tryptophan.
Chemical Journal of Chinese Universities, 33, (10), 2199-2204, (2012)
   
recognition properties
Norrlöw O et al., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates.
Journal of Chromatography, 299, (1), 29-41, (1984)
   
recognition properties
Nilsson K et al., Imprinted polymers as antibody mimetics and new affinity gels for selective separations in capillary electrophoresis.
Journal of Chromatography A, 680, (1), 57-61, (1994)
   
recognition properties
Sellergren B, Imprinted dispersion polymers - a new class of easily accessible affinity stationary phases.
Journal of Chromatography A, 673, (1), 133-141, (1994)
   
recognition properties
Kriz D et al., Competitive amperometric morphine sensor-based on an agarose immobilized molecularly imprinted polymer.
Analytica Chimica Acta, 300, (1-3), 71-75, (1995)
   
recognition properties
Kriz D et al., Preparation and characterization of composite polymers exhibiting both selective molecular recognition and electrical conductivity.
Biomimetics, 3, (2), 81-90, (1995)
   
recognition properties
Dauwe C et al., Influence of template basicity and hydrophobicity on the molecular recognition properties of molecularly imprinted polymers.
Journal of Chromatography A, 753, (2), 191-200, (1996)
   
recognition properties
Philp D et al., Self-assembly in natural and unnatural systems.
Angewandte Chemie International Edition, 35, (11), 1155-1196, (1996)
   
recognition properties
Vorderbruggen MA et al., Use of cationic aerosol photopolymerization to form silicone microbeads in the presence of molecular templates.
Chemistry of Materials, 8, (5), 1106-1111, (1996)
   
recognition properties
Kodakari N et al., Silica overlayers prepared using organic template molecules on tin oxide and its molecular sieving property.
Chemical Vapor Deposition, 3, (1), 59-66, (1997)
   
recognition properties
Kodakari N et al., Molecular sieving property of silica overlayer on tin oxide generated by organic template.
Applied Surface Science, 121-122, (1), 292-295, (1997)
   
recognition properties
Sellergren B et al., Solvent dependent specific driving forces in the molecular recognition in imprinted polymers.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 27-27, (1997)
   
recognition properties
Yu C et al., Insights into the origins of binding and the recognition properties of molecularly imprinted polymers prepared using an amide as the hydrogen-bonding functional group.
Journal of Molecular Recognition, 11, (1-6), 69-74, (1998)
   
recognition properties
Skudar K et al., Selective recognition and separation of b-lactam antibiotics using molecularly imprinted polymers.
Analytical Communications, 36, (9), 327-331, (1999)
   
recognition properties
Yilmaz E et al., Influence of functional and cross-linking monomers and the amount of template on the performance of molecularly imprinted polymers in binding assays.
Analytical Communications, 36, (5), 167-170, (1999)
   
recognition properties
Idziak I et al., A molecularly imprinted polymer for 17a-ethynylestradiol evaluated by immunoassay.
Analyst, 125, (8), 1415-1417, (2000)
   
recognition properties
Sellergren B et al., Application of imprinted synthetic polymers in binding assay development.
Methods-A Companion To Methods In Enzymology, 22, (1), 92-106, (2000)
   
recognition properties
Biffis A et al., The synthesis, characterization and molecular recognition properties of imprinted microgels.
Macromolecular Chemistry And Physics, 202, (1), 163-171, (2001)
   
recognition properties
Fu Q et al., Molecularly imprinted polymers from nicotinamide and its positional isomers.
Journal of Molecular Recognition, 14, (3), 151-156, (2001)
   
recognition properties
Kobayashi T et al., Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance.
Analytica Chimica Acta, 435, (1), 141-149, (2001)
   
recognition properties
Baggiani C et al., A molecular imprinted polymer with recognition properties towards the carcinogenic mycotoxin ochratoxin A.
Bioseparation, 10, (6), 389-394, (2002)
   
recognition properties
Jodlbauer J et al., Towards ochratoxin A selective molecularly imprinted polymers for solid-phase extraction.
Journal of Chromatography A, 945, (1-2), 45-63, (2002)
   
recognition properties
Lu Y et al., Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers.
Journal of Chromatography A, 950, (1-2), 89-97, (2002)
   
recognition properties
Trotta F et al., Molecular imprinted polymeric membrane for naringin recognition.
Journal of Membrane Science, 201, (1-2), 77-84, (2002)
   
recognition properties
Zhang TL et al., Molecular recognition properties of salicylic acid-imprinted polymers.
Chromatographia, 55, (7-8), 447-451, (2002)
   
recognition properties
Zheng N et al., Sulfonamide imprinted polymers using co-functional monomers.
Analytica Chimica Acta, 452, (2), 277-283, (2002)
   
recognition properties
Li P et al., Morphologies and binding characteristics of molecularly imprinted polymers prepared by precipitation polymerization.
Polymer International, 52, (12), 1799-1806, (2003)
   
recognition properties
Sanbe H et al., Uniformly sized molecularly imprinted polymers for bisphenol A and b-estradiol: retention and molecular recognition properties in hydro-organic mobile phases.
Journal of Pharmaceutical and Biomedical Analysis, 30, (6), 1835-1844, (2003)
   
recognition properties
Shimizu KD, Understanding the fundamental recognition behavior of molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 226, (POLY), 519-519, (2003)
   
recognition properties
Zhou YX et al., Potentiometric sensing of chiral amino acids.
Chemistry of Materials, 15, (14), 2774-2779, (2003)
   
recognition properties
Baggiani C et al., Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 31-41, (2004)
   
recognition properties
Baggiani C et al., Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template - Indirect evidence of the formation of template clusters in the binding site.
Analytica Chimica Acta, 504, (1), 43-52, (2004)
   
recognition properties
Cai LS et al., Molecularly imprinted polymer for theophylline retention and molecular recognition properties in capillary electrochromatography.
Wuhan University Journal of Natural Sciences, 9, (3), 359-365, (2004)
   
recognition properties
Ciardelli G et al., Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest.
Biosensors and Bioelectronics, 20, (6), 1083-1090, (2004)
   
recognition properties
Gong SL et al., Dye-molecular-imprinted polysiloxanes. II. Preparation, characterization, and recognition behavior.
Journal of Applied Polymer Science, 93, (2), 637-643, (2004)
   
recognition properties
Huang YC et al., Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography.
Electrophoresis, 25, (4-5), 554-561, (2004)
   
recognition properties
Lotierzo M et al., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer.
Biosensors and Bioelectronics, 20, (2), 145-152, (2004)
   
recognition properties
Navarro-Villoslada F et al., Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A.
Analytica Chimica Acta, 504, (1), 149-162, (2004)
   
recognition properties
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
recognition properties
Theodoridis G et al., Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 43-51, (2004)
   
recognition properties
Turiel E et al., Molecularly imprinted polymers: towards highly selective stationary phases in liquid chromatography and capillary electrophoresis.
Analytical and Bioanalytical Chemistry, 378, (8), 1876-1886, (2004)
   
recognition properties
Zheng N et al., Sulfamethoxazole-imprinted polymer for selective determination of sulfamethoxazole in tablets.
Journal of Chromatography A, 1033, (1), 179-182, (2004)
   
recognition properties
Algieri C et al., Development of novel hybrid imprinted membranes for selective recovery of theophylline.
Separation and Purification Technology, 192, 513-519, (2018)
   
recognition properties
Kim HS et al., Preparation and evaluation of functional allopurinol imprinted starch based biomaterials for transdermal drug delivery.
International Journal of Biological Macromolecules, 175, 217-228, (2021)
   
recognition property
Norrlöw O et al., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates.
Journal of Chromatography, 299, (1), 29-41, (1984)
   
recognition property
Philp D et al., Self-assembly in natural and unnatural systems.
Angewandte Chemie International Edition, 35, (11), 1155-1196, (1996)
   
recognition property
Kodakari N et al., Silica overlayers prepared using organic template molecules on tin oxide and its molecular sieving property.
Chemical Vapor Deposition, 3, (1), 59-66, (1997)
   
recognition property
Kodakari N et al., Molecular sieving property of silica overlayer on tin oxide generated by organic template.
Applied Surface Science, 121-122, (1), 292-295, (1997)
   
recognition property
Sanbe H et al., Uniformly sized molecularly imprinted polymers for bisphenol A and b-estradiol: retention and molecular recognition properties in hydro-organic mobile phases.
Journal of Pharmaceutical and Biomedical Analysis, 30, (6), 1835-1844, (2003)
   
recognition property
Shimizu KD, Understanding the fundamental recognition behavior of molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 226, (POLY), 519-519, (2003)
   
recognition property
Zhao MP et al., Preparation and the recognition property of molecular imprinted polymer of bisphenol A.
Chemical Journal of Chinese Universities, 24, (7), 1204-1206, (2003)
   
recognition property
Baggiani C et al., Multivariate analysis of the selectivity for a pentachlorophenol-imprinted polymer.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 31-41, (2004)
   
recognition property
Baggiani C et al., Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template - Indirect evidence of the formation of template clusters in the binding site.
Analytica Chimica Acta, 504, (1), 43-52, (2004)
   
recognition property
Cai LS et al., Molecularly imprinted polymer for theophylline retention and molecular recognition properties in capillary electrochromatography.
Wuhan University Journal of Natural Sciences, 9, (3), 359-365, (2004)
   
recognition property
Ciardelli G et al., Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest.
Biosensors and Bioelectronics, 20, (6), 1083-1090, (2004)
   
recognition property
Gong SL et al., Dye-molecular-imprinted polysiloxanes. II. Preparation, characterization, and recognition behavior.
Journal of Applied Polymer Science, 93, (2), 637-643, (2004)
   
recognition property
Huang YC et al., Preparation and evaluation of molecularly imprinted polymers based on 9-ethyladenine for the recognition of nucleotide bases in capillary electrochromatography.
Electrophoresis, 25, (4-5), 554-561, (2004)
   
recognition property
Lotierzo M et al., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer.
Biosensors and Bioelectronics, 20, (2), 145-152, (2004)
   
recognition property
Navarro-Villoslada F et al., Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A.
Analytica Chimica Acta, 504, (1), 149-162, (2004)
   
recognition property
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
recognition property
Theodoridis G et al., Synthesis and evaluation of molecularly imprinted polymers for enalapril and lisinopril, two synthetic peptide anti-hypertensive drugs.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 43-51, (2004)
   
recognition property
Wang N et al., Synthesis and the Recognition Properties of the Monosulfuron Imprinted Polymer.
Journal of Instrumental Analysis, 23, (4), 13-17, (2004)
   
recognition property
Zheng N et al., Sulfamethoxazole-imprinted polymer for selective determination of sulfamethoxazole in tablets.
Journal of Chromatography A, 1033, (1), 179-182, (2004)
   
recognition property
Pan WD, Preparation of Sudan Red I Molecular Imprinting Polymer and Its Recognition Property.
Journal of Lianyungang Technical College, 19, (4), 9-11, (2006)
   
recognition property
Ma SJ et al., Preparation and Characterization of Trans-Resveratrol Imprinted Polymers.
Analytical Letters, 40, (2), 321-333, (2007)
   
recognition property
Luo RX et al., Preparation of Molecularly Imprinted Polymer and its Recognition Property for O-Aminophenol.
Science Technology and Engineering, 12, (34), 9243-9246, (2012)
   
recognition property
Xiang HY et al., Synthesis and Study of Molecularly Imprinted Polymers for the Specific Extraction of Polydatin from Polygonum Cuspidatum Sieb.et Zucc.Extracts.
Journal of Instrumental Analysis, 32, (1), 45-50, (2013)
   
recognition property
Zhao N et al., Preparation of Erythromycin Imprinted Polymeric Microspheres by Emulsion Polymerization and Their Adsorption Properties.
Acta Physico-Chimica Sinica, 30, (1), 121-128, (2014)
   
Recognition selectivity
Gao BJ et al., Preparation of surface molecularly imprinted polymeric microspheres and their recognition property for basic protein lysozyme.
Journal of Chromatography B, 878, (21), 1731-1738, (2010)
   
Recognition selectivity
Meng MJ et al., Highly efficient adsorption of salicylic acid from aqueous solution by wollastonite-based imprinted adsorbent: A fixed-bed column study.
Chemical Engineering Journal, 225, 331-339, (2013)
   
Recognition,selectivity
Li M et al., Preparation of Surface Imprinted Polymer D301-g-IIPDMC and its Recognition Selectivity Performance towards AuCl4-.
Bulletin of the Korean Chemical Society, 39, (1), 58-64, (2018)
   
recognition site
Norrlöw O et al., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates.
Journal of Chromatography, 299, (1), 29-41, (1984)
   
recognition site
Kim JH et al., Electrochemical and Raman characterization of molecular recognition sites in self-assembled monolayers.
Journal of Physical Chemistry, 92, (20), 5575-5578, (1988)
   
recognition site
Kempe M et al., Chiral separation using molecularly imprinted heteroatomic polymers.
Journal of Molecular Recognition, 6, (1), 25-29, (1993)
   
recognition site
Ramström O et al., Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting.
Journal of Organic Chemistry, 58, (26), 7562-7564, (1993)
   
recognition site
Kempe M et al., Direct resolution of naproxen on a noncovalently molecularly imprinted chiral stationary-phase.
Journal of Chromatography A, 664, (2), 276-279, (1994)
   
recognition site
Sellergren B, Imprinted dispersion polymers - a new class of easily accessible affinity stationary phases.
Journal of Chromatography A, 673, (1), 133-141, (1994)
   
recognition site
Steinke J et al., Imprinting of synthetic polymers using molecular templates.
Advances in Polymer Science, 123, 81-125, (1995)
   
recognition site
Yoshikawa M et al., Molecularly imprinted polymeric membranes for optical resolution.
Journal of Membrane Science, 108, (1-2), 171-175, (1995)
   
recognition site
Hosoya K et al., Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography - Structural contribution of cross-linked polymer network on specific molecular recognition.
Journal of Chromatography A, 728, (1-2), 139-147, (1996)
   
recognition site
Nicholls IA et al., Some recent developments in the preparation of novel recognition systems: A recognition site for the selective catalysis of an aldol condensation using molecular imprinting and specific affinity motifs for a-chymotrypsin using a phage display peptide library.
Journal of Molecular Recognition, 9, (5-6), 652-657, (1996)
   
recognition site
Haupt K et al., Binding assays for drugs and herbicides using molecularly imprinted polymer particles as recognition elements in different assay formats.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 32-32, (1997)
   
recognition site
Sreenivasan K, Imparting cholesterol recognition sites in radiation polymerised poly(2-hydroxyethyl methacrylate) by molecular imprinting.
Polymer International, 42, (2), 169-172, (1997)
   
recognition site
Yoshida M et al., A novel bifunctional organophosphorus monomer for metal ion-imprinted polymers by surface template polymerization.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 25-25, (1997)
   
recognition site
Yoshikawa M, Molecularly imprinted polymeric membranes for optical resolution.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 154-154, (1997)
   
recognition site
Cheong SH et al., Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer.
Journal of Polymer Science Part A: Polymer Chemistry, 36, (11), 1725-1732, (1998)
   
recognition site
Haupt K et al., Plastic antibodies: developments and applications.
Trends In Biotechnology, 16, (11), 468-475, (1998)
   
recognition site
Knutsson M et al., Novel chiral recognition elements for molecularly imprinted polymer preparation.
Journal of Molecular Recognition, 11, (1-6), 87-90, (1998)
   
recognition site
Lin JM et al., Enantiomeric resolution of dansyl amino acids by capillary electrochromatography based on molecular imprinting method.
Chromatographia, 47, (11-12), 625-629, (1998)
   
recognition site
Ramström O et al., Molecular imprinting technology: Challenges and prospects for the future.
Chirality, 10, (3), 195-209, (1998)
   
recognition site
Yoshikawa M et al., Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward amino acids.
Analytica Chimica Acta, 365, (1-3), 59-67, (1998)
   
recognition site
Yoshikawa M et al., Carboxylated polysulfone membranes having a chiral recognition site induced by an alternative molecular imprinting technique.
Polymer Bulletin, 40, (4-5), 517-524, (1998)
   
recognition site
Yu C et al., Insights into the origins of binding and the recognition properties of molecularly imprinted polymers prepared using an amide as the hydrogen-bonding functional group.
Journal of Molecular Recognition, 11, (1-6), 69-74, (1998)
   
recognition site
Dzgoev A et al., Enantioselective molecularly imprinted polymer membranes.
Chirality, 11, (5-6), 465-469, (1999)
   
recognition site
Piletsky SA et al., Receptor and transport properties of imprinted polymer membranes - a review.
Journal of Membrane Science, 157, (2), 263-278, (1999)
   
recognition site
Ramström O et al., Synthesis and catalysis by molecularly imprinted materials.
Current Opinion in Chemical Biology, 3, (6), 759-764, (1999)
   
recognition site
Sreenivasan K et al., Imparting recognition sites in poly(HEMA) for two compounds through molecular imprinting.
Journal of Applied Polymer Science, 71, (11), 1823-1826, (1999)
   
recognition site
Yano K et al., Molecularly imprinted polymers for biosensor applications.
TrAC Trends in Analytical Chemistry, 18, (3), 199-204, (1999)
   
recognition site
Yoshida M et al., Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions.
Journal of Applied Polymer Science, 73, (7), 1223-1230, (1999)
   
recognition site
Yoshikawa M et al., Alternative molecular imprinting, a facile way to introduce chiral recognition sites.
Reactive and Functional Polymers, 42, (1), 93-102, (1999)
   
recognition site
Yoshikawa M et al., Molecularly imprinted polymeric membranes having EFF derivatives as a chiral recognition site.
Macromolecular Chemistry And Physics, 200, (6), 1458-1465, (1999)
   
recognition site
Yoshikawa M et al., Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate.
Journal of Applied Polymer Science, 72, (4), 493-499, (1999)
   
recognition site
Guo HS et al., Study of the binding characteristics and transportation properties of a 4-aminopyridine imprinted polymer membrane.
Fresenius Journal of Analytical Chemistry, 368, (8), 763-767, (2000)
   
recognition site
Book chapter, Li Pet al., Resolution of amino acid derivative on molecularly imprinted polymer,
In: IEEE-EMBS Asia Pacific Conference on Biomedical Engineering - Proceedings, Pts 1 & 2, Zheng XX, He B, Zhang YT (Eds.)
World Publishing Corporation: Beijing, 419-420, (2000)    
recognition site
Subrahmanyam S et al., Bite-and-switch approach to creatine recognition by use of molecularly imprinted polymers.
Advanced Materials, 12, (10), 722-724, (2000)
   
recognition site
Yoshida M et al., Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (4), 689-696, (2000)
   
recognition site
Hayden O et al., Selective microorganism detection with cell surface imprinted polymers.
Advanced Materials, 13, (19), 1480-1483, (2001)
   
recognition site
Hirayama K et al., Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique.
Journal of Applied Polymer Science, 81, (14), 3378-3387, (2001)
   
recognition site
Jenkins AL et al., Molecularly imprinted polymers for the detection of chemical agents in water.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 42-42, (2001)
   
recognition site
Lahav M et al., Imprinting of chiral molecular recognition sites in thin TiO2 films associated with field-effect transistors: Novel functionalized devices for chiroselective and chirospecific analyses.
Chemistry - A European Journal, 7, (18), 3992-3997, (2001)
   
recognition site
Leung MKP et al., A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid.
Journal of Materials Chemistry, 11, (12), 2985-2991, (2001)
   
recognition site
Maier G et al., Molecular imprinting and molecular recognition in hyperbranched polymers.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 168-168, (2001)
   
recognition site
Martín-Esteban A, Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds.
Fresenius Journal of Analytical Chemistry, 370, (7), 795-802, (2001)
   
recognition site
Sreenivasan K, Molecularly imprinted polyacrylic acid containing multiple recognition sites for steroids.
Journal of Applied Polymer Science, 82, (4), 889-893, (2001)
   
recognition site
Yoshikawa M et al., Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes.
Macromolecular Materials And Engineering, 286, (1), 52-59, (2001)
   
recognition site
Yoshikawa M et al., Novel membrane materials having EEE derivatives as a chiral recognition site.
European Polymer Journal, 37, (2), 335-342, (2001)
   
recognition site
Yoshikawa M et al., Novel polymeric membranes having chiral recognition sites converted from tripeptide derivatives.
Analyst, 126, (6), 775-780, (2001)
   
recognition site
Zhou XZ et al., Synthesis of molecularly imprinted polymer membranes and their application to the selective transport of targeted molecules.
Abstracts of Papers of the American Chemical Society, 221, (ORGN), 377-377, (2001)
   
recognition site
Ansell RJ, MIP-ligand binding assays (pseudo-immunoassays).
Bioseparation, 10, (6), 365-377, (2002)
   
recognition site
Chow CF et al., Fluorescent sensing of homocysteine by molecular imprinting.
Analytica Chimica Acta, 466, (1), 17-30, (2002)
   
recognition site
Han M et al., Generation of molecular recognition sites using emulsion polymerization on porous membranes.
Abstracts of Papers of the American Chemical Society, 224, (COLL), U445-U446, (2002)
   
recognition site
Hirayama K et al., Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique.
Sensors and Actuators B: Chemical, 86, (1), 20-25, (2002)
   
recognition site
Hwang CC et al., Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods.
Journal of Chromatography A, 962, (1-2), 69-78, (2002)
   
recognition site
Proceeding, Kikuchi T et al, Syntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting techniqueSyntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting technique,
In: Polymer Preprints, Japan,
1665, (2002)
   
recognition site
Proceeding, Minoura N et al, Syntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting technique,
In: Polymer Preprints, Japan,
1706, (2002)
   
recognition site
Park JK et al., Characteristics of phenylalanine imprinted membrane prepared by the wet phase inversion method.
Korean Journal of Chemical Engineering, 19, (6), 940-948, (2002)
   
recognition site
Pogorelova SP et al., Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements.
Analyst, 127, (11), 1484-1491, (2002)
   
recognition site
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting method using helical polymethacrylate as template,
In: Polymer Preprints, Japan,
1508, (2002)
   
recognition site
Seong H et al., Glucose binding to molecularly imprinted polymers.
Journal of Biomaterials Science-Polymer Edition, 13, (6), 637-649, (2002)
   
recognition site
Wandelt B et al., Fluorescent molecularly imprinted polymer studied by time-resolved fluorescence spectroscopy.
Polymer, 43, (9), 2777-2785, (2002)
   
recognition site
Yan MD, Molecularly imprinted polymers as antibody mimics: Applications in immunoassays and recent developments.
Journal of Clinical Ligand Assay, 25, (2), 234-236, (2002)
   
recognition site
Proceeding, Yoshikawa M et al, Chiral recognition ability of molecularly imprinted membranes with oligopeptide derivative tweezers,
In: Polymer Preprints, Japan,
331, (2002)
   
recognition site
Yoshikawa M et al., Relationship between enantioselectivity of alternative molecularly imprinted polymeric membranes and species of amino acid residues composing chiral recognition sites.
Bioseparation, 10, (6), 323-330, (2002)
   
recognition site
Proceeding, Yoshikawa M et al, Chiral recognition ability of oligopeptide derivatives consisiting of glutamyl residues,
In: Polymer Preprints, Japan,
625, (2002)
   
recognition site
Zayats M et al., Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors.
Tetrahedron, 58, (4), 815-824, (2002)
   
recognition site
Zheng N et al., Sulfonamide imprinted polymers using co-functional monomers.
Analytica Chimica Acta, 452, (2), 277-283, (2002)
   
recognition site
Kondo Y et al., Effect of constituting amino acid residue numbers on molecularly imprinted chiral recognition sites.
Chirality, 15, (6), 498-503, (2003)
   
recognition site
Lin CI et al., Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine.
Analytica Chimica Acta, 481, (2), 175-180, (2003)
   
recognition site
Pogorelova SP et al., Analysis of NAD(P)+/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals.
Analytical Chemistry, 75, (3), 509-517, (2003)
   
recognition site
Robertson GP et al., Modified polysulfones. VI. Preparation of polymer membrane materials containing benzimine and benzylamine groups as precursors for molecularly imprinted sensor devices.
Journal of Polymer Science Part A: Polymer Chemistry, 41, (9), 1316-1329, (2003)
   
recognition site
Shepherd RE, Chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands.
Coordination Chemistry Reviews, 247, (1-2), 147-184, (2003)
   
recognition site
Striegler S, Selective carbohydrate recognition by synthetic receptors in aqueous solution.
Current Organic Chemistry, 7, (1), 81-102, (2003)
   
recognition site
Taniwaki K et al., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy.
Analytica Chimica Acta, 489, (2), 191-198, (2003)
   
recognition site
Yoshikawa M et al., Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules.
Macromolecular Bioscience, 3, (9), 487-498, (2003)
   
recognition site
Dickert FL et al., Bioimprinted QCM sensors for virus detection - screening of plant sap.
Analytical and Bioanalytical Chemistry, 378, (8), 1929-1934, (2004)
   
recognition site
Huan SY et al., Selective electrochemical molecular recognition of benzenediol isomers using molecularly imprinted TiO2 film electrodes.
Analytica Chimica Acta, 506, (1), 31-39, (2004)
   
recognition site
Kindschy LM et al., A review of molecularly imprinted polymers for biosensor development for food and agricultural applications.
Transactions of the ASAE, 47, (4), 1375-1382, (2004)
   
recognition site
Kubo T et al., Interval immobilization technique for recognition toward a highly hydrophilic cyanobacterium toxin.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 806, (2), 229-235, (2004)
   
recognition site
Kubo T et al., Recognition of hepatotoxic homologues of Microcystin using a combination of selective adsorption media.
Journal of Separation Science, 27, (4), 316-324, (2004)
   
recognition site
Park JK et al., Separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly(acrylic acid)-poly(acryl amide) terpolymer membrane.
Korean Journal of Chemical Engineering, 21, (5), 994-998, (2004)
   
recognition site
Pogorelova SP et al., Development of ion-sensitive field-effect transistor-based sensors for benzylphosphonic acids and thiophenols using molecularly imprinted TiO2 films.
Analytica Chimica Acta, 504, (1), 113-122, (2004)
   
recognition site
Raitman OA et al., Analysis of NAD(P)+ and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: A surface plasmon resonance study.
Analytica Chimica Acta, 504, (1), 101-111, (2004)
   
recognition site
Shim YH et al., Chiral recognition and separation of b2-amino acids using noncovalently molecularly imprinted polymers.
Analyst, 129, (12), 1211-1215, (2004)
   
recognition site
Watabe Y et al., Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device.
Journal of Chromatography A, 1032, (1-2), 45-49, (2004)
   
recognition site
Book chapter, Cyago Aet al., Surface Plasmon Resonance Spectroscopy and Molecularly Imprinted Polymer (MIP) Sensors,
In: Handbook of Spectroscopy, Gauglitz G, Advincula R (Eds.)
Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 1229-1258, (2014)    
recognition site
Li XX et al., Preparation of deep eutectic solvent-based hexagonal boron nitride-molecularly imprinted polymer nanoparticles for solid phase extraction of flavonoids.
Microchimica Acta, 186, (12), Article753-(2019)
   
recognition sites
Norrlöw O et al., Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates.
Journal of Chromatography, 299, (1), 29-41, (1984)
   
recognition sites
Kim JH et al., Electrochemical and Raman characterization of molecular recognition sites in self-assembled monolayers.
Journal of Physical Chemistry, 92, (20), 5575-5578, (1988)
   
recognition sites
Kempe M et al., Chiral separation using molecularly imprinted heteroatomic polymers.
Journal of Molecular Recognition, 6, (1), 25-29, (1993)
   
recognition sites
Ramström O et al., Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting.
Journal of Organic Chemistry, 58, (26), 7562-7564, (1993)
   
recognition sites
Kempe M et al., Direct resolution of naproxen on a noncovalently molecularly imprinted chiral stationary-phase.
Journal of Chromatography A, 664, (2), 276-279, (1994)
   
recognition sites
Sellergren B, Imprinted dispersion polymers - a new class of easily accessible affinity stationary phases.
Journal of Chromatography A, 673, (1), 133-141, (1994)
   
recognition sites
Steinke J et al., Imprinting of synthetic polymers using molecular templates.
Advances in Polymer Science, 123, 81-125, (1995)
   
recognition sites
Hosoya K et al., Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography - Structural contribution of cross-linked polymer network on specific molecular recognition.
Journal of Chromatography A, 728, (1-2), 139-147, (1996)
   
recognition sites
Haupt K et al., Binding assays for drugs and herbicides using molecularly imprinted polymer particles as recognition elements in different assay formats.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 32-32, (1997)
   
recognition sites
Sreenivasan K, Imparting cholesterol recognition sites in radiation polymerised poly(2-hydroxyethyl methacrylate) by molecular imprinting.
Polymer International, 42, (2), 169-172, (1997)
   
recognition sites
Yoshida M et al., A novel bifunctional organophosphorus monomer for metal ion-imprinted polymers by surface template polymerization.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 25-25, (1997)
   
recognition sites
Yoshikawa M, Molecularly imprinted polymeric membranes for optical resolution.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 154-154, (1997)
   
recognition sites
Cheong SH et al., Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer.
Journal of Polymer Science Part A: Polymer Chemistry, 36, (11), 1725-1732, (1998)
   
recognition sites
Haupt K et al., Plastic antibodies: developments and applications.
Trends In Biotechnology, 16, (11), 468-475, (1998)
   
recognition sites
Knutsson M et al., Novel chiral recognition elements for molecularly imprinted polymer preparation.
Journal of Molecular Recognition, 11, (1-6), 87-90, (1998)
   
recognition sites
Lin JM et al., Enantiomeric resolution of dansyl amino acids by capillary electrochromatography based on molecular imprinting method.
Chromatographia, 47, (11-12), 625-629, (1998)
   
recognition sites
Ramström O et al., Molecular imprinting technology: Challenges and prospects for the future.
Chirality, 10, (3), 195-209, (1998)
   
recognition sites
Yu C et al., Insights into the origins of binding and the recognition properties of molecularly imprinted polymers prepared using an amide as the hydrogen-bonding functional group.
Journal of Molecular Recognition, 11, (1-6), 69-74, (1998)
   
recognition sites
Dzgoev A et al., Enantioselective molecularly imprinted polymer membranes.
Chirality, 11, (5-6), 465-469, (1999)
   
recognition sites
Piletsky SA et al., Receptor and transport properties of imprinted polymer membranes - a review.
Journal of Membrane Science, 157, (2), 263-278, (1999)
   
recognition sites
Ramström O et al., Synthesis and catalysis by molecularly imprinted materials.
Current Opinion in Chemical Biology, 3, (6), 759-764, (1999)
   
recognition sites
Sreenivasan K et al., Imparting recognition sites in poly(HEMA) for two compounds through molecular imprinting.
Journal of Applied Polymer Science, 71, (11), 1823-1826, (1999)
   
recognition sites
Yano K et al., Molecularly imprinted polymers for biosensor applications.
TrAC Trends in Analytical Chemistry, 18, (3), 199-204, (1999)
   
recognition sites
Yoshida M et al., Metal ion imprinted microsphere prepared by surface molecular imprinting technique using water-in-oil-in-water emulsions.
Journal of Applied Polymer Science, 73, (7), 1223-1230, (1999)
   
recognition sites
Yoshikawa M et al., Alternative molecular imprinting, a facile way to introduce chiral recognition sites.
Reactive and Functional Polymers, 42, (1), 93-102, (1999)
   
recognition sites
Guo HS et al., Study of the binding characteristics and transportation properties of a 4-aminopyridine imprinted polymer membrane.
Fresenius Journal of Analytical Chemistry, 368, (8), 763-767, (2000)
   
recognition sites
Book chapter, Li Pet al., Resolution of amino acid derivative on molecularly imprinted polymer,
In: IEEE-EMBS Asia Pacific Conference on Biomedical Engineering - Proceedings, Pts 1 & 2, Zheng XX, He B, Zhang YT (Eds.)
World Publishing Corporation: Beijing, 419-420, (2000)    
recognition sites
Subrahmanyam S et al., Bite-and-switch approach to creatine recognition by use of molecularly imprinted polymers.
Advanced Materials, 12, (10), 722-724, (2000)
   
recognition sites
Yoshida M et al., Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (4), 689-696, (2000)
   
recognition sites
Hayden O et al., Selective microorganism detection with cell surface imprinted polymers.
Advanced Materials, 13, (19), 1480-1483, (2001)
   
recognition sites
Hirayama K et al., Synthesis of polymer particles with specific lysozyme recognition sites by a molecular imprinting technique.
Journal of Applied Polymer Science, 81, (14), 3378-3387, (2001)
   
recognition sites
Jenkins AL et al., Molecularly imprinted polymers for the detection of chemical agents in water.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 42-42, (2001)
   
recognition sites
Lahav M et al., Imprinting of chiral molecular recognition sites in thin TiO2 films associated with field-effect transistors: Novel functionalized devices for chiroselective and chirospecific analyses.
Chemistry - A European Journal, 7, (18), 3992-3997, (2001)
   
recognition sites
Leung MKP et al., A sol-gel derived molecular imprinted luminescent PET sensing material for 2,4-dichlorophenoxyacetic acid.
Journal of Materials Chemistry, 11, (12), 2985-2991, (2001)
   
recognition sites
Maier G et al., Molecular imprinting and molecular recognition in hyperbranched polymers.
Abstracts of Papers of the American Chemical Society, 221, (MSE), 168-168, (2001)
   
recognition sites
Martín-Esteban A, Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds.
Fresenius Journal of Analytical Chemistry, 370, (7), 795-802, (2001)
   
recognition sites
Sreenivasan K, Molecularly imprinted polyacrylic acid containing multiple recognition sites for steroids.
Journal of Applied Polymer Science, 82, (4), 889-893, (2001)
   
recognition sites
Ye L et al., The technique of molecular imprinting - Principle, state of the art, and future aspects.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 41, (1-4), 107-113, (2001)
   
recognition sites
Yoshikawa M et al., Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes.
Macromolecular Materials And Engineering, 286, (1), 52-59, (2001)
   
recognition sites
Yoshikawa M et al., Novel polymeric membranes having chiral recognition sites converted from tripeptide derivatives.
Analyst, 126, (6), 775-780, (2001)
   
recognition sites
Zheng N et al., Chromatographic characterization of sulfonamide imprinted polymers.
Microchemical Journal, 69, (2), 153-158, (2001)
   
recognition sites
Zhou XZ et al., Synthesis of molecularly imprinted polymer membranes and their application to the selective transport of targeted molecules.
Abstracts of Papers of the American Chemical Society, 221, (ORGN), 377-377, (2001)
   
recognition sites
Ansell RJ, MIP-ligand binding assays (pseudo-immunoassays).
Bioseparation, 10, (6), 365-377, (2002)
   
recognition sites
Chow CF et al., Fluorescent sensing of homocysteine by molecular imprinting.
Analytica Chimica Acta, 466, (1), 17-30, (2002)
   
recognition sites
Davidson L et al., Molecular imprinting of biologically active steroidal systems.
Current Organic Chemistry, 6, (3), 265-281, (2002)
   
recognition sites
Han M et al., Generation of molecular recognition sites using emulsion polymerization on porous membranes.
Abstracts of Papers of the American Chemical Society, 224, (COLL), U445-U446, (2002)
   
recognition sites
Book chapter, Hart BRet al., Molecularly Imprinted Polymers,
In: Encyclopedia of Polymer Science and Technology,
John Wiley & Sons, Inc.: (2002)    
recognition sites
Hirayama K et al., Preparation of a sensor device with specific recognition sites for acetaldehyde by molecular imprinting technique.
Sensors and Actuators B: Chemical, 86, (1), 20-25, (2002)
   
recognition sites
Hwang CC et al., Chromatographic characteristics of cholesterol-imprinted polymers prepared by covalent and non-covalent imprinting methods.
Journal of Chromatography A, 962, (1-2), 69-78, (2002)
   
recognition sites
Proceeding, Kikuchi T et al, Syntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting techniqueSyntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting technique,
In: Polymer Preprints, Japan,
1665, (2002)
   
recognition sites
Proceeding, Minoura N et al, Syntheses and properties of temperature-responsive polymer gels with protein recognition sites by using the molecular imprinting technique,
In: Polymer Preprints, Japan,
1706, (2002)
   
recognition sites
Pogorelova SP et al., Selective sensing of triazine herbicides in imprinted membranes using ion-sensitive field-effect transistors and microgravimetric quartz crystal microbalance measurements.
Analyst, 127, (11), 1484-1491, (2002)
   
recognition sites
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting method using helical polymethacrylate as template,
In: Polymer Preprints, Japan,
1508, (2002)
   
recognition sites
Schweitz L et al., Molecularly imprinted CEC sorbents: investigations into polymer preparation and electrolyte composition.
Analyst, 127, (1), 22-28, (2002)
   
recognition sites
Seong H et al., Glucose binding to molecularly imprinted polymers.
Journal of Biomaterials Science-Polymer Edition, 13, (6), 637-649, (2002)
   
recognition sites
Tong AJ et al., Molecular imprinting-based fluorescent chemosensor for histamine using zinc (II)-protoporphyrin as a functional monomer.
Analytica Chimica Acta, 466, (1), 31-37, (2002)
   
recognition sites
Wandelt B et al., Fluorescent molecularly imprinted polymer studied by time-resolved fluorescence spectroscopy.
Polymer, 43, (9), 2777-2785, (2002)
   
recognition sites
Yan MD, Molecularly imprinted polymers as antibody mimics: Applications in immunoassays and recent developments.
Journal of Clinical Ligand Assay, 25, (2), 234-236, (2002)
   
recognition sites
Yoshikawa M et al., Relationship between enantioselectivity of alternative molecularly imprinted polymeric membranes and species of amino acid residues composing chiral recognition sites.
Bioseparation, 10, (6), 323-330, (2002)
   
recognition sites
Proceeding, Yoshikawa M et al, Chiral recognition ability of oligopeptide derivatives consisiting of glutamyl residues,
In: Polymer Preprints, Japan,
625, (2002)
   
recognition sites
Zayats M et al., Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors.
Tetrahedron, 58, (4), 815-824, (2002)
   
recognition sites
Zheng N et al., Sulfonamide imprinted polymers using co-functional monomers.
Analytica Chimica Acta, 452, (2), 277-283, (2002)
   
recognition sites
Fireman-Shoresh S et al., General method for chiral imprinting of sol-gel thin films exhibiting enantioselectivity.
Chemistry of Materials, 15, (19), 3607-3613, (2003)
   
recognition sites
Kondo Y et al., Effect of constituting amino acid residue numbers on molecularly imprinted chiral recognition sites.
Chirality, 15, (6), 498-503, (2003)
   
recognition sites
Kubo H et al., Multiple hydrogen bonding-based fluorescent imprinted polymers for cyclobarbital prepared with 2,6-bis(acrylamido)pyridine.
Chemical Communications, (22), 2792-2793, (2003)
   
recognition sites
Lin CI et al., Synthesis of molecular imprinted organic-inorganic hybrid polymer binding caffeine.
Analytica Chimica Acta, 481, (2), 175-180, (2003)
   
recognition sites
Pogorelova SP et al., Analysis of NAD(P)+/NAD(P)H cofactors by imprinted polymer membranes associated with ion-sensitive field-effect transistor devices and Au-quartz crystals.
Analytical Chemistry, 75, (3), 509-517, (2003)
   
recognition sites
Robertson GP et al., Modified polysulfones. VI. Preparation of polymer membrane materials containing benzimine and benzylamine groups as precursors for molecularly imprinted sensor devices.
Journal of Polymer Science Part A: Polymer Chemistry, 41, (9), 1316-1329, (2003)
   
recognition sites
Shepherd RE, Chromatographic and related electrophoretic methods in the separation of transition metal complexes or their ligands.
Coordination Chemistry Reviews, 247, (1-2), 147-184, (2003)
   
recognition sites
Striegler S, Selective carbohydrate recognition by synthetic receptors in aqueous solution.
Current Organic Chemistry, 7, (1), 81-102, (2003)
   
recognition sites
Taniwaki K et al., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy.
Analytica Chimica Acta, 489, (2), 191-198, (2003)
   
recognition sites
Yoshikawa M et al., Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules.
Macromolecular Bioscience, 3, (9), 487-498, (2003)
   
recognition sites
Dickert FL et al., Bioimprinted QCM sensors for virus detection - screening of plant sap.
Analytical and Bioanalytical Chemistry, 378, (8), 1929-1934, (2004)
   
recognition sites
Gore MA et al., Enhanced capacities and selectivities for cholesterol in aqueous media by molecular imprinting: role of novel cross-linkers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 211-221, (2004)
   
recognition sites
Huan SY et al., Selective electrochemical molecular recognition of benzenediol isomers using molecularly imprinted TiO2 film electrodes.
Analytica Chimica Acta, 506, (1), 31-39, (2004)
   
recognition sites
Kindschy LM et al., A review of molecularly imprinted polymers for biosensor development for food and agricultural applications.
Transactions of the ASAE, 47, (4), 1375-1382, (2004)
   
recognition sites
Kubo T et al., Recognition of hepatotoxic homologues of Microcystin using a combination of selective adsorption media.
Journal of Separation Science, 27, (4), 316-324, (2004)
   
recognition sites
Lanza F et al., Molecularly imprinted polymers via high-throughput and combinatorial techniques.
Macromolecular Rapid Communications, 25, (1), 59-68, (2004)
   
recognition sites
Park JK et al., Separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly(acrylic acid)-poly(acryl amide) terpolymer membrane.
Korean Journal of Chemical Engineering, 21, (5), 994-998, (2004)
   
recognition sites
Pogorelova SP et al., Development of ion-sensitive field-effect transistor-based sensors for benzylphosphonic acids and thiophenols using molecularly imprinted TiO2 films.
Analytica Chimica Acta, 504, (1), 113-122, (2004)
   
recognition sites
Raitman OA et al., Analysis of NAD(P)+ and NAD(P)H cofactors by means of imprinted polymers associated with Au surfaces: A surface plasmon resonance study.
Analytica Chimica Acta, 504, (1), 101-111, (2004)
   
recognition sites
Shim YH et al., Chiral recognition and separation of b2-amino acids using noncovalently molecularly imprinted polymers.
Analyst, 129, (12), 1211-1215, (2004)
   
recognition sites
Watabe Y et al., Determination of bisphenol A in environmental water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device.
Journal of Chromatography A, 1032, (1-2), 45-49, (2004)
   
recognition sites
Zimmerman SC et al., Synthetic hosts via molecular imprinting - are universal synthetic antibodies realistically possible?
Chemical Communications, (1), 5-14, (2004)
   
recognition sites
Ul-Haq N et al., Enantioseparation with D-Phe- and L-Phe-imprinted PAN-based membranes by ultrafiltration.
Journal of Chemical Technology & Biotechnology, 83, (4), 524-533, (2008)
   
recognition sites
Liu HJ et al., Preparation of molecular imprinted polymer with quaternary ammonium groups as recognition sites for separation of pig cyclophilin 18 and bovine serum albumin.
Journal of Separation Science, 33, (12), 1856-1862, (2010)
   
recognition sites
Yang KG et al., Protein-imprinted materials: rational design, application and challenges.
Analytical and Bioanalytical Chemistry, 403, (8), 2173-2183, (2012)
   
Recognition specificity
Li XJ et al., Improvement of recognition specificity of surface protein-imprinted magnetic microspheres by reducing nonspecific adsorption of competitors using 2-methacryloyloxyethyl phosphorylcholine.
Sensors and Actuators B: Chemical, 208, 559-568, (2015)
   
Recognition specificity
Li XJ et al., Preparation of anti-nonspecific adsorption polydopamine-based surface protein-imprinted magnetic microspheres with the assistance of 2-methacryloyloxyethyl phosphorylcholine and its application for protein recognition.
Sensors and Actuators B: Chemical, 241, 413-421, (2017)
   
recognitive polymer
Noss KR et al., Tailored binding and transport parameters of molecularly imprinted films via macromolecular structure: The rational design of recognitive polymers.
Journal of Applied Polymer Science, 107, (6), 3435-3441, (2008)
   
recognitive polymer
Suedee R, The Use of Molecularly Imprinted Polymers for Dermal Drug Delivery.
Pharmaceutica Analytica Acta, 4, (8), Art No. 264-(2013)
   
Recognitive polymers
Bayer CL et al., Advances in recognitive, conductive and responsive delivery systems.
Journal of Controlled Release, 132, (3), 216-221, (2008)
   
Recognization
An FQ et al., Design of novel "imprinting synchronized with crosslinking" surface imprinted technique and its application for selectively removing phenols from aqueous solution.
European Polymer Journal, 112, 273-282, (2019)
   
recognized adsorption
Liu L et al., Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides.
ACS Applied Materials & Interfaces, 11, (26), 23039-23049, (2019)
   
Recognizing ability
Yuan ZG et al., Preparation and phenol-recognizing ability of a poly(methacrylic acid) molecular imprint on the surface of a silica gel.
Microchimica Acta, 172, (1), 89-94, (2011)
   
Recombinant antibody
Peltomaa R et al., Bioinspired recognition elements for mycotoxin sensors.
Analytical and Bioanalytical Chemistry, 410, (3), 747-771, (2018)
   
Recombinant apoferritin
Wang D et al., Simultaneous electrochemical immunoassay using graphene-Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes.
Biosensors and Bioelectronics, 65, 78-82, (2015)
   
RECOMBINANT BIOLUMINESCENT BACTERIUM
Monk DJ et al., Optical fiber-based biosensors.
Analytical and Bioanalytical Chemistry, 379, (7-8), 931-945, (2004)
   
RECOMBINANT ESCHERICHIA-COLI
Marazuela MD et al., Fiber-optic biosensors - an overview.
Analytical and Bioanalytical Chemistry, 372, (5-6), 664-682, (2002)
   
Recombinant hemoglobin
Book chapter, Zhang Ket al., Characterization of Protein-Protein Interactions in Recombinant Hemoglobin Producing Escherichia coli Cells Using Molecularly Imprinted Polymers,
In: Oxygen Transport to Tissue XXXIX, Halpern HJ, LaManna JC, Harrison DK, Epel B (Eds.)
Springer International Publishing: Cham, 367-373, (2017)    
Recombinant human erythropoietin
El-Aal MAA et al., Preparation and characterization of 96-well microplates coated with molecularly imprinted polymer for determination and biosimilarity assessment of recombinant human erythropoietin.
Journal of Chromatography A, 1641, Article462012-(2021)
   
Recombinant human erythropoietin
Nadim AH et al., Facile imprinted polymer for label-free highly selective potentiometric sensing of proteins: case of recombinant human erythropoietin.
Analytical and Bioanalytical Chemistry, 413, (14), 3611-3623, (2021)
   
Recombinant human erythropoietin
Nadim AH et al., Optimization of polydopamine imprinted polymer for label free sensitive potentiometric determination of proteins: Application to recombinant human erythropoietin sensing in different matrices.
Microchemical Journal, 167, Article106333-(2021)
   
Recombinant protein G
Asliyuce S et al., Synthesis and use of protein G imprinted cryogel as affinity matrix to purify protein G from cell lyaste.
Journal of Chromatography B, 1021, 204-212, (2016)
   
RECOMBINANT PROTEINS
Lemay P, The use of high pressure for separation and production of bioactive molecules.
Biochimica et Biophysica Acta - Protein Structure and Molecular Enzymology, 1595, (1-2), 357-366, (2002)
   
recombinant receptor
He YP et al., Application of Artificial Antibody in Enzyme-Linked Assay for Food Safety Detection.
Food Science, 38, (23), 313-317, (2017)
   
Recombination
Li H et al., Preparation and evaluation of berberine-Cl imprinted polymers by using silica-gel as sacrificed materials.
Journal of Functional Materials, 43, (6), 684-687, (2012)
   
RECOMMENDATIONS
Smarsly B et al., Preparation of porous silica materials via sol-gel nanocasting of nonionic surfactants: A mechanistic study on the self-aggregation of amphiphiles for the precise prediction of the mesopore size.
Journal of Physical Chemistry B, 105, (43), 10473-10483, (2001)
   
Reconfiguration
Imahashi M et al., Concentrating materials covered by molecular imprinted nanofiltration layer with reconfigurability prepared by a surface sol-gel process for gas-selective detection.
Journal of Colloid and Interface Science, 406, 186-195, (2013)
   
RECONSTRUCTION
Horvath JD et al., Naturally chiral surfaces.
Topics In Catalysis, 25, (1-4), 9-15, (2003)
   
Reconstruction of binding cavity
Book chapter, Takeuchi Tet al., Post-imprinting and In-Cavity Functionalization,
In: Molecularly Imprinted Polymers in Biotechnology, Mattiasson B, Ye L (Eds.)
Springer: Berlin,Heidelberg, 95-106, (2015)    
RECOVERABLE CATALYSTS
Becker JJ et al., Imprinting chiral information into rigidified dendrimers.
Organometallics, 22, (24), 4984-4998, (2003)
   
recovery
Glad M et al., Use of silane monomers for molecular imprinting and enzyme entrapment in polysiloxane-coated porous silica.
Journal of Chromatography, 347, (1), 11-23, (1985)
   
recovery
Lindsey JS, Self-assembly in synthetic routes to molecular devices - biological principles and chemical perspectives - a review.
New Journal of Chemistry, 15, (2-3), 153-180, (1991)
   
recovery
Matsui J et al., Solid-phase extraction of a triazine herbicide using a molecularly imprinted synthetic receptor.
Analytical Communications, 34, (3), 85-87, (1997)
   
recovery
Masqué N et al., New polymeric and other types of sorbents for solid-phase extraction of polar organic micropollutants from environmental water.
TrAC Trends in Analytical Chemistry, 17, (6), 384-394, (1998)
   
recovery
Zander A et al., Analysis of nicotine and its oxidation products in nicotine chewing gum by a molecularly imprinted solid phase extraction.
Analytical Chemistry, 70, (15), 3304-3314, (1998)
   
recovery
Liang CD et al., Study of a molecular imprinting polymer coated BAW bio-mimic sensor and its application to the determination of caffeine in human serum and urine.
Analyst, 124, 1781-1785, (1999)
   
recovery
Olsen J et al., Methodology for assessing the properties of molecular imprinted polymers for solid phase extraction.
Analyst, 124, (4), 467-471, (1999)
   
recovery
Liang CD et al., Molecular imprinting polymer coated BAW bio-mimic sensor for direct determination of epinephrine.
Analytica Chimica Acta, 415, (1-2), 135-141, (2000)
   
recovery
Liang CD et al., Bulk acoustic wave sensor for herbicide assay based on molecularly imprinted polymer.
Fresenius Journal of Analytical Chemistry, 367, (6), 551-555, (2000)
   
recovery
Matsui J et al., Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent.
Journal of Chromatography A, 889, (1-2), 25-31, (2000)
   
recovery
Yoshida M et al., Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (4), 689-696, (2000)
   
recovery
Brambilla G et al., Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 759, (1), 27-32, (2001)
   
recovery
Chen W et al., The specificity of a chlorphenamine-imprinted polymer and its application.
Talanta, 55, (1), 29-34, (2001)
   
recovery
Möller K et al., Synthesis and evaluation of molecularly imprinted polymers for extracting hydrolysis products of organophosphate flame retardants.
Journal of Chromatography A, 938, (1-2), 121-130, (2001)
   
recovery
Pap T et al., Effect of solvents on the selectivity of terbutylazine imprinted polymer sorbents used in solid-phase extraction.
Journal of Chromatography A, 973, (1-2), 1-12, (2002)
   
recovery
Yu YH et al., Removal of the fermentation by-product succinyl L-tyrosine from the b-lactamase inhibitor clavulanic acid using a molecularly imprinted polymer.
Biotechnology and Bioengineering, 79, (1), 23-28, (2002)
   
recovery
Zhu QZ et al., Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer.
Environmental Science & Technology, 36, (24), 5411-5420, (2002)
   
recovery
Du JX et al., Flow injection chemiluminescence determination of epinephrine using epinephrine-imprinted polymer as recognition material.
Analytica Chimica Acta, 489, (2), 183-189, (2003)
   
recovery
Lai JP et al., Separation and determination of the antitumor drug piritrexim by molecularly imprinted microspheres in high-performance liquid chromatography.
Analytical and Bioanalytical Chemistry, 377, (1), 208-213, (2003)
   
recovery
Lai JP et al., Preparative separation and determination of matrine from the Chinese medicinal plant Sophora flavescens Ait by molecularly imprinted solid-phase extraction.
Analytical and Bioanalytical Chemistry, 375, (2), 264-269, (2003)
   
recovery
Mena ML et al., Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination.
Analytical and Bioanalytical Chemistry, 376, (1), 18-25, (2003)
   
recovery
Tamayo FG et al., Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples.
Analytica Chimica Acta, 482, (2), 165-173, (2003)
   
recovery
Xie JC et al., Selective extraction of functional components derived from herb in plasma by using a molecularly imprinted polymer based on 2,2-bis(hydroxymethyl)butanol trimethacrylate.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 788, (2), 233-242, (2003)
   
recovery
Caro E et al., Molecularly imprinted solid-phase extraction of naphthalene sulfonates from water.
Journal of Chromatography A, 1047, (2), 175-180, (2004)
   
recovery
Chapuis F et al., Retention mechanism of analytes in the solid-phase extraction process using molecularly imprinted polymers - Application to the extraction of triazines from complex matrices.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 93-101, (2004)
   
recovery
Dong XC et al., Synthesis and application of molecularly imprinted polymer on selective solid-phase extraction for the determination of monosulfuron residue in soil.
Journal of Chromatography A, 1057, (1-2), 13-19, (2004)
   
recovery
Gore MA et al., Enhanced capacities and selectivities for cholesterol in aqueous media by molecular imprinting: role of novel cross-linkers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 211-221, (2004)
   
recovery
Guo TY et al., Chemically modified chitosan beads as molecularly imprinted polymer matrix for adsorptive separation of proteins.
Chinese Chemical Letters, 15, (11), 1339-1341, (2004)
   
recovery
Huan SY et al., Determination of heavy metal ions in mixed solution by imprinted SAMs.
Electrochimica Acta, 49, (25), 4273-4280, (2004)
   
recovery
Ikegami T et al., Synthetic polymers adsorbing bisphenol A and its analogues prepared by covalent molecular imprinting using bisphenol A dimethacrylate as a template molecule.
Analytical and Bioanalytical Chemistry, 378, (8), 1898-1902, (2004)
   
recovery
Lai JP et al., Benzo[a]pyrene imprinted polymers: synthesis, characterization and SPE application in water and coffee samples.
Analytica Chimica Acta, 522, (2), 137-144, (2004)
   
recovery
Lai JP et al., Separation and determination of astaxanthin from microalgal and yeast samples by molecularly imprinted microspheres.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 25-30, (2004)
   
recovery
Maier NM et al., Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 103-111, (2004)
   
recovery
Malaisamy R et al., Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions.
Separation and Purification Technology, 39, (3), 211-219, (2004)
   
recovery
Möller K et al., Determination of a flame retardant hydrolysis product in human urine by SPE and LC-MS. Comparison of molecularly imprinted solid-phase extraction with a mixed-mode anion exchanger.
Analytical and Bioanalytical Chemistry, 378, (1), 197-204, (2004)
   
recovery
Möller K et al., Investigation of matrix effects of urine on a molecularly imprinted solid-phase extraction.
Journal of Chromatography B, 811, (2), 171-176, (2004)
   
recovery
Piletsky S et al., Custom synthesis of molecular imprinted polymers for biotechnological application - Preparation of a polymer selective for tylosin.
Analytica Chimica Acta, 504, (1), 123-130, (2004)
   
recovery
Puri BK et al., A new polymeric adsorbent for screening and pre-concentration of organotin compounds in sediments and seawater samples.
Spectrochimica Acta Part B-Atomic Spectroscopy, 59, (2), 209-214, (2004)
   
recovery
Rao TP et al., Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE).
TrAC Trends in Analytical Chemistry, 23, (1), 28-35, (2004)
   
recovery
San Vicente B et al., Continuous solid-phase extraction and preconcentration of bisphenol A in aqueous samples using molecularly imprinted columns.
Analytical and Bioanalytical Chemistry, 380, (1), 115-122, (2004)
   
recovery
Watabe Y et al., Improved detectability with a polymer-based trapping device in rapid HPLC analysis for ultra-low levels of bisphenol A (BPA) in environmental samples.
Analytical Sciences, 20, (1), 133-137, (2004)
   
recovery
Widstrand C et al., Evaluation of MISPE for the multi-residue extraction of b-agonists from calves urine.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 85-91, (2004)
   
recovery
Zhou SN et al., Analysis of wheat extracts for ochratoxin A by molecularly imprinted solid-phase extraction and pulsed elution.
Analytical and Bioanalytical Chemistry, 378, (8), 1903-1906, (2004)
   
recovery
Jin YZ et al., Molecularly imprinted solid-phase extraction of caffeine from green tea.
Journal of Industrial and Engineering Chemistry, 12, (3), 494-499, (2006)
   
recovery
Feng JY et al., Removal of the template molecules from vinblastine-imprinted polymer.
Journal of Southern Medical University, 27, (3), 268-271, (2007)
   
recovery
Kugimiya A et al., Selective Recovery of Phosphate from River Water Using Molecularly Imprinted Polymers.
Analytical Letters, 41, (2), 302-311, (2008)
   
recovery
Kugimiya A et al., Selectivity and recovery performance of phosphate-selective molecularly imprinted polymer.
Analytica Chimica Acta, 606, (2), 252-256, (2008)
   
recovery
Rammika M et al., Incorporation of Ni(II)-dimethylglyoxime ion-imprinted polymer into electrospun polysulphone nanofibre for the determination of Ni(II) ions from aqueous samples.
Water SA, 37, (4), 539-546, (2011)
   
recovery
Wei CP et al., Ultrasensitively sensing acephate using molecular imprinting techniques on a surface plasmon resonance sensor.
Talanta, 83, (5), 1422-1427, (2011)
   
recovery
Aly MM et al., A Review: Studies on Uranium Removal Using Different Techniques. Overview.
Journal of Dispersion Science and Technology, 34, (2), 182-213, (2013)
   
recovery
Varshini JSC et al., Enhanced uptake of rare earth metals using surface molecular imprinted biosorbents of animal origin: Equilibrium, Kinetic and Thermodynamic studies.
International Journal of ChemTech Research, 7, (4), 1913-1919, (2015)
   
recovery
Patra S et al., RETRACTED Removal and Recycling of Precious Rare Earth Element from Wastewater Samples Using Imprinted Magnetic Ordered Mesoporous Carbon.
ACS Sustainable Chemistry & Engineering, 5, (8), 6910-6923, (2017)
   
Recovery
Yin XC et al., Recovery of Silver from Wastewater Using a New Magnetic Photocatalytic Ion-Imprinted Polymer.
ACS Sustainable Chemistry & Engineering, 5, (3), 2090-2097, (2017)
   
recovery degree
Nicolescu TV et al., Influence of crosslinker/porogen ratio upon imprinted polymer parameters.
U. P. B. Science Bulletin, Series B, 73, (1), 163-172, (2011)
   
Recovery of polyphenols
Mansour MSM et al., Valorization of food solid waste by recovery of polyphenols using hybrid molecular imprinted membrane.
Journal of Environmental Chemical Engineering, 6, (4), 4160-4170, (2018)
   
Recyclability
Peng JY et al., Selective photocatalytic degradation of tetracycline by metal-free heterojunction surface imprinted photocatalyst based on magnetic fly ash.
Inorganic Chemistry Communications, 106, 202-210, (2019)
   
Recyclability
Kou YC et al., Recyclable Magnetic MIP-Based SERS Sensors for Selective, Sensitive, and Reliable Detection of Paclobutrazol Residues in Complex Environments.
ACS Sustainable Chemistry & Engineering, 8, (38), 14549-14556, (2020)
   
Recycles
Song XL et al., Effective and selective adsorption of As(III) via imprinted magnetic Fe3O4/HTCC composite nanoparticles.
Journal of Environmental Chemical Engineering, 5, (1), 16-25, (2017)
   
recycling
Wang JS et al., Application of ion imprinting technology in heavy metal waste treating and recycling.
Journal of Safety and Environment, (4), 59-62, (2009)
   
recycling
Yang Q et al., Using molecularly imprinted polymer for protecting functional group in organic reaction.
Journal of Applied Polymer Science, 130, (1), 595-602, (2013)
   
recycling
Cao FM et al., Synthesis of a perfluorooctanoic acid molecularly imprinted polymer for the selective removal of perfluorooctanoic acid in an aqueous environment.
Journal of Applied Polymer Science, 133, (15), ArticleNo43192-(2016)
   
recycling
Lu YC et al., A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano-polymers.
Chemosphere, 238, Article124640-(2020)
   
recycling
Mamo SK et al., Computationally Designed Perrhenate Ion Imprinted Polymers for Selective Trapping of Rhenium Ions.
ACS Applied Polymer Materials, 2, (8), 3135-3147, (2020)
   
recyling
Jalilzadeh M et al., Specific heavy metal ion recovery with ion-imprinted cryogels.
Journal of Applied Polymer Science, 133, (10), ArticleNo43095-(2016)
   
Red chilli peppers
Puoci F et al., Molecularly imprinted solid phase extraction for detection of sudan I in food matrices.
Food Chemistry, 93, (2), 349-353, (2005)
   
Red-emitting carbon dots
Zhang Y et al., Carbon dots-embedded epitope imprinted polymer for targeted fluorescence imaging of cervical cancer via recognition of epidermal growth factor receptor.
Microchimica Acta, 187, (4), Article228-(2020)
   
red fruits juice
Euterpio MA et al., Development and Validation of a Method for the Determination of (E)-Resveratrol and Related Phenolic Compounds in Beverages Using Molecularly Imprinted Solid Phase Extraction.
Journal of Agricultural and Food Chemistry, 61, (8), 1640-1645, (2012)
   
redifferentiation
Bonakdar S et al., Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.
ACS Applied Materials & Interfaces, 8, (22), 13777-13784, (2016)
   
red mud
Zhang ZG et al., Binding and recognizing properties of ionic imprinted polymer towards Sc(III).
Journal of Functional Materials, 45, (S1), 87-91, (2014)
   
red mud
Zhang CL et al., Fabrication of Red Mud/Molecularly Imprinted Polypyrrole-Modified Electrode for the Piezoelectric Sensing of Bilirubin.
IEEE Sensors Journal, 19, (4), 1280-1284, (2019)
   
Redox-active nanospheres
Liu BQ et al., Au(III)-promoted magnetic molecularly imprinted polymer nanospheres for electrochemical determination of streptomycin residues in food.
Biosensors and Bioelectronics, 41, 551-556, (2013)
   
redox catalyst
Robak AJ et al., First example of a molecularly imprinted polymer incorporating a difunctionalized alloxazine flavin isomer.
Tetrahedron Letters, 46, (34), 5651-5654, (2005)
   
redox chemistry
Zhang JW et al., Multilayer Films with Nanocontainers: Redox-Controlled Reversible Encapsulation of Guest Molecules.
Chemistry - A European Journal, 18, (47), 14968-14973, (2012)
   
redox gating
Zhang XR et al., "Out of Pocket" Protein Binding-A Dilemma of Epitope Imprinted Polymers Revealed for Human Hemoglobin.
Chemosensors, 9, (6), ArticleNo128-(2021)
   
redox initiation
Liu SX et al., Evaluation of the (-)-ephedrine imprinted polymers with high affinity for template molecule synthesized using redox initiation system.
Analytical Letters, 38, (2), 227-236, (2005)
   
Redox initiators
Cirillo G et al., Molecular imprinting polymerization by Fenton reaction.
Colloid & Polymer Science, 288, (6), 689-693, (2010)
   
redox marker
Yoshimi Y et al., Stabilized sensing of heparin in whole blood using the gate effect of heparin-imprinted polymer grafted onto an electrode.
Molecular Imprinting, 4, (1), 13-20, (2016)
   
redox marker
Zhang XR et al., Electrosynthesized MIPs for transferrin: Plastibodies or nano-filters?
Biosensors and Bioelectronics, 105, 29-35, (2018)
   
redox marker
Scheller FW et al., Molecularly imprinted polymer-based electrochemical sensors for biopolymers.
Current Opinion in Electrochemistry, 14, 53-59, (2019)
   
redox polymerization
Hosoya K et al., An unexpected molecular imprinting effect for a polyaromatic hydrocarbon, anthracene, using uniform size ethylene dimethacrylate particles.
HRC - Journal of High Resolution Chromatography, 22, (5), 256-260, (1999)
   
redox polymerization
Liu QY et al., Study of recognition property of molecularly imprinted bovine hemoglobin on surface-modified silica gel.
Acta Chimica Sinica, 66, (1), 56-62, (2008)
   
Redox potential
Liu J et al., Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis.
Talanta, 199, 573-580, (2019)
   
Redox probe
Catanante G et al., Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers.
Talanta, 153, 138-144, (2016)
   
Redox probe
Sharma PS et al., Gate effect in molecularly imprinted polymers: the current state of understanding.
Current Opinion in Electrochemistry, 16, 50-56, (2019)
   
Redox sensitivity
Gyarmati B et al., Reversible disulphide formation in polymer networks: A versatile functional group from synthesis to applications.
European Polymer Journal, 49, (6), 1268-1286, (2013)
   
redox sensors
Book chapter, Fink JK, Electrochemical Sensors,
In: Polymeric Sensors and Actuators,
John Wiley & Sons, Inc.: 269-315, (2012)    
REDOX SYSTEMS
Chailapakul O et al., Interactions between organized, surface-confined monolayers and liquid-phase probe molecules .4. Synthesis and characterization of nanoporous molecular assemblies - mechanism of probe penetration.
Langmuir, 11, (4), 1329-1340, (1995)
   
Red tide
Quezada C et al., Molecularly imprinted nanoparticle-based assay (MINA): Potential application for the detection of the neurotoxin domoic acid.
Analytica Chimica Acta, 1181, Article338887-(2021)
   
Reduced carboxylated graphene oxide
Liu M et al., A dual-recognition molecularly imprinted electrochemiluminescence sensor based on g-C3N4 nanosheets sensitized by electrodeposited rGO-COOH for sensitive and selective detection of tyramine.
Sensors and Actuators B: Chemical, 311, Article127901-(2020)
   
Reduced graphene oxide
Kong L et al., Molecularly imprinted sensor based on electropolmerized poly(o-phenylenediamine) membranes at reduced graphene oxide modified electrode for imidacloprid determination.
Sensors and Actuators B: Chemical, 185, 424-431, (2013)
   
Reduced graphene oxide
Zeng YB et al., A novel composite of reduced graphene oxide and molecularly imprinted polymer for electrochemical sensing 4-nitrophenol.
Electrochimica Acta, 130, 504-511, (2014)
   
Reduced graphene oxide
Atar N et al., Sensitive determination of citrinin based on molecular imprinted electrochemical sensor.
Applied Surface Science, 362, 315-322, (2016)
   
Reduced graphene oxide
Patra S et al., Nanocomposite of bimetallic nanodendrite and reduced graphene oxide as a novel platform for molecular imprinting technology.
Analytica Chimica Acta, 918, 77-88, (2016)
   
Reduced graphene oxide
Yola ML et al., New molecular imprinted voltammetric sensor for determination of ochratoxin A.
Materials Science and Engineering: C, 61, 368-375, (2016)
   
Reduced graphene oxide
Alizadeh T et al., Indirect voltammetric determination of nicotinic acid by using a graphite paste electrode modified with reduced graphene oxide and a molecularly imprinted polymer.
Microchimica Acta, 184, (8), 2687-2695, (2017)
   
Reduced graphene oxide
Beluomini MA et al., D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles.
Talanta, 165, 231-239, (2017)
   
Reduced graphene oxide
Shi XJ et al., A Biomimetic Sensor with Signal Enhancement of Ferriferrous Oxide-Reduced Graphene Oxide Nanocomposites for Ultratrace Levels Quantification of Methamidophos or Omethoate in Vegetables.
Food Analytical Methods, 10, (4), 910-920, (2017)
   
Reduced graphene oxide
Zhao XY et al., Reduced Graphene Oxide-Modified Screen-Printed Carbon (rGO-SPCE)-Based Disposable Electrochemical Sensor for Sensitive and Selective Determination of Ethyl Carbamate.
Food Analytical Methods, 10, (10), 3329-3337, (2017)
   
Reduced graphene oxide
Jin XC et al., A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol.
Biosensors and Bioelectronics, 102, 357-364, (2018)
   
Reduced graphene oxide
Liu LY et al., An Electrochemical Sensor for Diphenylamine Detection Based on Reduced Graphene Oxide/Fe3O4-Molecularly Imprinted Polymer with 1,4-Butanediyl-3,3-bis-l-vinylimidazolium Dihexafluorophosphate Ionic Liquid as Cross-Linker.
Polymers, 10, (12), Article1329-(2018)
   
Reduced graphene oxide
Mostafavi M et al., A new diclofenac molecularly imprinted electrochemical sensor based upon a polyaniline/reduced graphene oxide nano-composite.
Biosensors and Bioelectronics, 122, 160-167, (2018)
   
Reduced graphene oxide
Yang SR et al., A Novel Rutin Electrochemical Sensor Using Reduced Graphene Oxide/Magnetite/Silver Nanoparticle-Molecularly Imprinted Polymer Composite Modified Electrode.
International Journal of Electrochemical Science, 13, 2483-2497, (2018)
   
Reduced graphene oxide
Zheng WH et al., Electrochemical sensor based on molecularly imprinted polymer/reduced graphene oxide composite for simultaneous determination of uric acid and tyrosine.
Journal of Electroanalytical Chemistry, 813, 75-82, (2018)
   
Reduced graphene oxide
Essousi H et al., Molecularly Imprinted Electrochemical Sensor Based on Modified Reduced Graphene Oxide-gold Nanoparticles-polyaniline Nanocomposites Matrix for Dapsone Determination.
Electroanalysis, 31, (6), 1050-1060, (2019)
   
Reduced graphene oxide
Huang XJ et al., Development of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and egg.
Journal of Pharmaceutical and Biomedical Analysis, 164, 607-614, (2019)
   
Reduced graphene oxide
Liu B et al., Differential potential ratiometric sensing platform for enantiorecognition of chiral drugs.
Analytical Biochemistry, 574, 39-45, (2019)
   
Reduced graphene oxide
Srivastava J et al., Glycoprotein imprinted RGO-starch nanocomposite modified EQCM sensor for sensitive and specific detection of transferrin.
Journal of Electroanalytical Chemistry, 835, 169-177, (2019)
   
Reduced graphene oxide
El Jaouhari A et al., Enhanced molecular imprinted electrochemical sensor based on zeolitic imidazolate framework/reduced graphene oxide for highly recognition of rutin.
Analytica Chimica Acta, 1106, 103-114, (2020)
   
Reduced graphene oxide
Li YS et al., A highly sensitive and selective molecularly imprinted electrochemical sensor modified with TiO2-reduced graphene oxide nanocomposite for determination of podophyllotoxin in real samples.
Journal of Electroanalytical Chemistry, 873, Article114439-(2020)
   
Reduced graphene oxide
Pompeu Prado Moreira LF et al., Electrochemical sensor based on reduced graphene oxide and molecularly imprinted poly(phenol) for d-xylose determination.
Talanta, 208, Article120379-(2020)
   
Reduced graphene oxide
Tawab MAHA et al., Computational design of molecularly imprinted polymer for electrochemical sensing and stability indicating study of sofosbuvir.
Microchemical Journal, 158, Article105180-(2020)
   
Reduced graphene oxide
Buffon E et al., A molecularly imprinted polymer on reduced graphene oxide-gold nanoparticles modified screen-printed electrode for selective determination of ferulic acid in orange peels.
Microchemical Journal, 167, Article106339-(2021)
   
Reduced graphene oxide
Fu YF et al., Magnetic molecularly imprinting polymers, reduced graphene oxide, and zeolitic imidazolate frameworks modified electrochemical sensor for the selective and sensitive detection of catechin.
Microchimica Acta, 188, (3), Article71-(2021)
   
Reduced graphene oxide
Hassan Oghli A et al., Ultrasensitive electrochemical sensor for simultaneous determination of sumatriptan and paroxetine using molecular imprinted polymer/sol-gel/polyoxometalate/rGO modified pencil graphite electrode.
Sensors and Actuators B: Chemical, 344, Article130215-(2021)
   
Reduced graphene oxide
Mariano TM et al., Molecularly Imprinted Polypyrrole on Glassy Carbon Electrode Modified with Reduced Graphene Oxide and Gold Nanoparticles for Isoamyl Alcohol Analysis in Fusel Oil.
Journal of the Brazilian Chemical Society, 32, (2), 249-259, (2021)
   
Reduced graphene oxide
Moreira LFPP et al., Fructose determination in fruit juices using an electrosynthesized molecularly imprinted polymer on reduced graphene oxide modified electrode.
Food Chemistry, 352, Article129430-(2021)
   
Reduced graphene oxide
Xu WZ et al., Highly sensitive electrochemical BPA sensor based on titanium nitride-reduced graphene oxide composite and core-shell molecular imprinting particles.
Analytical and Bioanalytical Chemistry, 413, (4), 1081-1090, (2021)
   
reduced graphene oxide and gold nanocomposites
Zhang Y et al., Preparation of Molecularly Imprinted Electrochemical Sensor for Detection of Vincristine Based on Reduced Graphene Oxide/Gold Nanoparticle Composite Film.
Chinese Journal of Chemistry, 34, (12), 1268-1276, (2016)
   
Reduced graphene oxide and gold nanoparticles
Tan XC et al., Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran.
Sensors and Actuators B: Chemical, 220, 216-221, (2015)
   
Reduced graphene oxide (RGO)
Kibechu RW et al., Synthesis and application of reduced graphene oxide and molecularly imprinted polymers composite in chemo sensor for trichloroacetic acid detection in aqueous solution.
Physics and Chemistry of the Earth, Parts A/B/C, 76-78, 49-53, (2014)
   
reduced oxide graphene
Shi XH et al., A novel Molecularly Imprinted Sensor based on Gold Nanoparticles/Reduced Graphene Oxide/Single-Walled Carbon Nanotubes Nanocomposite for the Detection of pefloxacin.
International Journal of Electrochemical Science, 15, 9683-9697, (2020)
   
Reduced Oxide Graphene (rGO)
Braga GB et al., Total Determination of Estrogenic Phenolic Compounds in River Water Using a Sensor Based on Reduced Graphene Oxide and Molecularly Imprinted Polymer.
Electroanalysis, 30, (9), 2176-2184, (2018)
   
Reducing substances
Liu J et al., Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis.
Talanta, 199, 573-580, (2019)
   
Reducing sugars
Wang QA et al., An Electrochemical Sensor for Reducing Sugars Based on a Glassy Carbon Electrode Modified with Electropolymerized Molecularly Imprinted Poly-o-phenylenediamine Film.
Electroanalysis, 26, (7), 1612-1622, (2014)
   
REDUCTION
Chen SH et al., Fluorescence probe studies of self-assembled monolayer films.
Langmuir, 7, (8), 1719-1726, (1991)
   
REDUCTION
Gamez P et al., Molecular imprinting effect in the synthesis of immobilized rhodium complex catalyst (IRC cat).
Tetrahedron Letters, 36, (48), 8779-8782, (1995)
   
REDUCTION
Hwang KO et al., Template-assisted assembly of metal binding sites on a silica surface.
Materials Science & Engineering C-Biomimetic Materials Sensors And Systems, 3, (2), 137-141, (1995)
   
REDUCTION
Philp D et al., Self-assembly in natural and unnatural systems.
Angewandte Chemie International Edition, 35, (11), 1155-1196, (1996)
   
REDUCTION
Lee SW et al., Molecular imprinting of azobenzene carboxylic acid on a TiO2 ultrathin film by the surface sol-gel process.
Langmuir, 14, (10), 2857-2863, (1998)
   
REDUCTION
Locatelli F et al., Molecular imprinting of polymerised catalytic complexes in asymmetric catalysis.
Journal of Molecular Catalysis A: Chemical, 135, (1), 89-98, (1998)
   
REDUCTION
Piletsky SA et al., Molecularly imprinted self-assembled films with specificity to cholesterol.
Sensors and Actuators B: Chemical, 60, (2-3), 216-220, (1999)
   
REDUCTION
Iqbal SS et al., Artificial receptors: molecular imprints discern closely related toxins.
Materials Science & Engineering C-Biomimetic And Supramolecular Systems, 7, 77-81, (2000)
   
REDUCTION
Polborn K et al., Biomimetic catalysis with immobilised organometallic ruthenium complexes: Substrate- and regioselective transfer hydrogenation of ketones.
Chemistry - A European Journal, 6, (24), 4604-4611, (2000)
   
REDUCTION
Polborn K et al., Biomimetic catalysis with an immobilised chiral rhodium(III) complex.
European Journal of Inorganic Chemistry, (8), 1687-1692, (2000)
   
REDUCTION
Biffis A et al., Molecular design of novel transition state analogues for molecular imprinting.
New Journal of Chemistry, 25, (12), 1537-1542, (2001)
   
REDUCTION
Boos KS et al., Bioanalytical solid-phase extraction: A classic in a new, tailor-made garment.
Chimia, 55, (1-2), 42-45, (2001)
   
REDUCTION
Proceeding, Hishiya T et al, Preparation of cyclodextrin assembly by using host-guest complexation for molecular recognition,
In: Polymer Preprints, Japan,
1668, (2002)
   
REDUCTION
Batra D et al., Novel trifunctional building blocks for fluorescent polymers.
Organic Letters, 5, (21), 3895-3898, (2003)
   
REDUCTION
Book chapter, Crudden CMet al., Late Transition Metal Complexes Immobilized on Structured Surfaces as Catalysts for Hydrogenation and Oxidation Reactions,
In: Nanostructured Catalysts, Scott SL, Crudden CM, Jones CW (Eds.)
Springer US: 113-155, (2003)    
REDUCTION
Kataoka H, New trends in sample preparation for clinical and pharmaceutical analysis.
TrAC Trends in Analytical Chemistry, 22, (4), 232-244, (2003)
   
REDUCTION
Lai JP et al., Separation and determination of the antitumor drug piritrexim by molecularly imprinted microspheres in high-performance liquid chromatography.
Analytical and Bioanalytical Chemistry, 377, (1), 208-213, (2003)
   
REDUCTION
Luo GM et al., Towards more efficient glutathione peroxidase mimics: Substrate recognition and catalytic group assembly.
Current Medicinal Chemistry, 10, (13), 1151-1183, (2003)
   
REDUCTION
Tada M et al., Design of molecular-imprinting metal-complex catalysts.
Journal of Molecular Catalysis A: Chemical, 199, (1-2), 115-137, (2003)
   
REDUCTION
Hedin-Dahlström J et al., Stereoselective reduction of menthone by molecularly imprinted polymers.
Tetrahedron: Asymmetry, 15, (15), 2431-2436, (2004)
   
REDUCTION
Liu JQ et al., Bioimprinted protein exhibits glutathione peroxidase activity.
Analytica Chimica Acta, 504, (1), 185-189, (2004)
   
REDUCTION
Liu ZS et al., Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography.
Analytica Chimica Acta, 523, (2), 243-250, (2004)
   
REDUCTION
Visnjevski A et al., Catalyzing a cycloaddition with molecularly imprinted polymers obtained via immobilized templates.
Applied Catalysis A: General, 260, (2), 169-174, (2004)
   
REDUCTIVE AMINATION
Spivak DA et al., Evidence for shape selectivity in non-covalently imprinted polymers.
Analytica Chimica Acta, 504, (1), 23-30, (2004)
   
reductive cleavage
Ikegami T et al., Covalent molecular imprinting of bisphenol A using its diesters followed by the reductive cleavage with LiAlH4.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 197-201, (2004)
   
Reductive current
Fuchiwaki Y et al., Development of an electrochemical sensing system for 6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT) utilizing an amalgamated gold electrode and artificial sensor receptor.
Electrochemistry, 75, (9), 709-714, (2007)
   
Reductive current
Fuchiwaki Y et al., 6-Chloro-N,N-Diethyl-1,3,5-Triazine-2,4-Diamine (Simazine) Electrochemical Sensing Chip Based on Biomimetic Recognition Utilizing a Molecularly Imprinted Polymer Layer on a Gold Chip.
Analytical Letters, 41, (8), 1398-1407, (2008)
   
REDUCTIVE DESORPTION
Mirsky VM, New electroanalytical applications of self-assembled monolayers.
TrAC Trends in Analytical Chemistry, 21, (6-7), 439-450, (2002)
   
Red wine
Denderz N et al., Using of molecularly imprinted polymers for determination of gallic and protocatechuic acids in red wines by high performance liquid chromatography.
Journal of Chromatography A, 1372, 72-80, (2014)
   
Red wine
Büyüktuncel E et al., Catechin-molecularly imprinted cryogel for determination of catechin in red wines by HPLC-DAD-fluorescence detector.
Acta Chromatographica, 30, (1), 54-61, (2017)
   
Red wine
Büyüktuncel E et al., Catechin-molecularly imprinted cryogel for determination of catechin in red wines by HPLC-DAD-fluorescence detector.
Acta Chromatographica, 30, (1), 54-61, (2018)
   
Red wine
Gong CB et al., A photoresponsive molecularly imprinted polymer with rapid visible-light-induced photoswitching for 4-ethylphenol in red wine.
Materials Science and Engineering: C, 96, 661-668, (2019)
   
Red yeast rice
Atar N et al., A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice.
Food Chemistry, 184, 7-11, (2015)
   
Red yeast rice extracts
Lhotská I et al., Preparation of citrinin-selective molecularly imprinted polymer and its use for on-line solid-phase extraction coupled to liquid chromatography.
Analytical and Bioanalytical Chemistry, 411, (11), 2395-2404, (2019)
   
reference materials
Cigic IK et al., An Overview of Conventional and Emerging Analytical Methods for the Determination of Mycotoxins.
International Journal of Molecular Sciences, 10, (1), 62-115, (2009)
   
Reflectance
Ng SM et al., Molecularly imprinted polymers as optical sensing receptors: Correlation between analytical signals and binding isotherms.
Analytica Chimica Acta, 703, (2), 226-233, (2011)
   
Reflectance
Rocha FRP et al., Direct Solid-Phase Optical Measurements in Flow Systems: A Review.
Analytical Letters, 44, (1), 528-559, (2011)
   
Reflectance spectrometry
Ng SM et al., Demonstration of a simple, economical and practical technique utilising an imprinted polymer for metal ion sensing.
Microchimica Acta, 169, (3), 303-311, (2010)
   
Reflection spectrum
Chen QS et al., Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine.
Microchimica Acta, 185, (12), ArticleNo557-(2018)
   
Reflectometric interference spectroscopy
Belmont AS et al., Molecularly imprinted polymer films for reflectometric interference spectroscopic sensors.
Biosensors and Bioelectronics, 22, (12), 3267-3272, (2007)
   
Reflectometric interference spectroscopy
Diltemiz SE et al., A reflectometric interferometric nanosensor for sarcosine.
Biotechnology Progress, 31, (1), 55-61, (2015)
   
Reflectometric Interference Spectroscopy (RIfS)
Weber P et al., Nano-MIP based sensor for penicillin G: Sensitive layer and analytical validation.
Sensors and Actuators B: Chemical, 267, 26-33, (2018)
   
Refolding Kinetic
Esmaeili MA et al., Molecularly imprinted poly β-cyclodextrin polymer: Application in protein refolding.
Biochimica et Biophysica Acta (BBA) - General Subjects, 1770, (6), 943-950, (2007)
   
Reformative silica gel
He LH et al., Study on synthesis and application of schistosoma entice cercariae imprinting polymer.
Chinese Journal of Colloid and Polymer, 25, (3), 33-35, (2007)
   
reform of single dosage form
Tao YQ et al., Solubilization characteristics of licorice based on supramolecular "imprinted template" theory.
China Journal of Chinese Materia Medica, 41, (10), 1849-1854, (2016)
   
Refractive index
Proceeding, Wong R et al, Photodecomposition of a target compound detected using an optical fibre long period grating coated with a molecularly imprinted titania thin film,
ArticleNo96340Y, (2015)
   
Refractive index
Proceeding, Cennamo N et al, Surface plasmon resonance in a D-shaped plastic optical fibre: Influence of gold layer thickness in monitoring molecularly imprinted polymers,
227-231, (2016)
   
Refractive index
Proceeding, González-Vila Á et al, Formaldehyde sensing with plasmonic near-infrared optical fiber grating sensors,
ArticleNo989917, (2016)
   
Refractive index
Proceeding, Cennamo N et al, An optical fiber intensity-based sensor configuration for the detection of PFOA in water,
Article_ThE37, (2018)
   
Refractive index
Proceeding, Hernandez FU et al, Propofol Detection Using Optical Fibre Long Period Grating Sensors with Molecularly Imprinted Host-Guest Binding Sites in TiO2 Films,
Article_TuE72, (2018)
   
Refractive index
Uchiyamada K et al., Perforated Bimodal Interferometric Biosensor for Affinity Sensing.
Advanced Materials Technologies, 4, (9), Article1800533-(2019)
   
Refractory pollutants
Li XT et al., Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts.
Water Research, 203, Article117541-(2021)
   
Regenerate cellulose
Wang Y et al., A calcium ion-imprinted porous film prepared from a cellulose-alginate composite.
Journal of Polymer Research, 21, (12), Article No 612-(2014)
   
Regenerated cellulose membranes
Wang CL et al., Lysozyme Molecular Imprinted Membranes with Ionic Liquids as Functional Monomer.
Acta Polymerica Sinica, (3), 259-265, (2015)
   
regenerating properties
Zhang LY et al., Synthesis and characteristics of tyrosine imprinted beads via suspension polymerization.
Reactive and Functional Polymers, 56, (3), 167-173, (2003)
   
Regenerating protein
Lee MH et al., Epitope recognition of peptide-imprinted polymers for Regenerating protein 1 (REG1).
Separation and Purification Technology, 192, 213-219, (2018)
   
Regeneration
Li WL et al., Research advances in adsorption removal of aromatic sulfur-containing compounds.
Modern Chemical Industry, 26, (SUPPL. 1), 16-20, (2006)
   
Regeneration
Chen AH et al., Adsorption of Remazol Black 5 from aqueous solution by the templated crosslinked-chitosans.
Journal of Hazardous Materials, 177, (1-3), 668-675, (2010)
   
Regeneration
Dai CM et al., Performance evaluation and application of molecularly imprinted polymer for separation of carbamazepine in aqueous solution.
Journal of Hazardous Materials, 184, (1-3), 156-163, (2010)
   
Regeneration
Dai CM et al., Selective removal of diclofenac from contaminated water using molecularly imprinted polymer microspheres.
Environmental Pollution, 159, (6), 1660-1666, (2011)
   
Regeneration
Shi YQ et al., Molecular Template-Directed Synthesis of Microporous Polymer Networks for Highly Selective CO2 Capture.
ACS Applied Materials & Interfaces, 6, (22), 20340-20349, (2014)
   
Regeneration
Sooraj MP et al., Artificial Recognition Sorbents on Multiwalled Carbon Nanotubes for the Separation of Aspirin from its Structural Analogues.
International Journal of Scientific & Engineering Research, 6, (9), 723-733, (2015)
   
Regeneration
Wu SL et al., Excellent Regeneration of Inorganic-framework Molecularly Imprinted TiO2 and its Regeneration Mechanism.
Journal of Advanced Oxidation Technologies, 18, (2), 361-367, (2015)
   
Regeneration
Liang QW et al., Fast and selective removal of Cr(VI) from aqueous solutions by a novel magnetic Cr(VI) ion-imprinted polymer.
Journal of Molecular Liquids, 248, 767-774, (2017)
   
Regeneration
Liu Y et al., A novel dual temperature responsive mesoporous imprinted polymer for Cd(II) adsorption and temperature switchable controlled separation and regeneration.
Chemical Engineering Journal, 328, 11-24, (2017)
   
Regeneration
Zhang YY et al., Molecularly imprinted polymers based on multiwalled carbon nanotubes surface for the fabrication and application of oxacillin.
Journal of Functional Materials, 48, (4), 4199-4204, (2017)
   
Regeneration
Hu ZH et al., Fabrication of ofloxacin imprinted polymer on the surface of magnetic carboxylated cellulose nanocrystals for highly selective adsorption of fluoroquinolones from water.
International Journal of Biological Macromolecules, 107, (Part A), 453-462, (2018)
   
Regenerative engineering
Clegg JR et al., Vision for Functionally Decorated and Molecularly Imprinted Polymers in Regenerative Engineering.
Regenerative Engineering and Translational Medicine, 3, (3), 166-175, (2017)
   
regenerative mechanism
Peppas NA et al., The challenge to improve the response of biomaterials to the physiological environment.
Regenerative Biomaterials, 3, (2), 67-71, (2016)
   
Regenerative medicine
Naklua W et al., An imprinted dopamine receptor for discovery of highly potent and selective D3 analogues with neuroprotective effects.
Process Biochemistry, 50, (10), 1537-1556, (2015)
   
Regenerative medicine
Rambhia KJ et al., Controlled drug release for tissue engineering.
Journal of Controlled Release, 219, 119-128, (2015)
   
Regenerative medicine
Guryanov I et al., Receptor-ligand interactions: Advanced biomedical applications.
Materials Science and Engineering: C, 68, 890-903, (2016)
   
REGIONAL BRAIN DISTRIBUTION
Appelblad P et al., Separation and detection of neuroactive steroids from biological matrices.
Journal of Chromatography A, 955, (2), 151-182, (2002)
   
regioselective hydrolysis
Proceeding, Ando T et al, Preparation of Molecular Imprinting Polymers and Its Application to Regioselective Hydrolysis of D-Galactose Derivatives,
2P33, (2006)
   
Regioselectivity
Lee SW et al., Regioselective imprinting of anthracenecarboxylic acids onto TiO2 gel ultrathin films: an approach to thin film sensor.
Sensors and Actuators B: Chemical, 104, (1), 35-42, (2005)
   
Regioselectivity
Dong W et al., Synthesis of molecularly imprinted polymers and their enzyme-mimicking catalysis.
Journal of Nanjing University of Science and Technology, 30, (3), 361-365, (2006)
   
regression models
Das D et al., Electrochemical Detection of Epicatechin in Green Tea Using Quercetin-Imprinted Polymer Graphite Electrode.
IEEE Sensors Journal, 21, (23), 26526-26533, (2021)
   
Regulatory issues in food compositional standards
Rovina K et al., A review of recent advances in melamine detection techniques.
Journal of Food Composition and Analysis, 43, 25-38, (2015)
   
rejection
Morissette P et al., A specific artificial antibody toward mycophenolic acid prepared by molecular imprinting.
Clinical Chemistry, 46, (9), 1516-1518, (2000)
   
rejection
Overdevest PEM et al., Langmuir isotherms for enantioselective complexation of (d/l)-phenylalanine by cholesteryl-l-glutamate in nonionic micelles.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, (2-3), 209-224, (2000)
   
rejection
Ul-Haq N et al., Chiral resolution of phenylalanine by d-Phe imprinted membrane considering rejection property.
Bioprocess and Biosystems Engineering, 33, (1), 79-86, (2010)
   
rejection
Ul-Haq N et al., Optical Resolution of Phenylalanine Using D-Phe-Imprinted Poly(acrylic acid-co-acrylonitrile) Membrane-pH Effect on performance.
Journal of the Chemical Society of Pakistan, 36, (4), 561-567, (2014)
   
rejection
Mkhize DS et al., Molecularly imprinted membranes (MIMs) for selective removal of polychlorinated biphenyls (PCBs) in environmental waters: fabrication and characterization.
Environmental Science and Pollution Research, 24, (12), 11694-11707, (2017)
   
release
Allender CJ et al., Molecularly imprinted polymers as novel excipients in controlled release systems.
Journal of Pharmacy and Pharmacology, 49, (Suppl 4), 67-67, (1997)
   
release
Arnold FH, Imprinting with metal complexes: Selective adsorbents and sensors for aqueous media.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 128-128, (1997)
   
release
Chen GH et al., A glucose-sensing polymer.
Nature Biotechnology, 15, (4), 354-357, (1997)
   
release
Karmalkar RN et al., Pendent chain linked delivery systems .2. Facile hydrolysis through molecular imprinting effects.
Journal of Controlled Release, 43, (2-3), 235-243, (1997)
   
release
Sreenivasan K, Application of molecularly imprinted polymer as a drug retaining matrix.
Angewandte Makromolekulare Chemie, 246, (1), 65-69, (1997)
   
release
Proceeding, Yun L, Cu(II) selective adsorbent prepared by surface-imprinting polymerization initiated by initiators,
84-85, (1997)
   
release
Book chapter, Zhu XXet al., New polymer resins with specific pore sizes created by reverse micellar imprinting,
In: International conference on biorelated polymers, controlled release and reactive polymers,
23-24, (1997)    
release
Norell MC et al., Theophylline molecularly imprinted polymer dissociation kinetics: a novel sustained release drug dosage mechanism.
Journal of Molecular Recognition, 11, (1-6), 98-102, (1998)
   
release
Tanaka T et al., Reversible molecular adsorption as a tool to observe freezing and to perform design of heteropolymer gels.
Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 102, 1529-1533, (1998)
   
release
Peppas NA et al., Poly(ethylene glycol)-containing hydrogels in drug delivery.
Journal of Controlled Release, 62, (1-2), 81-87, (1999)
   
release
Sreenivasan K, On the application of molecularly imprinted poly(HEMA) as a template responsive release system.
Journal of Applied Polymer Science, 71, (11), 1819-1821, (1999)
   
release
Allender CJ et al., Pharmaceutical applications for molecularly imprinted polymers.
International Journal of Pharmaceutics, 195, (1-2), 39-43, (2000)
   
release
Das K et al., Experimental study of release and uptake in well-defined imprinted polymer films.
Abstracts of Papers of the American Chemical Society, 220, (OLY), 91-91, (2000)
   
release
Suedee R et al., Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of b-blockers.
Journal of Controlled Release, 66, (2-3), 135-147, (2000)
   
release
Alexander C, Synthetic polymer systems in drug delivery.
Expert Opinion on Emerging Drugs, 6, (2), 345-363, (2001)
   
release
Alvarez-Lorenzo C et al., Reversible adsorption of calcium ions by imprinted temperature sensitive gels.
Journal of Chemical Physics, 114, (6), 2812-2816, (2001)
   
release
Bures P et al., Surface modifications and molecular imprinting of polymers in medical and pharmaceutical applications.
Journal of Controlled Release, 72, (1-3), 25-33, (2001)
   
release
Alvarez-Lorenzo C et al., Soft contact lenses capable of sustained delivery of timolol.
Journal of Pharmaceutical Sciences, 91, (10), 2182-2192, (2002)
   
release
de Vrese M et al., Searching for new bioactive substances from milk.
Bulletin Of The International Dairy Federation No 375/2002 - Fresh Perspectives On Bioactive Dairy Foods, 47-53, (2002)
   
release
Frandsen H et al., 2-amino-1-methyl-6-(5-hydroxy-)phenylimidazo[4,5-b]pyridine (5-OH-PhIP), a biomarker for the genotoxic dose of the heterocyclic amine, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP).
Food and Chemical Toxicology, 40, (8), 1125-1130, (2002)
   
release
Hiratani H et al., Timolol uptake and release by imprinted soft contact lenses made of N,N-diethylacrylamide and methacrylic acid.
Journal of Controlled Release, 83, (2), 223-230, (2002)
   
release
Suedee R et al., Enantioselective release of controlled delivery granules based on molecularly imprinted polymers.
Drug Delivery, 9, (1), 19-30, (2002)
   
release
Suedee R et al., Stereoselective release behaviors of imprinted bead matrices.
Drug Development and Industrial Pharmacy, 28, (5), 545-554, (2002)
   
release
Blanco-López MC et al., Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes.
Analytical and Bioanalytical Chemistry, 377, (2), 257-261, (2003)
   
release
Ito K et al., Multiple point adsorption in a heteropolymer gel and the Tanaka approach to imprinting: experiment and theory.
Progress in Polymer Science, 28, (10), 1489-1515, (2003)
   
release
Kostrewa S et al., Surface-enhanced Raman scattering on molecularly imprinted polymers in water.
Macromolecular Chemistry And Physics, 204, (3), 481-487, (2003)
   
release
Cai WS et al., Molecularly-imprinted polymers selective for tetracycline binding.
Separation and Purification Technology, 35, (3), 215-221, (2004)
   
release
Ciardelli G et al., Acrylic polymeric nanospheres for the release and recognition of molecules of clinical interest.
Biosensors and Bioelectronics, 20, (6), 1083-1090, (2004)
   
release
Hiratani H et al., The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems.
Biomaterials, 25, (6), 1105-1113, (2004)
   
release
Liu XY et al., Design of temperature sensitive imprinted polymer hydrogels based on multiple-point hydrogen bonding.
Macromolecular Bioscience, 4, (7), 680-684, (2004)
   
release
Liu XY et al., Fabrication of temperature-sensitive imprinted polymer hydrogel.
Macromolecular Bioscience, 4, (4), 412-415, (2004)
   
release
Puoci F et al., Spherical molecularly imprinted polymers (SMIPs) via a novel precipitation polymerization in the controlled delivery of sulfasalazine.
Macromolecular Bioscience, 4, (1), 22-26, (2004)
   
release
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
release
Ameli A et al., Nanostructured conducting molecularly imprinted polymer for selective uptake/release of naproxen by the electrochemically controlled sorbent.
Analytical Biochemistry, 428, (2), 99-106, (2012)
   
release
Ameli A et al., Simultaneous analysis of non-steroidal anti-inflammatory drugs using electrochemically controlled solid-phase microextraction based on nanostructure molecularly imprinted polypyrrole film coupled to ion mobility spectrometry.
Journal of Separation Science, 36, (11), 1797-1804, (2013)
   
release
Tabassi SAS et al., Dummy template molecularly imprinted polymer for omeprazole and the study of its drug binding and release properties.
Journal of Applied Polymer Science, 130, (6), 4165-4170, (2013)
   
release
Mohajeri SA et al., Preparation of a pH-sensitive pantoprazole-imprinted polymer and evaluation of its drug-binding and -releasing properties.
SCIENCE CHINA Chemistry, 57, (6), 857-865, (2014)
   
release
Eslami MR et al., A dual usage smart sorbent/recognition element based on nanostructured conducting molecularly imprinted polypyrrole for simultaneous potential-induced nanoextraction/determination of ibuprofen in biomedical samples by quartz crystal microbalance sensor.
Sensors and Actuators B: Chemical, 220, 880-887, (2015)
   
release
Kubo T et al., Molecularly imprinted polymer with a pseudo-template for thermo-responsive adsorption/desorption based on hydrogen bonding.
Microporous And Mesoporous Materials, 218, 112-117, (2015)
   
release
Chen K et al., Application and rheology of anisotropic particle stabilized emulsions: Effects of particle hydrophobicity and fractal structure.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 524, 8-16, (2017)
   
release dynamics
Singh B et al., Molecular Imprinted Polymers for use as Drug Delivery Devices: Preliminary Evaluation.
Journal of Macromolecular Science, Part A, 45, (9), 776-784, (2008)
   
release dynamics
Singh B et al., Preliminary evaluation of molecular imprinting of 5-fluorouracil within hydrogels for use as drug delivery systems.
Acta Biomaterialia, 4, (5), 1244-1254, (2008)
   
Release kinetics
Shamaeli E et al., Kinetic studies of electrochemically controlled release of salicylate from nanostructure conducting molecularly imprinted polymer.
Electrochimica Acta, 114, 409-415, (2013)
   
Release properties
Kim HS et al., Preparation and release properties of arbutin imprinted inulin/polyvinyl alcohol biomaterials.
International Journal of Biological Macromolecules, 161, 763-770, (2020)
   
release time
Guo XW et al., Preparation and Properties of Temperature-responsive Molecularly Imprinted Polymer Hydrogels to Salicylic Acid.
Journal of Instrumental Analysis, 31, (10), 1303-1308, (2012)
   
Releasing
Huang HL et al., Multifunctional Magnetic Cellulose Surface-Imprinted Microspheres for Highly Selective Adsorption of Artesunate.
ACS Sustainable Chemistry & Engineering, 4, (6), 3334-3343, (2016)
   
RELS
Book chapter, Hepel Met al., Detection of Oxidative Stress Biomarkers Using Functional Gold Nanoparticles,
In: Fine Particles in Medicine and Pharmacy, Matijevic E (Ed.)
Springer US: 241-281, (2012)    
Remazol Black5
Chen AH et al., Adsorption of Remazol Black 5 from aqueous solution by the templated crosslinked-chitosans.
Journal of Hazardous Materials, 177, (1-3), 668-675, (2010)
   
remediation
Ashraf S et al., Imprinted polymers for the removal of heavy metal ions from water.
Water Science And Technology, 64, (6), 1325-1332, (2011)
   
remote sensing
Proceeding, Cennamo N et al, Surface plasmon resonance in a D-shaped plastic optical fibre: Influence of gold layer thickness in monitoring molecularly imprinted polymers,
227-231, (2016)
   
remote sensing
Cennamo N et al., Intensity-based plastic optical fiber sensor with molecularly imprinted polymer sensitive layer.
Sensors and Actuators B: Chemical, 241, 534-540, (2017)
   
remote sensor
Stokes DL et al., Demonstration of a separations-based fiberoptic sensor for bioanalysis.
Analytica Chimica Acta, 399, (3), 201-212, (1999)
   
removal
Kabanov VA et al., Complex-forming polymeric sorbents with macromolecular arrangement favourable for ion sorption.
Journal of Applied Polymer Science, 24, (1), 259-267, (1979)
   
removal
Belokon YN et al., Biomimetic approach to the design of a pyridoxal enzyme model 1. Hydrophilic polyacrylamide gel with stereochemically defined arrangements of salicaldehyde and lysine fragments.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 181, (10), 2183-2197, (1980)
   
removal
Belokon YN et al., Biomimetic approach to the design of a pyridoxal enzyme model .2. Cyclo-copolymerization as a new method of constructing polymers with defined arrangement of functional-groups in the chain.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 183, (8), 1921-1934, (1982)
   
removal
Sellergren B et al., Molecular imprinting of amino-acid derivatives in macroporous polymers - demonstration of substrate-selectivity and enantio-selectivity by chromatographic resolution of racemic mixtures of amino-acid derivatives.
Journal of Chromatography, 347, (1), 1-10, (1985)
   
removal
Russell AJ et al., Inhibitor-induced enzyme activation in organic-solvents.
Journal of Biological Chemistry, 263, (24), 11624-11626, (1988)
   
removal
Sarhan A et al., Racemic-resolution of mandelic-acid on polymers with chiral cavities .3. Co-operative binding over phenylboronic acid groups and N-bases.
Reactive Polymers, 11, (1), 57-70, (1989)
   
removal
Dabulis K et al., Design of novel receptors by molecular imprinting of proteins.
Abstracts of Papers of the American Chemical Society, 200, (BIOT), 28-28, (1990)
   
removal
Ellis JW et al., Studies on the removal of a carbohydrate template from an imprinted DVB copolymer matrix with potential HPLC applications.
Abstracts of Papers of the American Chemical Society, 212, (MSE), 251-251, (1996)
   
removal
Mishra P et al., Structural basis for the molecular memory of imprinted proteins in anhydrous media.
Biotechnology and Bioengineering, 52, (5), 609-614, (1996)
   
removal
Siemann M et al., Selective recognition of the herbicide atrazine by noncovalent molecularly imprinted polymers.
Journal of Agricultural and Food Chemistry, 44, (1), 141-145, (1996)
   
removal
Wang HY et al., Molecular imprint membranes prepared by the phase inversion precipitation technique.
Langmuir, 12, (20), 4850-4856, (1996)
   
removal
Chen H et al., Metal-ion-templated polymers: Synthesis and structure of N-(4- vinylbenzyl)-1,4,7-triazacyclononanezinc(II) complexes, their copolymerization with divinylbenzene, and metal-ion selectivity studies of the demetalated resins - Evidence for a sandwich complex in the polymer matrix.
Angewandte Chemie International Edition, 36, (6), 642-645, (1997)
   
removal
Book chapter, Dickert FLet al., SAW and QMB for chemical sensing,
In: Proceedings of the 1997 IEEE International Frequency Control Symposium,
IEEE: New York, 120-123, (1997)    
removal
Fish RH, Metal ion templated polymers. Synthesis and structure of N-(4-vinylbenzyl)-1,4,7-triazacyclononane-metal complexes, polymerization of the metal-monomer complexes with divinylbenzene, and metal ion selectivity studies of the demetalated resins.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 147-147, (1997)
   
removal
Kobayashi T et al., Molecular imprinted membranes having a cross-linked gel layer prepared by photograft polymerization.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 28-28, (1997)
   
removal
Shea KJ, Molecular imprinting. The de novo synthesis of macromolecular binding and catalytic sites.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 145-145, (1997)
   
removal
Wulff G, Molecular imprinting in polymers - New opportunities in separation and catalysis.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 96-96, (1997)
   
removal
Bae SY et al., Photometric method for the determination of Pb2+ following separation and preconcentration using a templated ion-exchange resin.
Journal of Analytical Atomic Spectrometry, 13, (10), 1177-1180, (1998)
   
removal
Burleigh M et al., Removal of Cu2+ from aqueous solutions via sol-gel extraction. A molecular imprinting approach.
Abstracts of Papers of the American Chemical Society, 216, (INOR), 196-196, (1998)
   
removal
Proceeding, Castro B et al, Molecular modeling as a tool for predicting ligand-receptor interactions in molecularly imprinted polymers used for the removal of organosulfur compounds from fuels,
329-336, (1998)
   
removal
Makote R et al., Template recognition in inorganic-organic hybrid films prepared by the sol-gel process.
Chemistry of Materials, 10, (9), 2440-2445, (1998)
   
removal
Ray A et al., Construction of template polymeric ligand with 8-hydroxyquinoline.
Journal of Applied Polymer Science, 67, (7), 1215-1219, (1998)
   
removal
Burleigh M et al., Removal of UO22+ and Sr2+ from aqueous solutions via sol-gel extraction. A molecular imprinting approach.
Abstracts of Papers of the American Chemical Society, 217, (NUCL), 72-72, (1999)
   
removal
Ciuffi KJ et al., Polymeric organic-inorganic hybrid material containing iron(III) porphyrin using sol-gel process.
Journal of Non-Crystalline Solids, 247, (1-3), 146-152, (1999)
   
removal
Ensing K et al., Tailor-made materials for tailor-made applications: application of molecular imprints in chemical analysis.
TrAC Trends in Analytical Chemistry, 18, (3), 138-145, (1999)
   
removal
Kanekiyo Y et al., "Molecular-imprinting" of AMP utilising the polyion complex formation process as detected by a QCM system.
Journal of the Chemical Society-Perkin Transactions 2, (12), 2719-2722, (1999)
   
removal
Kanekiyo Y et al., "Molecular-imprinting" in polyion complexes which creates the "memory" for the AMP template.
Journal of the Chemical Society-Perkin Transactions 2, (3), 557-561, (1999)
   
removal
Kawanami Y et al., Imprinted polymer catalysts for the hydrolysis of p-nitrophenyl acetate.
Journal of Molecular Catalysis A: Chemical, 145, (1-2), 107-110, (1999)
   
removal
Lye GJ et al., Application of in situ product-removal techniques to biocatalytic processes.
Trends In Biotechnology, 17, (10), 395-402, (1999)
   
removal
Takeuchi T et al., Separation and sensing based on molecular recognition using molecularly imprinted polymers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 728, (1), 1-20, (1999)
   
removal
Ye L et al., Use of molecularly imprinted polymers in a biotransformation process.
Biotechnology and Bioengineering, 64, (6), 650-655, (1999)
   
removal
Katz A et al., Molecular imprinting of bulk, microporous silica.
Nature, 403, (6767), 286-289, (2000)
   
removal
Sasaki DY et al., Solid-state 31P NMR study of phosphonate binding sites in guanidine-functionalized, molecular imprinted silica xerogels.
Chemistry of Materials, 12, (5), 1400-1407, (2000)
   
removal
Saunders GD et al., A selective uranium extraction agent prepared by polymer imprinting.
Chemical Communications, (4), 273-274, (2000)
   
removal
Shi HQ et al., Template recognition of protein-imprinted polymer surfaces.
Journal of Biomedical Materials Research, 49, (1), 1-11, (2000)
   
removal
Singh A et al., Towards achieving selectivity in metal ion binding by fixing ligand-chelator complex geometry in polymers.
Reactive and Functional Polymers, 44, (1), 79-89, (2000)
   
removal
Dai S, Hierarchically imprinted sorbents.
Chemistry - A European Journal, 7, (4), 763-768, (2001)
   
removal
Gutierrez-Fernandez S et al., Molecularly imprinted polyphosphazene films as recognition element in a voltammetric rifamycin SV sensor.
Electroanalysis, 13, (17), 1399-1404, (2001)
   
removal
Hwang CC et al., Chromatographic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 765, (1), 45-53, (2001)
   
removal
Ichinose I et al., Ultrathin composite films: An indispensable resource for nanotechnology.
RIKEN Reviews, 37, 34-37, (2001)
   
removal
Kim JM et al., Cholesterol esterase activity of a molecularly imprinted polymer.
Macromolecular Chemistry And Physics, 202, (7), 1105-1108, (2001)
   
removal
Spivak DA, Development of novel crosslinking monomers for molecularly imprinted polymers.
Abstracts of Papers of the American Chemical Society, 221, (ORGN), 694-694, (2001)
   
removal
Carter SR et al., Surface molecular imprinting in aqueous medium on polymer core-shell particles.
Abstracts of Papers of the American Chemical Society, 224, (COLL), 363-363, (2002)
   
removal
Coutinho D et al., Molecular imprinting of mesoporous SBA-15 with chiral ruthenium complexes.
Microporous And Mesoporous Materials, 54, (3), 249-255, (2002)
   
removal
Proceeding, Kanekiyo Y et al, Endocrine disruptor-responsive QCM sensors constructed using molecularly imprinted amylose as sensing elements,
In: Polymer Preprints, Japan,
1661, (2002)
   
removal
Park JK et al., Characteristics of phenylalanine imprinted membrane prepared by the wet phase inversion method.
Korean Journal of Chemical Engineering, 19, (6), 940-948, (2002)
   
removal
Rzysko W et al., Theory of adsorption in a polydisperse templated porous material: Hard sphere systems.
Journal of Chemical Physics, 116, (10), 4286-4292, (2002)
   
removal
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting using helical polymethacrylate as template and its chiral recognition ability,
In: Polymer Preprints, Japan,
1708, (2002)
   
removal
Tada M et al., Design, characterization and performance of a molecular imprinting Rh-dimer hydrogenation catalyst on a SiO2 surface.
Physical Chemistry Chemical Physics, 4, (23), 5899-5909, (2002)
   
removal
Tada M et al., Novel SiO2-attached molecular-imprinting Rh-monomer catalysts for shape-selective hydrogenation of alkenes; preparation, characterization and performance.
Physical Chemistry Chemical Physics, 4, (18), 4561-4574, (2002)
   
removal
Yu YH et al., Removal of the fermentation by-product succinyl L-tyrosine from the b-lactamase inhibitor clavulanic acid using a molecularly imprinted polymer.
Biotechnology and Bioengineering, 79, (1), 23-28, (2002)
   
removal
Cacho C et al., Clean-up of triazines in vegetable extracts by molecularly-imprinted solid-phase extraction using a propazine-imprinted polymer.
Analytical and Bioanalytical Chemistry, 376, (4), 491-496, (2003)
   
removal
Dujardin E et al., Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions.
Journal of Materials Chemistry, 13, (4), 696-699, (2003)
   
removal
Emgenbroich M et al., A new enzyme model for enantioselective esterases based on molecularly imprinted polymers.
Chemistry - A European Journal, 9, (17), 4106-4117, (2003)
   
removal
Friboulet A, From enzymes to new biocatalysts: Towards new therapeutic strategies.
Actualité Chimique, (11-12), 15-19, (2003)
   
removal
Fujikawa S et al., Surface fabrication of hollow nanoarchitectures of ultrathin titania layers from assembled latex particles and tobacco mosaic viruses as templates.
Langmuir, 19, (16), 6545-6552, (2003)
   
removal
Kubo T et al., On-column concentration of bisphenol A with one-step removal of humic acids in water.
Journal of Chromatography A, 987, (1-2), 389-394, (2003)
   
removal
Lai EPC et al., Molecularly imprinted solid phase extraction for rapid screening of cephalexin in human plasma and serum.
Analytica Chimica Acta, 481, (2), 165-174, (2003)
   
removal
Mitchell-Koch JT et al., Immobilization of a europium salen complex within porous organic hosts: Modulation of luminescence properties in different chemical environments.
Chemistry of Materials, 15, (18), 3490-3495, (2003)
   
removal
Sanbe H et al., Preparation of uniformly sized molecularly imprinted polymers for phenolic compounds and their application to the assay of bisphenol A in river water.
Analytical Sciences, 19, (5), 715-719, (2003)
   
removal
Say R et al., Preconcentration of copper on ion-selective imprinted polymer microbeads.
Analytica Chimica Acta, 480, (2), 251-258, (2003)
   
removal
Tada M et al., Design of molecular-imprinting metal-complex catalysts.
Journal of Molecular Catalysis A: Chemical, 199, (1-2), 115-137, (2003)
   
removal
Tamayo FG et al., Highly selective fenuron-imprinted polymer with a homogeneous binding site distribution prepared by precipitation polymerisation and its application to the clean-up of fenuron in plant samples.
Analytica Chimica Acta, 482, (2), 165-173, (2003)
   
removal
Wandelt B et al., Steady-state and time-resolved fluorescence studies of fluorescent imprinted polymers.
Journal of Luminescence, 102-103, (1), 774-781, (2003)
   
removal
Zuo XB et al., Molecularly imprinted polymers for the specific rebinding of macrocyclic metal complexes via non-covalent interactions.
Abstracts of Papers of the American Chemical Society, 225, (NUCL), 26-26, (2003)
   
removal
Aït-Haddou H et al., Amino-acid containing metallomonomers copolymerized into porous organic polymers: applicability to allylic alkylation catalysis.
Inorganica Chimica Acta, 357, (13), 3854-3864, (2004)
   
removal
Andaç M et al., Molecular recognition based cadmium removal from human plasma.
Journal of Chromatography B, 811, (2), 119-126, (2004)
   
removal
Asanuma H et al., Efficient separation of hydrophobic molecules by molecularly imprinted cyclodextrin polymers.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 50, (1-2), 51-55, (2004)
   
removal
Ebarvia BS et al., Biomimetic piezoelectric quartz sensor for caffeine based on a molecularly imprinted polymer.
Analytical and Bioanalytical Chemistry, 378, (5), 1331-1337, (2004)
   
removal
Ersöz A et al., Removal of phenolic compounds with nitrophenol-imprinted polymer based on p-p and hydrogen-bonding interactions.
Separation and Purification Technology, 38, (2), 173-179, (2004)
   
removal
Gong SL et al., Dye-molecular-imprinted polysiloxanes. II. Preparation, characterization, and recognition behavior.
Journal of Applied Polymer Science, 93, (2), 637-643, (2004)
   
removal
Habaue S et al., Synthesis of polymer gel with chiral helical cavity by molecular imprinting using bifunctional vinyl monomers.
Polymer, 45, (15), 5095-5100, (2004)
   
removal
Book chapter, Katada Net al., Molecular sieving overlayer prepared by chemical vapor deposition of silica using molecule as template on metal oxide surface,
In: Recent Advances In The Science And Technology Of Zeolites And Related Materials, Parts A -C, van Steen E, Callanan H, Claeys M (Eds.)
Elsevier: Amsterdam, 710-716, (2004)    
removal
Katada N et al., Improvement of selectivity in specific adsorption by the addition of acetic acid during the CVD of silicon alkoxide to form a silica overlayer with a molecular sieving property.
Chemical Vapor Deposition, 10, (2), 103-107, (2004)
   
removal
Kubo T et al., Toxicity recognition of hepatotoxin, homologues of microcystin with artificial trapping devices.
Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 39, (10), 2597-2614, (2004)
   
removal
Kunitake T et al., Molecular imprinting in ultrathin titania gel films via surface sol-gel process.
Analytica Chimica Acta, 504, (1), 1-6, (2004)
   
removal
Proceeding, Kuzmic AE et al, Molecularly imprinted crosslinked copolymers prepared by thermal degradation of poly(N-methacryl-N,N-dicyclohexylurea-co-ethylene glycol dimethacrylate),
2679-2685, (2004)
   
removal
Lu YK et al., An imprinted organic-inorganic hybrid sorbent for selective separation of cadmium from aqueous solution.
Analytical Chemistry, 76, (2), 453-457, (2004)
   
removal
Maier NM et al., Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: merits and limitations.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 103-111, (2004)
   
removal
Malaisamy R et al., Evaluation of molecularly imprinted polymer blend filtration membranes under solid phase extraction conditions.
Separation and Purification Technology, 39, (3), 211-219, (2004)
   
removal
Matsui J et al., Synthetic cinchonidine receptors obtained by cross-linking linear poly(methacrylic acid) derivatives as an alternative molecular imprinting technique.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 223-229, (2004)
   
removal
Navarro-Villoslada F et al., Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A.
Analytica Chimica Acta, 504, (1), 149-162, (2004)
   
removal
Park JK et al., Separation of phenylalanine by ultrafiltration using D-Phe imprinted polyacrylonitrile-poly(acrylic acid)-poly(acryl amide) terpolymer membrane.
Korean Journal of Chemical Engineering, 21, (5), 994-998, (2004)
   
removal
Piletsky S et al., Custom synthesis of molecular imprinted polymers for biotechnological application - Preparation of a polymer selective for tylosin.
Analytica Chimica Acta, 504, (1), 123-130, (2004)
   
removal
Rao TP et al., Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE).
TrAC Trends in Analytical Chemistry, 23, (1), 28-35, (2004)
   
removal
Rushton GT et al., Selective byproduct removal via molecular imprinting.
Abstracts of Papers of the American Chemical Society, 227, (POLY), 83-83, (2004)
   
removal
Sagawa T et al., Rate-enhancement of hydrolysis of long-chain amino acid ester by cross-linked polymers imprinted with a transition-state analogue: evaluation of imprinting effect in kinetic analysis.
Analytica Chimica Acta, 504, (1), 37-41, (2004)
   
removal
Silvestri D et al., Molecularly imprinted bioartificial membranes for the selective recognition of biological molecules.
Journal of Biomaterials Science-Polymer Edition, 15, (3), 255-278, (2004)
   
removal
Proceeding, Snowden EM et al, The removal of mousy off-flavour from wine using molecular imprint technology,
Blair RJ, Williams PJ, Pretorius IS (Eds.),
301-302, (2004)
   
removal
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
removal
Tada M et al., Design of a novel molecular-imprinted Rh-amine complex on SiO2 and its shape-selective catalysis for a-methylstyrene hydrogenation.
Journal of Physical Chemistry B, 108, (9), 2918-2930, (2004)
   
removal
Wandelt B et al., Monitoring of cAMP-imprinted polymer by fluorescence spectroscopy.
Biosensors and Bioelectronics, 20, (6), 1031-1039, (2004)
   
removal
Wu LQ et al., Study on the recognition of templates and their analogues on molecularly imprinted polymer using computational and conformational analysis approaches.
Journal of Molecular Recognition, 17, (6), 567-574, (2004)
   
removal
Zimmerman SC et al., Synthetic hosts via molecular imprinting - are universal synthetic antibodies realistically possible?
Chemical Communications, (1), 5-14, (2004)
   
removal
Feng JY et al., Removal of the template molecules from vinblastine-imprinted polymer.
Journal of Southern Medical University, 27, (3), 268-271, (2007)
   
removal
Qi JY et al., Selective removal of Cu(II) from contaminated water using molecularly imprinted polymer.
Frontiers of Chemical Engineering in China, 2, (1), 109-114, (2008)
   
removal
Li Y et al., Selective removal of 2,4-dichlorophenol from contaminated water using non-covalent imprinted microspheres.
Environmental Pollution, 157, (6), 1879-1885, (2009)
   
removal
Özkütük EB et al., Selective Separation of Thiocyanate Ion by Ion-Imprinted Polymer.
Hacettepe Journal of Biology and Chemistry, 37, (3), 207-215, (2009)
   
removal
Li Y et al., Synthesis of core-shell magnetic molecular imprinted polymer by the surface RAFT polymerization for the fast and selective removal of endocrine disrupting chemicals from aqueous solutions.
Environmental Pollution, 158, (6), 2317-2323, (2010)
   
removal
Proceeding, Liu J et al, Removal of chlorpyrifos from contaminated water using molecularly imprinted polymeric microspheres,
Art. No. 5514935, (2010)
   
removal
Jiang HM et al., Removal of Cholesterol by β-Cyclodextrin.
Asian Journal of Chemistry, 23, (9), 3783-3786, (2011)
   
removal
Liu BJ et al., Removal of arsenic from Laminaria japonica Aresch juice using As(III)-imprinted chitosan resin.
European Food Research and Technology, 232, (5), 911-917, (2011)
   
removal
Luo XB et al., Removal of water-soluble acid dyes from water environment using a novel magnetic molecularly imprinted polymer.
Journal of Hazardous Materials, 187, (1-3), 274-282, (2011)
   
removal
Sun SD et al., Polymeric Particles for the Removal of Endocrine Disruptors.
Separation & Purification Reviews, 40, (4), 312-337, (2011)
   
removal
Yang ZP et al., Enhanced removal of bilirubin on molecularly imprinted titania film.
Colloids and Surfaces B: Biointerfaces, 87, (1), 187-191, (2011)
   
removal
Proceeding, Zhang KC et al, Removal of Rotenone from Contaminated Water Using Molecularly Imprinted Polymeric Microspheres,
In: Applied Mechanics and Materials, Sun DY, Sung WP, Chen R (Eds.),
1425-1428, (2011)
   
removal
Türker AR, Separation, Preconcentration and Speciation of Metal Ions by Solid Phase Extraction.
Separation & Purification Reviews, 41, (3), 169-206, (2012)
   
removal
Zhang XJ et al., Selective adsorption of micro ciprofloxacin by molecularly imprinted functionalized polymers appended onto ZnS.
Environmental Technology, 33, (17), 2019-2025, (2012)
   
removal
An FQ et al., Selectively removal of Al(III) from Pr(III) and Nd(III) rare earth solution using surface imprinted polymer.
Reactive and Functional Polymers, 73, (1), 60-65, (2013)
   
removal
An FQ et al., Removal of Fe(II) from Ce(III) and Pr(III) rare earth solution using surface imprinted polymer.
Desalination and Water Treatment, 51, (28-30), 5566-5573, (2013)
   
removal
Kamel AH, Preparation and Characterization of Innovative Selective Imprinted Polymers for the Removal of Hazardous Mercury Compounds From Aqueous Solution.
Life Science Journal-Acta Zhengzhou University Overseas Edition, 10, (4), 1657-1664, (2013)
   
removal
Wang WS et al., Effective removal of Fe(II) impurity from rare earth solution using surface imprinted polymer.
Chemical Engineering Research and Design, 91, (12), 2759-2764, (2013)
   
removal
Wu JB et al., Removal of cadmium from aqueous solution by organic-inorganic hybrid sorbent combining sol-gel processing and imprinting technique.
Korean Journal of Chemical Engineering, 30, (5), 1111-1118, (2013)
   
removal
Zhang WL et al., Performance evaluation and application of surface-molecular-imprinted polymer-modified TiO2 nanotubes for the removal of estrogenic chemicals from secondary effluents.
Environmental Science and Pollution Research, 20, (3), 1431-1440, (2013)
   
removal
Fan HT et al., Selective removal of antimony(III) from aqueous solution using antimony(III)-imprinted organic-inorganic hybrid sorbents by combination of surface imprinting technique with sol-gel process.
Chemical Engineering Journal, 258, 146-156, (2014)
   
removal
Huang YH et al., Rapid Removal of Aniline from Contaminated Water by a Novel Polymeric Adsorbent.
Water Environment Research, 86, (1), 20-27, (2014)
   
removal
Surikumaran H et al., Molecular Imprinted Polymer of Methacrylic Acid Functionalised β-Cyclodextrin for Selective Removal of 2,4-Dichlorophenol.
International Journal of Molecular Sciences, 15, (4), 6111-6136, (2014)
   
removal
Bayramoglu G et al., Removal of bisphenol A from aqueous medium using molecularly surface imprinted microbeads.
Chemosphere, 150, 275-284, (2016)
   
removal
Kang RF et al., A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater.
Journal of Environmental Chemical Engineering, 4, (2), 2268-2277, (2016)
   
removal
Pakade VE et al., Removal of Ni(II) Ions from Aqueous Solutions Using Ion Imprinted Polymer Prepared from Dual Vinyl Monomers.
Asian Journal of Scientific Research, 9, (4), 131-142, (2016)
   
removal
Surikumaran H et al., Synthesis and evaluation of methacrylic acid functionalized β-cyclodextrin based molecular imprinted polymer for 2,4-dichlorophenol in water samples.
Desalination and Water Treatment, 57, (1), 254-267, (2016)
   
removal
Birlik Özkütük E et al., Synergistic thallium and iodine memory-based cryogel traps for removing thallium and iodine ions.
Journal of Radioanalytical and Nuclear Chemistry, 314, (3), 2229-2236, (2017)
   
removal
Roy E et al., RETRACTED Single cell imprinting on the surface of Ag-ZnO bimetallic nanoparticle modified graphene oxide sheets for targeted detection, removal and photothermal killing of E. Coli (Retracted).
Biosensors and Bioelectronics, 89, (Part 1), 620-626, (2017)
   
removal
Yuan GY et al., A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions.
Chemical Engineering Journal, 333, 280-288, (2018)
   
removal
An FQ et al., Design of novel "imprinting synchronized with crosslinking" surface imprinted technique and its application for selectively removing phenols from aqueous solution.
European Polymer Journal, 112, 273-282, (2019)
   
removal
Osman B et al., Molecularly imprinted composite cryogel for extracorporeal removal of uric acid.
Colloids and Surfaces B: Biointerfaces, 183, Article110456-(2019)
   
removal
Xie XW et al., Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water.
Chemical Engineering Journal, 357, 56-65, (2019)
   
removal
Lu YC et al., A novel strategy for selective removal and rapid collection of triclosan from aquatic environment using magnetic molecularly imprinted nano-polymers.
Chemosphere, 238, Article124640-(2020)
   
removal
Husin NA et al., Application of a new choline-imidazole based deep eutectic solvents in hybrid magnetic molecularly imprinted polymer for efficient and selective removal of naproxen from aqueous samples.
Materials Chemistry and Physics, 261, Article124228-(2021)
   
Removal efficiency
Jing T et al., Highly effective removal of 2,4-dinitrophenolic from surface water and wastewater samples using hydrophilic molecularly imprinted polymers.
Environmental Science and Pollution Research, 21, (2), 1153-1162, (2014)
   
Removal of calcon dye
Fathi MR et al., Synthesis of calcon-imprinted magnetic chitosan nanoparticles as a novel adsorbent and its application in selective removal of calcon dye from aqueous solutions.
International Journal of Biological Macromolecules, 114, 1151-1160, (2018)
   
Removal of copper cations
Kenawy IM et al., Synthesis and characterization of novel ion-imprinted guanyl-modified cellulose for selective extraction of copper ions from geological and municipality sample.
International Journal of Biological Macromolecules, 115, 625-634, (2018)
   
removal of Cu2+
Azizinezhad F et al., A rapid and sensitive method for separation of Cu2+ ions from industrial wastewater sample and water samples with methacrylamide-ethylene glycol dimethacrylate: A new synthesis of molecularly imprinted polymer.
IET Nanobiotechnology, 15, (9), 698-709, (2021)
   
removal of lead ions in water
He YY et al., A novel lead-ion-imprinted magnetic biosorbent: preparation, optimization and characterization.
Environmental Technology, 40, (4), 499-507, (2019)
   
Removal of proteins
Chen FF et al., A dual-step immobilization/imprinting approach to prepare magnetic molecular imprinted polymers for selective removal of human serum albumin.
Talanta, 209, Article120509-(2020)
   
Removal of X-3B
Deng H et al., Enhanced adsorption of active brilliant red X-3B dye on chitosan molecularly imprinted polymer functionalized with Ti(IV) as Lewis acid.
Carbohydrate Polymers, 157, 1190-1197, (2017)
   
removal rate
Liu YQ et al., Adsorption of Cr(VI) by modified chitosan from heavy-metal polluted water of Xiangjiang River, China.
Transactions of Nonferrous Metals Society of China, 23, 3095-3103, (2013)
   
Removal techniques
Balouch A et al., Review: Arsenic Remediation by Synthetic and Natural Adsorbents.
Pakistan Journal of Analytical & Environmental Chemistry, 18, (1), 18-36, (2017)
   
Removal techniques
Kumar A et al., Remediation techniques applied for aqueous system contaminated by toxic Chromium and Nickel ion.
Geology, Ecology, and Landscapes, 1, (2), 143-153, (2017)
   
Removal treatments
Silva CP et al., Processes for the elimination of estrogenic steroid hormones from water: A review.
Environmental Pollution, 165, (1), 38-58, (2012)
   
renal calculi
Egan TJ et al., Nucleation of calcium oxalate crystals on an imprinted polymer surface from pure aqueous solution and urine.
Journal of Biological Inorganic Chemistry, 9, (2), 195-202, (2004)
   
RENAL STONE FORMATION
Egan TJ et al., Nucleation of calcium oxalate crystals on an imprinted polymer surface from pure aqueous solution and urine.
Journal of Biological Inorganic Chemistry, 9, (2), 195-202, (2004)
   
renaturation
Pande VS et al., Thermodynamic procedure to synthesize heteropolymers that can renature to recognize a given target molecule.
Proceedings of the National Academy of Sciences of the United States of America, 91, (26), 12976-12979, (1994)
   
renaturation
Pande VS et al., Phase-diagram of an imprinted copolymer in a random external-field.
Journal of Physics A-Mathematical and General, 28, (13), 3657-3666, (1995)
   
renaturation
Pande VS et al., How to create polymers with protein-like capabilities: A theoretical suggestion.
Physica D, 107, (2-4), 316-321, (1997)
   
renaturation
Liu YB et al., Magnetic surface imprinted hydrogel nanoparticles for specific and reversible stabilization of proteins.
Molecular Imprinting, 3, (1), 47-54, (2015)
   
Renewable enzyme reactor
Hjertén M et al., Renewable enzyme reactors based on beds of artificial gel antibodies.
Journal of Biochemical and Biophysical Methods, 70, (6), 1188-1191, (2008)
   
Rental disease
Zhang ZY et al., Molecular Imprinting Electrochemical Sensor for Sensitive Creatinine Determination.
International Journal of Electrochemical Science, 13, 2986-2995, (2018)
   
ReO4-
Zhao SY et al., Selective identification and separation of ReO4- by biomimetic flexible temperature-sensitive imprinted composite membranes.
Talanta, 235, Article122791-(2021)
   
reoxygenation model
Xie J et al., A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation.
Journal of Chromatography A, 1576, 10-18, (2018)
   
Repaglinide
Roushani M et al., Development of Electrochemical Sensor Based on Glassy Carbon Electrode Modified with a Molecularly Imprinted Copolymer and its Application for Detection of Repaglinide.
Electroanalysis, 30, (11), 2712-2718, (2018)
   
Repeatability
Liu ZG et al., Core-Shell Regeneration Magnetic Molecularly Imprinted Polymers-Based SERS for Sibutramine Rapid Detection.
ACS Sustainable Chemistry & Engineering, 7, (9), 8168-8175, (2019)
   
repeated batch
Park JK et al., Characteristics of selective adsorption using D-Phenylalanine imprinted terpolymer beads.
Korean Journal of Chemical Engineering, 22, (6), 927-931, (2005)
   
REPLACEABLE POLYMER- SOLUTIONS
Gilar M et al., Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods.
Journal of Chromatography A, 909, (2), 111-135, (2001)
   
replica molding
Tian C et al., DNA Nanostructures-Mediated Molecular Imprinting Lithography.
ACS Nano, 11, (1), 227-238, (2017)
   
replication
Johnson SA et al., Ordered mesoporous polymers of tunable pore size from colloidal silica templates.
Science, 283, (5404), 963-965, (1999)
   
replication
de Oliviera EC et al., Why are carbon molecular sieves interesting?
Journal of the Brazilian Chemical Society, 17, (1), 16-29, (2006)
   
Reproducibility
Syu MJ et al., Amperometric detection of bilirubin from a micro-sensing electrode with a synthetic bilirubin imprinted poly(MAA-co-EGDMA) film.
Biosensors and Bioelectronics, 22, (4), 550-557, (2006)
   
REQUIREMENTS
Green M, Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting: selectivity dependence on the arrangements of functional groups versus spatial requirements.
Chemtracts: Macromol. Chem., 2, (5), 338-370, (1991)
   
REQUIREMENTS
Wulff G et al., Enzyme-analog-built polymers .27. Racemic-resolution of free sugars with macroporous polymers prepared by molecular imprinting - selectivity dependence on the arrangement of functional-groups versus requirements.
Journal of Organic Chemistry, 56, (1), 395-400, (1991)
   
REQUIREMENTS
Tahmassebi DC et al., Synthesis of a new trialdehyde template for molecular imprinting.
Journal of Organic Chemistry, 59, (3), 679-681, (1994)
   
REQUIREMENTS
Pande VS et al., How to create polymers with protein-like capabilities: A theoretical suggestion.
Physica D, 107, (2-4), 316-321, (1997)
   
REQUIREMENTS
Sellergren B, Important considerations in the design of receptor sites using noncovalent imprinting.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 97-97, (1997)
   
REQUIREMENTS
de Boer T et al., Selectivity in capillary electrokinetic separations.
Electrophoresis, 20, (15-16), 2989-3010, (1999)
   
REQUIREMENTS
Boos KS et al., Bioanalytical solid-phase extraction: A classic in a new, tailor-made garment.
Chimia, 55, (1-2), 42-45, (2001)
   
REQUIREMENTS
Gilar M et al., Advances in sample preparation in electromigration, chromatographic and mass spectrometric separation methods.
Journal of Chromatography A, 909, (2), 111-135, (2001)
   
REQUIREMENTS
Maier NM et al., Separation of enantiomers: needs, challenges, perspectives.
Journal of Chromatography A, 906, (1-2), 3-33, (2001)
   
REQUIREMENTS
Piletsky SA et al., Electrochemical sensors based on molecularly imprinted polymers.
Electroanalysis, 14, (5), 317-323, (2002)
   
REQUIREMENTS
Hiratani H et al., The nature of backbone monomers determines the performance of imprinted soft contact lenses as timolol drug delivery systems.
Biomaterials, 25, (6), 1105-1113, (2004)
   
Research
Tomasik JH et al., Development and Preliminary Impacts of the Implementation of an Authentic Research-Based Experiment in General Chemistry.
Journal of Chemical Education, 90, (9), 1155-1161, (2013)
   
research development
Lv KQ et al., Application and Research Development of Molecular Imprinting in Analysis of Drug Residues in Food.
Guangzhou Chemical Industry, 45, (2), 18-19,44, (2017)
   
Research progress
Hu XG et al., Progress in preparation technique of molecularly imprinted polymer.
Journal of South China Normal University (Natural Science Edition), (3), 150-157, (2003)
   
Research progress
Zhang JH et al., Advancement in preparation and application of MIPs.
Fangzhi Gaoxiao Jichukexue Xuebao, 16, (3), 189-194, (2003)
   
Research progress
Qin H et al., Progress of Proteins Imprinted Technique and Prospect of Its Application.
Food Science, 28, (8), 577-580, (2007)
   
Research progress
Cao YB et al., Advance of Application of Molecular Imprinting Technique in Pharmaceutical Science.
Guangzhou Chemistry, 33, (4), 56-60, (2008)
   
Research progress
Zhang SH et al., Progress in Syntheses and Investigation of Molecular Imprinting Polymers on Silica-Gel Surface.
Chinese Polymer Bulletin, (4), 17-29, (2010)
   
Research progress
Guo L et al., Study on Molecular Imprinting Detection Technique of Sulfonylurea Herbicides.
Food Research and Development, 33, (5), 216-219, (2012)
   
Research progress
Proceeding, Xiao SJ et al, Research Progress of Molecular Imprinting Technology,
In: Advanced Materials Research, Bu JL, Kim YH (Eds.),
1678-1681, (2013)
   
Reserpine
Shi XZ et al., Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs.
Biomaterials, 28, (25), 3741-3749, (2007)
   
Residual analysis
He YH et al., Assessment of magnetic core-shell mesoporous molecularly imprinted polymers for selective recognition of triazoles residual levels in cucumber.
Journal of Chromatography B, 1132, Article121811-(2019)
   
residual solvent
Joly C et al., Residual solvent effect on the permeation properties of fluorinated polyimide films.
Separation and Purification Technology, 16, 47-54, (1999)
   
residue
Belokon YN et al., Biomimetic approach to the design of a pyridoxal enzyme model 1. Hydrophilic polyacrylamide gel with stereochemically defined arrangements of salicaldehyde and lysine fragments.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 181, (10), 2183-2197, (1980)
   
residue
Nakagawa H et al., Spacer effect in the template polycondensation of nucleotide analogs with diamines.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 183, (9), 2065-2070, (1982)
   
residue
Book chapter, Hernandez Eet al., Biologically inspired recognition chemistry for biosensors. Design of recognition for ion-selective electrodes (ISEs),
In: Biosensors for Direct Monitoring of Environmental Pollutants in Field, Nikolelis DP, Krull UJ, Wang J, Mascini M (Eds.)
Kluwer Academic Publishers: Dordrecht, 97-106, (1997)    
residue
Harris L et al., Metal ion imprinted polymers for biomolecular recognition.
Abstracts of Papers of the American Chemical Society, 222, (ANYL), 90-90, (2001)
   
residue
Proceeding, Yoshikawa M et al, Chiral recognition ability of molecularly imprinted membranes with oligopeptide derivative tweezers,
In: Polymer Preprints, Japan,
331, (2002)
   
residue
Proceeding, Yoshikawa M et al, Chiral recognition ability of oligopeptide derivatives consisiting of glutamyl residues,
In: Polymer Preprints, Japan,
625, (2002)
   
residue
Bass JD et al., Thermolytic synthesis of imprinted amines in bulk silica.
Chemistry of Materials, 15, (14), 2757-2763, (2003)
   
residue
Mine Y et al., Structural effects of amphiphiles on Candida rugosa lipase activation by freeze-drying of aqueous solution of enzyme and amphiphile.
Journal of Bioscience and Bioengineering, 96, (6), 525-528, (2003)
   
residue
Taniwaki K et al., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy.
Analytica Chimica Acta, 489, (2), 191-198, (2003)
   
residue
Yoshikawa M et al., Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules.
Macromolecular Bioscience, 3, (9), 487-498, (2003)
   
residue
Aït-Haddou H et al., Amino-acid containing metallomonomers copolymerized into porous organic polymers: applicability to allylic alkylation catalysis.
Inorganica Chimica Acta, 357, (13), 3854-3864, (2004)
   
residue
Cserhati T et al., Chromatographic determination of herbicide residues in various matrices.
Biomedical Chromatography, 18, (6), 350-359, (2004)
   
residue
Davies MP et al., Approaches to the rational design of molecularly imprinted polymers.
Analytica Chimica Acta, 504, (1), 7-14, (2004)
   
residue
Dong XC et al., Synthesis and application of molecularly imprinted polymer on selective solid-phase extraction for the determination of monosulfuron residue in soil.
Journal of Chromatography A, 1057, (1-2), 13-19, (2004)
   
residue
Guiochon GA et al., Progress and future of instrumental analytical chemistry applied to the environment.
Analytica Chimica Acta, 524, (1-2), 1-14, (2004)
   
residue
Huang JT et al., Molecularly imprinting of polymeric nucleophilic catalysts containing 4-alkylaminopyridine functions.
Polymer, 45, (12), 4349-4354, (2004)
   
residue
Ikegami T et al., Bisphenol A-recognition polymers prepared by covalent molecular imprinting.
Analytica Chimica Acta, 504, (1), 131-135, (2004)
   
residue
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
residue
Widstrand C et al., Evaluation of MISPE for the multi-residue extraction of b-agonists from calves urine.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 85-91, (2004)
   
residue
Zhang HT et al., Food safety: Monitoring of organophosphate pesticide residues in crops and food.
Phosphorus Sulfur And Silicon And The Related Elements, 183, (2-3), 280-290, (2008)
   
residue
Du XW et al., Synthesis and Application of Class-specific Molecularly Imprinted Polymer for Triazine Pesticides.
Journal of Instrumental Analysis, 34, (7), 755-761, (2015)
   
residue analysis
Muldoon MT et al., Polymer synthesis and characterization of a molecularly imprinted sorbent assay for atrazine.
Journal of Agricultural and Food Chemistry, 43, (6), 1424-1427, (1995)
   
residue analysis
Tarbin JA et al., Development of molecularly imprinted phase for the selective retention of stilbene-type estrogenic compounds.
Analytica Chimica Acta, 433, (1), 71-79, (2001)
   
residue analysis
Tekel J et al., Isolation and purification techniques for pesticide residue analyses in samples of plant or animal origin.
European Food Research and Technology, 213, (4-5), 250-258, (2001)
   
residue analysis
Prutthiwanasan B et al., Fluorescent labelling of ciprofloxacin and norfloxacin and its application for residues analysis in surface water.
Talanta, 159, 74-79, (2016)
   
residue detection
Ma TJ et al., Applications of Molecular Imprinting Technique in the Detection of Pesticides.
Academic Periodical of Farm Products Processing, (9), 29-32,35, (2009)
   
residue detection
Feng GG et al., Preparation of molecularly imprinted polymer with class-specific recognition for determination of 29 sulfonylurea herbicides in agro-products.
Journal of Chromatography A, 1647, Article462143-(2021)
   
Residue determination
Wang H et al., Determination of penicillin residues in milk by molecular imprinting technology.
China Dairy Industry, 36, (6), 58-61, (2008)
   
Residue determination
Marazuela MD et al., A review of novel strategies of sample preparation for the determination of antibacterial residues in foodstuffs using liquid chromatography-based analytical methods.
Analytica Chimica Acta, 645, (1-2), 5-17, (2009)
   
Residue determination
Guo L et al., Study on Molecular Imprinting Detection Technique of Sulfonylurea Herbicides.
Food Research and Development, 33, (5), 216-219, (2012)
   
Residue determination
Hao J et al., Determination of Eleven β-Blocker Residues in Animal Derived Foods by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry with Molecularly Imprinted Solid Phase Extraction.
Journal of Instrumental Analysis, 35, (10), 1278-1282, (2016)
   
Residue determination
Tang T et al., Determination of semicarbazide in fish by molecularly imprinted stir bar sorptive extraction coupled with high performance liquid chromatography.
Journal of Chromatography B, 1076, 8-14, (2018)
   
Residue determination
Tan SJ et al., A dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for selective determination of four pyridine carboxylic acid herbicides in milk.
Journal of Chromatography B, 1108, 65-72, (2019)
   
residues
Wulff G et al., On the chemistry of binding-sites .7. Enantioselective binding using chiral boronic acids.
Recueil Des Travaux Chimiques Des Pays-Bas-Journal Of The Royal Netherlands Chemical Society, 109, 216-221, (1990)
   
residues
Book chapter, Hernandez Eet al., Biologically inspired recognition chemistry for biosensors. Design of recognition for ion-selective electrodes (ISEs),
In: Biosensors for Direct Monitoring of Environmental Pollutants in Field, Nikolelis DP, Krull UJ, Wang J, Mascini M (Eds.)
Kluwer Academic Publishers: Dordrecht, 97-106, (1997)    
residues
Kobayashi T et al., Molecularly imprinted membranes by a phase inversion method.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 155-155, (1997)
   
residues
Berglund J et al., Selection of phage display combinatorial library peptides with affinity for a yohimbine imprinted methacrylate polymer.
Analytical Communications, 35, (1), 3-7, (1998)
   
residues
Cheong SH et al., Synthesis and binding properties of a noncovalent molecularly imprinted testosterone-specific polymer.
Journal of Polymer Science Part A: Polymer Chemistry, 36, (11), 1725-1732, (1998)
   
residues
Knutsson M et al., Novel chiral recognition elements for molecularly imprinted polymer preparation.
Journal of Molecular Recognition, 11, (1-6), 87-90, (1998)
   
residues
Boury B et al., Generation of porosity in a hybrid organic-inorganic xerogel by chemical treatment.
New Journal of Chemistry, 23, (5), 531-538, (1999)
   
residues
Skudar K et al., Selective recognition and separation of b-lactam antibiotics using molecularly imprinted polymers.
Analytical Communications, 36, (9), 327-331, (1999)
   
residues
Asanuma H et al., Molecular imprinting of cyclodextrin in water for the recognition of nanometer-scaled guests.
Analytica Chimica Acta, 435, (1), 25-33, (2001)
   
residues
Brambilla G et al., Use of molecularly imprinted polymers in the solid-phase extraction of clenbuterol from animal feeds and biological matrices.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 759, (1), 27-32, (2001)
   
residues
Harris L et al., Metal ion imprinted polymers for biomolecular recognition.
Abstracts of Papers of the American Chemical Society, 222, (ANYL), 90-90, (2001)
   
residues
Yoshikawa M et al., Novel membrane materials having EEE derivatives as a chiral recognition site.
European Polymer Journal, 37, (2), 335-342, (2001)
   
residues
Yoshikawa M et al., Novel polymeric membranes having chiral recognition sites converted from tripeptide derivatives.
Analyst, 126, (6), 775-780, (2001)
   
residues
Byrne ME et al., Networks for recognition of biomolecules: Molecular imprinting and micropatterning poly(ethylene glycol)-containing films.
Polymers for Advanced Technologies, 13, (10-12), 798-816, (2002)
   
residues
Lu Y et al., Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers.
Journal of Chromatography A, 950, (1-2), 89-97, (2002)
   
residues
Matsui J et al., Molecular imprinting in alcohols: utility of a pre-polymer based strategy for synthesizing stereoselective artificial receptor polymers in hydrophilic media.
Analytica Chimica Acta, 466, (1), 11-15, (2002)
   
residues
Yoshikawa M et al., Relationship between enantioselectivity of alternative molecularly imprinted polymeric membranes and species of amino acid residues composing chiral recognition sites.
Bioseparation, 10, (6), 323-330, (2002)
   
residues
Proceeding, Yoshikawa M et al, Chiral recognition ability of oligopeptide derivatives consisiting of glutamyl residues,
In: Polymer Preprints, Japan,
625, (2002)
   
residues
Zayats M et al., Imprinting of specific molecular recognition sites in inorganic and organic thin layer membranes associated with ion-sensitive field-effect transistors.
Tetrahedron, 58, (4), 815-824, (2002)
   
residues
Bass JD et al., Thermolytic synthesis of imprinted amines in bulk silica.
Chemistry of Materials, 15, (14), 2757-2763, (2003)
   
residues
Mena ML et al., Molecularly imprinted polymers for on-line clean up and preconcentration of chloramphenicol prior to its voltammetric determination.
Analytical and Bioanalytical Chemistry, 376, (1), 18-25, (2003)
   
residues
Picó Y et al., Capillary electrophoresis for the determination of pesticide residues.
TrAC Trends in Analytical Chemistry, 22, (3), 133-151, (2003)
   
residues
Taniwaki K et al., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy.
Analytica Chimica Acta, 489, (2), 191-198, (2003)
   
residues
Yoshikawa M et al., Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules.
Macromolecular Bioscience, 3, (9), 487-498, (2003)
   
residues
Aït-Haddou H et al., Amino-acid containing metallomonomers copolymerized into porous organic polymers: applicability to allylic alkylation catalysis.
Inorganica Chimica Acta, 357, (13), 3854-3864, (2004)
   
residues
Cserhati T et al., Chromatographic determination of herbicide residues in various matrices.
Biomedical Chromatography, 18, (6), 350-359, (2004)
   
residues
Davies MP et al., Approaches to the rational design of molecularly imprinted polymers.
Analytica Chimica Acta, 504, (1), 7-14, (2004)
   
residues
Guiochon GA et al., Progress and future of instrumental analytical chemistry applied to the environment.
Analytica Chimica Acta, 524, (1-2), 1-14, (2004)
   
residues
Ikegami T et al., Bisphenol A-recognition polymers prepared by covalent molecular imprinting.
Analytica Chimica Acta, 504, (1), 131-135, (2004)
   
residues
Suedee R et al., Use of molecularly imprinted polymers from a mixture of tetracycline and its degradation products to produce affinity membranes for the removal of tetracycline from water.
Journal of Chromatography B, 811, (2), 191-200, (2004)
   
residues
Widstrand C et al., Evaluation of MISPE for the multi-residue extraction of b-agonists from calves urine.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 85-91, (2004)
   
residues
Kootstra PR et al., The analysis of β-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening.
Analytica Chimica Acta, 529, (1-2), 75-81, (2005)
   
residues
Regal P et al., Application of molecularly imprinted polymers in food analysis: clean-up and chromatographic improvements.
Central European Journal of Chemistry, 10, (3), 766-784, (2012)
   
residues
Díaz-Bao M et al., Recent Advances and Uses of Monolithic Columns for the Analysis of Residues and Contaminants in Food.
Chromatography, 2, (1), 79-95, (2015)
   
residues
Zhang XL et al., Determination of five β2-agonist residues in pork by ultra-high performance liquid chromatography-tandem mass spectrometry with molecularly imprinted solid phase extraction.
Chinese Journal of Chromatography, 33, (8), 838-842, (2015)
   
residues
Mei XY et al., Review on Analysis Methodology of Phenoxy Acid Herbicide Residues.
Food Analytical Methods, 9, (6), 1532-1561, (2016)
   
resin
Rackow B et al., Imprinting of molecular information on resin surfaces and testing of a multidentate imprint with monodentate "guest." XXII.
Zeitschrift für Chemie, 7, (11), 444-445, (1967)
   
resin
Rackow B, Imprinting of molecular information on surfaces of organic high polymers.
Zeitschrift für Chemie, 7, (10), 398-399, (1967)
   
resin
Rackow B, Application of the "fundamental equation of information chemistry" for a resin imprinted with copper-phthalocyaninetetrasulfonic acid and graphic determination of its information via sulfonic acid and methyl orange. XXIV.
Zeitschrift für Chemie, 8, (1), 33-33, (1968)
   
resin
Proceeding, Rackow B et al, In vitro experiments to impinge molecular folding information on organic polymers.,
Drischel H (Ed.),
246-249, (1968)
   
resin
Nishide H et al., Selective adsorption of metal ions on poly(4-vinylpyridine) resins in which the ligand chain is immobilized by crosslinking.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 177, (8), 2295-2310, (1976)
   
resin
Nishide H et al., Adsorption of metal ions on crosslinked poly(4-vinylpyridine) resins prepared with a metal ion as template.
Journal of Polymer Science, Polymer Chemistry Edition, 15, (12), 3023-3029, (1977)
   
resin
Kato M et al., Complexation of metal-ion with poly(1-vinylimidazole) resin prepared by radiation-induced polymerization with template metal-ion.
Journal of Polymer Science, Polymer Chemistry Edition, 19, (7), 1803-1809, (1981)
   
resin
Shinkai S et al., Template synthesis from starch as an approach to tailor-made cyclodextrin.
Tetrahedron Letters, 24, (33), 3501-3504, (1983)
   
resin
Nakashima A et al., Metal ion-template syntheses of hybrid resins and the template effect on their selectivities for metal ions.
Memoirs of the Faculty of Science, Kyushu University, Series C., 16, (1), 33-42, (1987)
   
resin
Kuchen W et al., Metal-ion-selective exchange resins by matrix imprint with methacrylates.
Angewandte Chemie International Edition, 27, (12), 1695-1697, (1988)
   
resin
Guyot A, Some problems in the physical and chemical characterization of functionalized supports.
Reactive Polymers, 10, (2-3), 113-129, (1989)
   
resin
Calmes M et al., Supramolecular asymmetric induction : A new concept applied to the supported enantioselective synthesis of a-amino acids.
Tetrahedron, 46, (17), 6021-6032, (1990)
   
resin
Chanda M et al., Enhanced copper selectivity and faster sorption kinetics of poly(4-vinylpyridine) crosslinked in presence of copper(II) as template on silica gel.
Reactive Polymers, 16, (2), 149-158, (1992)
   
resin
Li K et al., New crown-ether resins prepared by cationic template polymerization.
Macromolecular Chemistry And Physics, 195, (2), 391-399, (1994)
   
resin
Zhu XX et al., Polymer resins with controlled pore sizes created by reverse micellar imprinting.
Abstracts of Papers of the American Chemical Society, 211, (MSE), 248-248, (1996)
   
resin
Fish RH, Metal ion templated polymers. Synthesis and structure of N-(4-vinylbenzyl)-1,4,7-triazacyclononane-metal complexes, polymerization of the metal-monomer complexes with divinylbenzene, and metal ion selectivity studies of the demetalated resins.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 147-147, (1997)
   
resin
Koide Y, Selective adsorption of metal ions to surface-templated resins prepared by emulsion polymerization using a functional surfactant.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 100-100, (1997)
   
resin
Miyajima T et al., A physiochemical study on the origin of the imprinting effect.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 148-148, (1997)
   
resin
Yoshikawa M et al., Alternative molecularly imprinted polymeric membranes from a tetrapeptide residue consisting of D- or L-amino acids.
Macromolecular Rapid Communications, 18, (9), 761-767, (1997)
   
resin
Book chapter, Zhu XXet al., New polymer resins with specific pore sizes created by reverse micellar imprinting,
In: International conference on biorelated polymers, controlled release and reactive polymers,
23-24, (1997)    
resin
Bae SY et al., Photometric method for the determination of Pb2+ following separation and preconcentration using a templated ion-exchange resin.
Journal of Analytical Atomic Spectrometry, 13, (10), 1177-1180, (1998)
   
resin
Book chapter, Favre-Reguillon Aet al., Caesium-selective imprinted phenolic resins,
In: Molecular Recognition and Inclusion, Coleman AW (Ed.)
Kluwer Academic Publishers: Dordrecht, 329-332, (1998)    
resin
Masqué N et al., New polymeric and other types of sorbents for solid-phase extraction of polar organic micropollutants from environmental water.
TrAC Trends in Analytical Chemistry, 17, (6), 384-394, (1998)
   
resin
Book chapter, Zeng XFet al., Imprinted polymers for the selective sequestering and sensing of metal ions,
In: Molecular and Ionic Recognition with Imprinted Polymers, Bartsch RA, Maeda M (Eds.)
The American Chemical Society: Washington DC, 218-237, (1998)    
resin
Book chapter, Goto Met al., Surface molecular imprinted resins recognizable amino acid chirality,
In: Ion Exchange At The Millennium, Greig JA (Ed.)
World Scientific Publishing: Singapore, 322-329, (2000)    
resin
Ousalem M et al., Evaluation of the porous structures of new polymer packing materials by inverse size-exclusion chromatography.
Journal of Chromatography A, 903, (1-2), 13-19, (2000)
   
resin
Yoshida M et al., Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (4), 689-696, (2000)
   
resin
Lo HC et al., Synthesis of a [{mono-N-(4-vinylbenzyl)-1,4,7- triazacyclononane}(2)Hg](OTf)(2) sandwich complex, polymerization of this monomer with divinylbenzene, and Hg2+ ion selectivity studies with the demetallated resin.
European Journal of Inorganic Chemistry, (9), 2217-2220, (2001)
   
resin
Tan TW et al., Adsorption behaviour of metal ions on imprinted chitosan resin.
Journal of Chemical Technology & Biotechnology, 76, (2), 191-195, (2001)
   
resin
Vigneau O et al., Ionic imprinted resins based on EDTA and DTPA derivatives for lanthanides(III) separation.
Analytica Chimica Acta, 435, (1), 75-82, (2001)
   
resin
Villamena FA et al., Caffeine selectivity of divinylbenzene crosslinked polymers in aqueous media.
Journal of Applied Polymer Science, 82, (1), 195-205, (2001)
   
resin
Yoshikawa M et al., Recognition and selective transport of nucleic acid components through molecularly imprinted polymeric membranes.
Macromolecular Materials And Engineering, 286, (1), 52-59, (2001)
   
resin
Davidson L et al., Molecular imprinting of biologically active steroidal systems.
Current Organic Chemistry, 6, (3), 265-281, (2002)
   
resin
Fujiwara I et al., Preparation of an organic acid-imprinted resin by a surface imprinting method.
Analytical Sciences, 18, (8), 943-945, (2002)
   
resin
Güney O et al., Metal ion templated chemosensor for metal ions based on fluorescence quenching.
Sensors and Actuators B: Chemical, 85, (1-2), 86-89, (2002)
   
resin
Hentze HP et al., Porous polymers and resins for biotechnological and biomedical applications.
Reviews in Molecular Biotechnology, 90, (1), 27-53, (2002)
   
resin
Liu GD et al., Utilization of synergetic effect of weak interactions in the design of polymeric sorbents with high sorption selectivity.
Journal of Chromatography A, 952, (1-2), 71-78, (2002)
   
resin
Rückert B et al., Molecularly imprinted composite materials via iniferter-modified supports.
Journal of Materials Chemistry, 12, (8), 2275-2280, (2002)
   
resin
Molochnikov LS et al., Coordination of Cu(II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation.
Polymer, 44, (17), 4805-4815, (2003)
   
resin
Book chapter, Noyes KLet al., Synthesis and evaluation of resins for actinide separations,
In: Scientific Basis For Nuclear Waste Management XXVI, Finch RJ, Bullen DB (Eds.)
Materials Research Society: Warrendale, 635-640, (2003)    
resin
Su HJ et al., Adsorption of Ni2+ on the surface of molecularly imprinted adsorbent from Penicillium chysogenum mycelium.
Biotechnology Letters, 25, (12), 949-953, (2003)
   
resin
Yoshikawa M et al., Chiral recognition sites converted from tetrapeptide derivatives adopting racemates as print molecules.
Macromolecular Bioscience, 3, (9), 487-498, (2003)
   
resin
Busi E et al., An innovative approach to the design of plastic antibodies: molecular imprinting via a non-polar transition state analogue.
Journal of Molecular Catalysis A: Chemical, 217, (1-2), 31-36, (2004)
   
resin
Guiochon GA et al., Progress and future of instrumental analytical chemistry applied to the environment.
Analytica Chimica Acta, 524, (1-2), 1-14, (2004)
   
resin
Liu YW et al., Solid-phase extraction and preconcentration of cadmium(II) in aqueous solution with Cd(II)-imprinted resin (poly-Cd(II)-DAAB-VP) packed columns.
Analytica Chimica Acta, 519, (2), 173-179, (2004)
   
resin
Metilda P et al., Influence of binary/ternary complex of imprint ion on the preconcentration of uranium(VI) using ion imprinted polymer materials.
Analytica Chimica Acta, 512, (1), 63-73, (2004)
   
resin
Tobiasz A et al., Solid-phase-extraction procedures for atomic spectrometry determination of copper.
TrAC Trends in Analytical Chemistry, 62, 106-122, (2014)
   
resin
Proceeding, Ritz S et al, Imprinted Resin - The 21st Century Adsorbent,
Davis BR, Moats MS, Wang SJ, Gregurek D, Kapusta J, Battle TP, Schlesinger ME, Alvear Flores GR, Jak E, Goodall G, Free ML, Asselin E, Chagnes A, Dreisinger D, Jeffrey M, Lee J, Miller G, Petersen J, Ciminelli VST, Xu Q, Molnar R, Adams J, Liu WY, Verbaan N, Goode J, London IM, Azimi G, Forstner A, Kappes R, Bhambhani T (Eds.),
1943-1960, (2018)
   
resins
Rackow B, Imprinting of molecular information on surfaces of organic high polymers.
Zeitschrift für Chemie, 7, (10), 398-399, (1967)
   
resins
Proceeding, Rackow B et al, In vitro experiments to impinge molecular folding information on organic polymers.,
Drischel H (Ed.),
246-249, (1968)
   
resins
Nishide H et al., Selective adsorption of metal ions on poly(4-vinylpyridine) resins in which the ligand chain is immobilized by crosslinking.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 177, (8), 2295-2310, (1976)
   
resins
Nishide H et al., Adsorption of metal ions on crosslinked poly(4-vinylpyridine) resins prepared with a metal ion as template.
Journal of Polymer Science, Polymer Chemistry Edition, 15, (12), 3023-3029, (1977)
   
resins
Kato M et al., Complexation of metal-ion with poly(1-vinylimidazole) resin prepared by radiation-induced polymerization with template metal-ion.
Journal of Polymer Science, Polymer Chemistry Edition, 19, (7), 1803-1809, (1981)
   
resins
Nakashima A et al., Metal ion-template syntheses of hybrid resins and the template effect on their selectivities for metal ions.
Memoirs of the Faculty of Science, Kyushu University, Series C., 16, (1), 33-42, (1987)
   
resins
Kuchen W et al., Metal-ion-selective exchange resins by matrix imprint with methacrylates.
Angewandte Chemie International Edition, 27, (12), 1695-1697, (1988)
   
resins
Guyot A, Some problems in the physical and chemical characterization of functionalized supports.
Reactive Polymers, 10, (2-3), 113-129, (1989)
   
resins
Chanda M et al., Enhanced copper selectivity and faster sorption kinetics of poly(4-vinylpyridine) crosslinked in presence of copper(II) as template on silica gel.
Reactive Polymers, 16, (2), 149-158, (1992)
   
resins
Li K et al., New crown-ether resins prepared by cationic template polymerization.
Macromolecular Chemistry And Physics, 195, (2), 391-399, (1994)
   
resins
Zhu XX et al., Polymer resins with controlled pore sizes created by reverse micellar imprinting.
Abstracts of Papers of the American Chemical Society, 211, (MSE), 248-248, (1996)
   
resins
Chen H et al., Metal-ion-templated polymers: Synthesis and structure of N-(4- vinylbenzyl)-1,4,7-triazacyclononanezinc(II) complexes, their copolymerization with divinylbenzene, and metal-ion selectivity studies of the demetalated resins - Evidence for a sandwich complex in the polymer matrix.
Angewandte Chemie International Edition, 36, (6), 642-645, (1997)
   
resins
Fish RH, Metal ion templated polymers. Synthesis and structure of N-(4-vinylbenzyl)-1,4,7-triazacyclononane-metal complexes, polymerization of the metal-monomer complexes with divinylbenzene, and metal ion selectivity studies of the demetalated resins.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 147-147, (1997)
   
resins
Koide Y, Selective adsorption of metal ions to surface-templated resins prepared by emulsion polymerization using a functional surfactant.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 100-100, (1997)
   
resins
Miyajima T et al., A physiochemical study on the origin of the imprinting effect.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 148-148, (1997)
   
resins
Book chapter, Zhu XXet al., New polymer resins with specific pore sizes created by reverse micellar imprinting,
In: International conference on biorelated polymers, controlled release and reactive polymers,
23-24, (1997)    
resins
Bae SY et al., Photometric method for the determination of Pb2+ following separation and preconcentration using a templated ion-exchange resin.
Journal of Analytical Atomic Spectrometry, 13, (10), 1177-1180, (1998)
   
resins
Book chapter, Favre-Reguillon Aet al., Caesium-selective imprinted phenolic resins,
In: Molecular Recognition and Inclusion, Coleman AW (Ed.)
Kluwer Academic Publishers: Dordrecht, 329-332, (1998)    
resins
Kanekiyo Y et al., Facile construction of a novel metal-imprinted polymer surface without a polymerisation process.
Journal of the Chemical Society-Perkin Transactions 2, (9), 2005-2008, (1998)
   
resins
Masqué N et al., New polymeric and other types of sorbents for solid-phase extraction of polar organic micropollutants from environmental water.
TrAC Trends in Analytical Chemistry, 17, (6), 384-394, (1998)
   
resins
Book chapter, Zeng XFet al., Imprinted polymers for the selective sequestering and sensing of metal ions,
In: Molecular and Ionic Recognition with Imprinted Polymers, Bartsch RA, Maeda M (Eds.)
The American Chemical Society: Washington DC, 218-237, (1998)    
resins
Baba Y et al., Highly selective adsorption resins. Part 4. Synthesis of chitosan derivatives and their adsorption properties for nitrate anion.
Nippon Kagaku Kaishi, (7), 467-472, (1999)
   
resins
Cooper AI et al., Synthesis of well-defined macroporous polymer monoliths by sol-gel polymerization in supercritical CO2.
Industrial & Engineering Chemistry Research, 39, (12), 4741-4744, (2000)
   
resins
Book chapter, Goto Met al., Surface molecular imprinted resins recognizable amino acid chirality,
In: Ion Exchange At The Millennium, Greig JA (Ed.)
World Scientific Publishing: Singapore, 322-329, (2000)    
resins
Ousalem M et al., Evaluation of the porous structures of new polymer packing materials by inverse size-exclusion chromatography.
Journal of Chromatography A, 903, (1-2), 13-19, (2000)
   
resins
Saunders GD et al., A selective uranium extraction agent prepared by polymer imprinting.
Chemical Communications, (4), 273-274, (2000)
   
resins
Yoshida M et al., Chiral-recognition polymer prepared by surface molecular imprinting technique.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 169, (1-3), 259-269, (2000)
   
resins
Yoshida M et al., Metal-imprinted microsphere prepared by surface template polymerization and its application to chromatography.
Journal of Polymer Science Part A: Polymer Chemistry, 38, (4), 689-696, (2000)
   
resins
Vigneau O et al., Ionic imprinted resins based on EDTA and DTPA derivatives for lanthanides(III) separation.
Analytica Chimica Acta, 435, (1), 75-82, (2001)
   
resins
Villamena FA et al., Caffeine selectivity of divinylbenzene crosslinked polymers in aqueous media.
Journal of Applied Polymer Science, 82, (1), 195-205, (2001)
   
resins
Davidson L et al., Molecular imprinting of biologically active steroidal systems.
Current Organic Chemistry, 6, (3), 265-281, (2002)
   
resins
Hentze HP et al., Porous polymers and resins for biotechnological and biomedical applications.
Reviews in Molecular Biotechnology, 90, (1), 27-53, (2002)
   
resins
Rückert B et al., Molecularly imprinted composite materials via iniferter-modified supports.
Journal of Materials Chemistry, 12, (8), 2275-2280, (2002)
   
resins
Daniel S et al., Synthesis of imprinted polymer material with palladium ion nanopores and its analytical application.
Analytica Chimica Acta, 488, (2), 173-182, (2003)
   
resins
Book chapter, Noyes KLet al., Synthesis and evaluation of resins for actinide separations,
In: Scientific Basis For Nuclear Waste Management XXVI, Finch RJ, Bullen DB (Eds.)
Materials Research Society: Warrendale, 635-640, (2003)    
resins
Guiochon GA et al., Progress and future of instrumental analytical chemistry applied to the environment.
Analytica Chimica Acta, 524, (1-2), 1-14, (2004)
   
resins
Rao TP et al., Tailored materials for preconcentration or separation of metals by ion-imprinted polymers for solid-phase extraction (IIP-SPE).
TrAC Trends in Analytical Chemistry, 23, (1), 28-35, (2004)
   
resins
Randhawa M et al., Imprinted polymers for water purification.
Journal of Applied Polymer Science, 106, (5), 3321-3326, (2007)
   
resins
Medina-Castillo AL et al., A semi-empirical model to simplify the synthesis of homogeneous and transparent cross-linked polymers and their application in the preparation of optical sensing films.
Biosensors and Bioelectronics, 25, (2), 442-449, (2009)
   
resins
Aly MM et al., A Review: Studies on Uranium Removal Using Different Techniques. Overview.
Journal of Dispersion Science and Technology, 34, (2), 182-213, (2013)
   
resistance
Wulff G et al., Enzyme-analogue built polymers .18. Chiral cavities in polymer layers coated on wide-pore silica.
Reactive Polymers, Ion Exchangers, Sorbents, 3, (4), 261-275, (1985)
   
resistance
Dong SJ et al., Chloride chemical sensor based on an organic conducting polypyrrole polymer.
Analyst, 113, (10), 1525-1528, (1988)
   
resistance
Piletskii SA et al., Construction of molecular sensors based on substrate-selective polymeric membranes.
Journal of Analytical Chemistry, 47, (9), 1231-1234, (1992)
   
resistance
Kriz D et al., Competitive amperometric morphine sensor-based on an agarose immobilized molecularly imprinted polymer.
Analytica Chimica Acta, 300, (1-3), 71-75, (1995)
   
resistance
Owens PK et al., Molecular imprinting for bio-and pharmaceutical analysis.
TrAC Trends in Analytical Chemistry, 18, (3), 146-154, (1999)
   
resistance
Cazacu M et al., Organic-inorganic polymer hybrids and porous materials obtained on their basis.
Journal of Applied Polymer Science, 88, (8), 2060-2067, (2003)
   
resistance
Cederfur J et al., Synthesis and screening of a molecularly imprinted polymer library targeted for penicillin G.
Journal of Combinatorial Chemistry, 5, (1), 67-72, (2003)
   
resistance
de Alda MJL et al., Liquid chromatography-(tandem) mass spectrometry of selected emerging pollutants (steroid sex hormones, drugs and alkylphenolic surfactants) in the aquatic environment.
Journal of Chromatography A, 1000, (1-2), 503-526, (2003)
   
resistance
Antwi-Boampong S et al., A Molecularly Imprinted Fluoral-P/Polyaniline Double Layer Sensor System for Selective Sensing of Formaldehyde.
IEEE Sensors Journal, 14, (5), 1490-1498, (2014)
   
Resistive
Trevizan HF et al., Development of a molecularly imprinted polymer for uric acid sensing based on a conductive azopolymer: Unusual approaches using electrochemical impedance/capacitance spectroscopy without a soluble redox probe.
Sensors and Actuators B: Chemical, 343, Article130141-(2021)
   
Resistive-pulse signal
Wang LL et al., High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology.
Biosensors and Bioelectronics, 178, Article113056-(2021)
   
resolution
Wulff G et al., The use of polymers with enzyme-analogous structures for the resolution of racemates.
Angewandte Chemie International Edition, 11, (4), 341-341, (1972)
   
resolution
Wulff G et al., Enzyme-analogue built polymers and their use for the resolution of racemates.
Tetrahedron Letters, 14, (44), 4329-4332, (1973)
   
resolution
Wulff G et al., Enzyme-analogue built polymers 8: Preparation of chromatographic sorbents with chiral cavities for racemic resolution.
Journal of Chromatography, 167, (1), 171-186, (1978)
   
resolution
Wulff G et al., Über enzymanalog gebaute Polymere, 11) Bindungsstellen im Polymer mit unterschiedlicher Zahl der Haftgruppen.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 181, (3), 531-544, (1980)
   
resolution
Sarhan A et al., On polymers with enzyme-analogous structure .14. Stereospecific binding by amide bonding or electrostatic interaction.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 183, (7), 1603-1614, (1982)
   
resolution
Sarhan A et al., Enzyme-analog built polymers .13. On the introduction of amino and boronic acid groups into chiral polymer cavities.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 183, (1), 85-92, (1982)
   
resolution
Wulff G et al., On polymers with enzyme-analogous structure .16. On the influence of the binding group flexibility on the ability for racemic-resolution.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 183, (10), 2469-2477, (1982)
   
resolution
Wulff G et al., On polymers with enzyme-analogous structure .15. On the synthesis of (R)-1-(4-vinylphenyl)ethylamine and (S)-1-(4-vinylphenyl)ethylamine and some other monomers with functional-groups.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 183, (10), 2459-2467, (1982)
   
resolution
Wulff G et al., Enzyme-analogue built polymers,17. Investigations on the racemic resolution of amino-acids.
Reactive Polymers, Ion Exchangers, Sorbents, 2, (2), 167-174, (1984)
   
resolution
Sellergren B et al., Molecular imprinting of amino-acid derivatives in macroporous polymers - demonstration of substrate-selectivity and enantio-selectivity by chromatographic resolution of racemic mixtures of amino-acid derivatives.
Journal of Chromatography, 347, (1), 1-10, (1985)
   
resolution
Wulff G et al., Enzyme-analogue built polymers .18. Chiral cavities in polymer layers coated on wide-pore silica.
Reactive Polymers, Ion Exchangers, Sorbents, 3, (4), 261-275, (1985)
   
resolution
Wulff G et al., Enzyme-analog built polymers .22. Influence of the nature of the cross-linking agent on the performance of imprinted polymers in racemic-resolution.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 188, (4), 731-740, (1987)
   
resolution
Wulff G et al., Enzyme-analog built polymers .23. Influence of the structure of the binding-sites on the selectivity for racemic-resolution.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 188, (4), 741-748, (1987)
   
resolution
OShannessy DJ et al., Molecular recognition in synthetic polymers. Enantiomeric resolution of amide derivatives of amino acids on molecularly imprinted polymers.
Journal of Molecular Recognition, 2, (1), 1-5, (1989)
   
resolution
OShannessy DJ et al., Recent advances in the preparation and use of molecularly imprinted polymers for enantiomeric resolution of amino-acid derivatives.
Journal of Chromatography, 470, (2), 391-399, (1989)
   
resolution
Sarhan A, Racemic-resolution of mandelic-acid on polymers with chiral cavities .4.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 190, (9), 2031-2039, (1989)
   
resolution
Sarhan A et al., Racemic-resolution of mandelic-acid on polymers with chiral cavities .3. Co-operative binding over phenylboronic acid groups and N-bases.
Reactive Polymers, 11, (1), 57-70, (1989)
   
resolution
Andersson LI et al., Molecular recognition in synthetic-polymers - preparation of chiral stationary phases by molecular imprinting of amino-acid amides.
Journal of Chromatography A, 513, (1), 167-179, (1990)
   
resolution
Andersson LI et al., Enantiomeric resolution of amino-acid derivatives on molecularly imprinted polymers as monitored by potentiometric measurements.
Journal of Chromatography A, 516, (2), 323-331, (1990)
   
resolution
Green M, Racemic resolution of free sugars with macroporous polymers prepared by molecular imprinting: selectivity dependence on the arrangements of functional groups versus spatial requirements.
Chemtracts: Macromol. Chem., 2, (5), 338-370, (1991)
   
resolution
Wulff G et al., Enzyme-analog built polymers .29. The preparation of defined chiral cavities for the racemic-resolution of free sugars.
Makromolekulare Chemie-Macromolecular Chemistry And Physics, 192, (6), 1329-1338, (1991)
   
resolution
Wulff G et al., Enzyme-analog-built polymers .27. Racemic-resolution of free sugars with macroporous polymers prepared by molecular imprinting - selectivity dependence on the arrangement of functional-groups versus requirements.
Journal of Organic Chemistry, 56, (1), 395-400, (1991)
   
resolution
Kempe M et al., Chiral separation using molecularly imprinted heteroatomic polymers.
Journal of Molecular Recognition, 6, (1), 25-29, (1993)
   
resolution
Sellergren B et al., Chiral ion-exchange chromatography - correlation between solute retention and a theoretical ion-exchange model using imprinted polymers.
Journal of Chromatography A, 654, (1), 17-28, (1993)
   
resolution
Kempe M et al., Direct resolution of naproxen on a noncovalently molecularly imprinted chiral stationary-phase.
Journal of Chromatography A, 664, (2), 276-279, (1994)
   
resolution
Li K et al., New crown-ether resins prepared by cationic template polymerization.
Macromolecular Chemistry And Physics, 195, (2), 391-399, (1994)
   
resolution
Mayes AG et al., Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting.
Analytical Biochemistry, 222, (2), 483-488, (1994)
   
resolution
Kempe M et al., Receptor-binding mimetics - a novel molecularly imprinted polymer.
Tetrahedron Letters, 36, (20), 3563-3566, (1995)
   
resolution
Kempe M et al., Separation of amino-acids, peptides and proteins on molecularly imprinted stationary phases.
Journal of Chromatography A, 691, (1-2), 317-323, (1995)
   
resolution
Kriz D et al., Competitive amperometric morphine sensor-based on an agarose immobilized molecularly imprinted polymer.
Analytica Chimica Acta, 300, (1-3), 71-75, (1995)
   
resolution
Muldoon MT et al., Polymer synthesis and characterization of a molecularly imprinted sorbent assay for atrazine.
Journal of Agricultural and Food Chemistry, 43, (6), 1424-1427, (1995)
   
resolution
Okahata Y et al., Enhancing enantioselectivity of a lipid-coated lipase via imprinting methods for esterification in organic-solvents.
Tetrahedron: Asymmetry, 6, 1311-1322, (1995)
   
resolution
Yoshikawa M et al., Molecularly imprinted polymeric membranes for optical resolution.
Journal of Membrane Science, 108, (1-2), 171-175, (1995)
   
resolution
Andersson HS et al., Study of the nature of recognition in molecularly imprinted polymers.
Journal of Molecular Recognition, 9, (5-6), 675-682, (1996)
   
resolution
Hosoya K et al., Molecularly imprinted uniform-size polymer-based stationary phase for high-performance liquid chromatography - Structural contribution of cross-linked polymer network on specific molecular recognition.
Journal of Chromatography A, 728, (1-2), 139-147, (1996)
   
resolution
Matsui J et al., Highly stereoselective molecularly imprinted polymer synthetic receptors for cinchona alkaloids.
Tetrahedron: Asymmetry, 7, 1357-1361, (1996)
   
resolution
Ramström O et al., Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting.
Journal of Molecular Recognition, 9, (5-6), 691-696, (1996)
   
resolution
Allender CJ et al., Mobile phase effects on enantiomer resolution using molecularly imprinted polymers.
Chirality, 9, (3), 238-242, (1997)
   
resolution
Andersson LI et al., A highly selective solid phase extraction sorbent for pre-concentration of sameridine made by molecular imprinting.
Chromatographia, 46, (1-2), 57-62, (1997)
   
resolution
Hosoya K et al., Development of uniformly sized, molecularly imprinted stationary phases for HPLC.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 156-156, (1997)
   
resolution
Milojkovic SS et al., Radiation induced synthesis of molecularly imprinted polymers.
Polymer, 38, (11), 2853-2855, (1997)
   
resolution
Schweitz L et al., Capillary electrochromatography with molecular imprint-based selectivity for enantiomer separation of local anaesthetics.
Journal of Chromatography A, 792, (1-2), 401-409, (1997)
   
resolution
Sellergren B, Noncovalent molecular imprinting: Antibody-like molecular recognition in polymeric network materials.
TrAC Trends in Analytical Chemistry, 16, (6), 310-320, (1997)
   
resolution
Sreenivasan K et al., Interaction of molecularly imprinted polymers with creatinine.
Journal of Applied Polymer Science, 66, (13), 2539-2542, (1997)
   
resolution
Stewart NAS et al., Imprinting of lyophilized a-chymotrypsin affects the reactivity of the active-site imidazole.
Biochemical and Biophysical Research Communications, 240, (1), 27-31, (1997)
   
resolution
Walshe M et al., Separation of the enantiomers of propranolol by incorporation of molecularly imprinted polymer particles as chiral selectors in capillary electrophoresis.
Analytical Communications, 34, (4), 119-121, (1997)
   
resolution
Yoshikawa M, Molecularly imprinted polymeric membranes for optical resolution.
Abstracts of Papers of the American Chemical Society, 213, (IEC), 154-154, (1997)
   
resolution
Yu C et al., Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers.
Journal of Organic Chemistry, 62, (12), 4057-4064, (1997)
   
resolution
Hatajik TD et al., Chiral separations of pharmaceuticals using capillary electrochromatography (CEC): An overview.
Journal of Capillary Electrophoresis, 5, 143-151, (1998)
   
resolution
Hong JM, Separation of chemically similar molecules by molecular recognition.
Journal of Industrial and Engineering Chemistry, 4, (3), 226-230, (1998)
   
resolution
Hong JM et al., Selectively-permeable ultrathin film composite membranes based on molecularly-imprinted polymers.
Chemistry of Materials, 10, (4), 1029-1033, (1998)
   
resolution
Lin JM et al., Enantiomeric resolution of dansyl amino acids by capillary electrochromatography based on molecular imprinting method.
Chromatographia, 47, (11-12), 625-629, (1998)
   
resolution
Schweitz L et al., Molecular imprint-based stationary phases for capillary electrochromatography.
Journal of Chromatography A, 817, (1-2), 5-13, (1998)
   
resolution
Suedee R et al., Thin-layer chromatography using synthetic polymers imprinted with quinine as chiral stationary phase.
Jpc-Journal Of Planar Chromatography-Modern Tlc, 11, 272-276, (1998)
   
resolution
Adbo K et al., Enantioselective Trögers base synthetic receptors.
Bioorganic Chemistry, 27, (5), 363-371, (1999)
   
resolution
de Boer T et al., Selectivity in capillary electrokinetic separations.
Electrophoresis, 20, (15-16), 2989-3010, (1999)
   
resolution
Dzgoev A et al., Enantioselective molecularly imprinted polymer membranes.
Chirality, 11, (5-6), 465-469, (1999)
   
resolution
Haginaka J et al., Uniform-sized molecularly imprinted polymer for (S)-ibuprofen - Retention properties in aqueous mobile phases.
Journal of Chromatography A, 857, (1-2), 117-125, (1999)
   
resolution
Heegaard NHH et al., Identification, quantitation, and characterization of biomolecules by capillary electrophoretic analysis of binding interactions.
Electrophoresis, 20, (15-16), 3122-3133, (1999)
   
resolution
Hosoya K et al., An unexpected molecular imprinting effect for a polyaromatic hydrocarbon, anthracene, using uniform size ethylene dimethacrylate particles.
HRC - Journal of High Resolution Chromatography, 22, (5), 256-260, (1999)
   
resolution
Joshi VP et al., Effect of solvents on selectivity in separation using molecularly imprinted adsorbents: Separation of phenol and bisphenol A.
Industrial & Engineering Chemistry Research, 38, (11), 4417-4423, (1999)
   
resolution
Liu XC et al., Sugar acrylate-based polymers as chiral molecularly imprintable hydrogels.
Journal of Polymer Science Part A: Polymer Chemistry, 37, (11), 1665-1671, (1999)
   
resolution
Meng ZH et al., Molecule imprinting chiral stationary phase.
Biomedical Chromatography, 13, (6), 389-393, (1999)
   
resolution
Sellergren B, Polymer- and template-related factors influencing the efficiency in molecularly imprinted solid-phase extractions.
TrAC Trends in Analytical Chemistry, 18, (3), 164-174, (1999)
   
resolution
Stokes DL et al., Demonstration of a separations-based fiberoptic sensor for bioanalysis.
Analytica Chimica Acta, 399, (3), 201-212, (1999)
   
resolution
Suedee R et al., Direct enantioseparation of adrenergic drugs via thin-layer chromatography using molecularly imprinted polymers.
Journal of Pharmaceutical and Biomedical Analysis, 19, (3), 519-527, (1999)
   
resolution
Suedee R et al., Chiral determination of various adrenergic drugs by thin-layer chromatography using molecularly imprinted chiral stationary phases prepared with a-agonists.
Analyst, 124, (7), 1003-1009, (1999)
   
resolution
Turner APF et al., In vitro diagnostics in diabetes: Meeting the challenge.
Clinical Chemistry, 45, (9), 1596-1601, (1999)
   
resolution
Yoshikawa M et al., Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate.
Journal of Applied Polymer Science, 72, (4), 493-499, (1999)
   
resolution
Zhou J et al., Binding study on 5,5-diphenylhydantoin imprinted polymer constructed by utilizing an amide functional group.
Analytica Chimica Acta, 394, (2-3), 353-359, (1999)
   
resolution
Fukusaki EI et al., An artificial plastic receptor that discriminates axial asymmetry.
Journal of Bioscience and Bioengineering, 90, (6), 665-668, (2000)
   
resolution
Krull IS et al., Specific applications of capillary electrochromatography to biopolymers, including proteins, nucleic acids, peptide mapping, antibodies, and so forth.
Journal of Chromatography A, 887, (1-2), 137-163, (2000)
   
resolution
Lee D et al., Enhancing the enantioselectivity of lipase in transesterification by substrate matching: An enzyme memory based approach.
Organic Letters, 2, (16), 2553-2555, (2000)
   
resolution
Book chapter, Li Pet al., Resolution of amino acid derivative on molecularly imprinted polymer,
In: IEEE-EMBS Asia Pacific Conference on Biomedical Engineering - Proceedings, Pts 1 & 2, Zheng XX, He B, Zhang YT (Eds.)
World Publishing Corporation: Beijing, 419-420, (2000)    
resolution
Overdevest PEM et al., Langmuir isotherms for enantioselective complexation of (d/l)-phenylalanine by cholesteryl-l-glutamate in nonionic micelles.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 163, (2-3), 209-224, (2000)
   
resolution
Sellergren B, Imprinted polymers with memory for small molecules, proteins, or crystals.
Angewandte Chemie International Edition, 39, (6), 1031-1037, (2000)
   
resolution
Suedee R et al., Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of b-blockers.
Journal of Controlled Release, 66, (2-3), 135-147, (2000)
   
resolution
Vallano PT et al., Highly selective separations by capillary electrochromatography: molecular imprint polymer sorbents.
Journal of Chromatography A, 887, (1-2), 125-135, (2000)
   
resolution
Adbo K et al., Enantioselective solid-phase extraction using Trögers base molecularly imprinted polymers.
Analytica Chimica Acta, 435, (1), 115-120, (2001)
   
resolution
Chen YB et al., Influence of the pH on the behavior of an imprinted polymeric stationary phase - supporting evidence for a binding site model.
Journal of Chromatography A, 927, (1-2), 1-17, (2001)
   
resolution
Hwang CC et al., Chromatographic resolution of the enantiomers of phenylpropanolamine by using molecularly imprinted polymer as the stationary phase.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 765, (1), 45-53, (2001)
   
resolution
Kobayashi T et al., Molecular imprinting of caffeine and its recognition assay by quartz-crystal microbalance.
Analytica Chimica Acta, 435, (1), 141-149, (2001)
   
resolution
Lin JM et al., Inspection of the reversal of enantiomer migration order in ligand exchange micellar electrokinetic capillary chromatography.
Biomedical Chromatography, 15, (3), 207-211, (2001)
   
resolution
Suedee R et al., Thin-layer chromatographic separation of chiral drugs on molecularly imprinted chiral stationary phases.
Jpc-Journal Of Planar Chromatography-Modern Tlc, 14, (3), 194-198, (2001)
   
resolution
Tan YG et al., A piezoelectric biomimetic sensor for aminopyrine with a molecularly imprinted polymer coating.
Analyst, 126, (5), 664-668, (2001)
   
resolution
Tan YG et al., A study of a bio-mimetic recognition material for the BAW sensor by molecular imprinting and its application for the determination of paracetamol in the human serum and urine.
Talanta, 55, (2), 337-347, (2001)
   
resolution
Yoshikawa M et al., Factors governing chiral recognition ability of molecularly imprinted oligopeptide membranes.
Abstracts of Papers of the American Chemical Society, 222, (COLL), 9-9, (2001)
   
resolution
Proceeding, Abe M et al, Novel nylon imprinted assembly for amino acids recognition,
In: Polymer Preprints, Japan,
1671, (2002)
   
resolution
Aboul-Enein HY et al., Direct enantiomeric resolution of some cardiovascular agents using synthetic polymers imprinted with (-)-S-timolol as chiral stationary phase by thin layer chromatography.
Pharmazie, 57, (3), 169-171, (2002)
   
resolution
Chen YZ et al., Measurement of enantiomeric excess using molecularly imprinted polymers.
Organic Letters, 4, (17), 2937-2940, (2002)
   
resolution
Dong XC et al., Separation of ephedrine stereoisomers by molecularly imprinted polymers - influence of synthetic conditions and mobile phase compositions on the chromatographic performance.
Analyst, 127, (11), 1427-1432, (2002)
   
resolution
Proceeding, Ito K, Conformational memory in heteropolymer gel by molecular imprinting,
In: Polymer Preprints, Japan,
1290, (2002)
   
resolution
Proceeding, Kamiya Y et al, Optical resolution of chrysanthemic acid derivatives on cellulose and amylose columns,
In: Polymer Preprints, Japan,
1513, (2002)
   
resolution
Li XT et al., Enantiomeric resolution on L-carnitine selective polymers prepared by molecular imprinting.
Chinese Chemical Letters, 13, (2), 157-158, (2002)
   
resolution
Lu Y et al., Molecular recognition through the exact placement of functional groups on non-covalent molecularly imprinted polymers.
Journal of Chromatography A, 950, (1-2), 89-97, (2002)
   
resolution
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting method using helical polymethacrylate as template,
In: Polymer Preprints, Japan,
1508, (2002)
   
resolution
Proceeding, Satonaka T et al, Synthesis of polymer gel by molecular imprinting using helical polymethacrylate as template and its chiral recognition ability,
In: Polymer Preprints, Japan,
1708, (2002)
   
resolution
Schweitz L et al., Molecularly imprinted CEC sorbents: investigations into polymer preparation and electrolyte composition.
Analyst, 127, (1), 22-28, (2002)
   
resolution
Book chapter, Wulff G, Molecular imprinting - a way to prepare effective mimics of natural antibodies and enzymes,
In: Nanoporous Materials III, Sayari A, Jaroniec M (Eds.)
Elsevier: Amsterdam, 35-44, (2002)    
resolution
Xie JC et al., Affinitive separation and on-line identification of antitumor components from Peganum nigellastrum by coupling a chromatographic column of target analogue imprinted polymer with mass spectrometry.
Analytical Chemistry, 74, (10), 2352-2360, (2002)
   
resolution
Yoshikawa M et al., Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution.
Desalination, 149, (1-3), 287-292, (2002)
   
resolution
Feng RT et al., Review on enzyme mimics.
Chinese Journal of Organic Chemistry, 23, (8), 893-899, (2003)
   
resolution
Fireman-Shoresh S et al., General method for chiral imprinting of sol-gel thin films exhibiting enantioselectivity.
Chemistry of Materials, 15, (19), 3607-3613, (2003)
   
resolution
Grosu S et al., Molecular imprinting of antibiotic films for electroanalysis of the dopamine/ascorbate system.
Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 42, (4), 758-763, (2003)
   
resolution
Hilal N et al., Surface modified microfiltration membranes with molecularly recognising properties.
Journal of Membrane Science, 213, (1-2), 97-113, (2003)
   
resolution
Kondo Y et al., Effect of constituting amino acid residue numbers on molecularly imprinted chiral recognition sites.
Chirality, 15, (6), 498-503, (2003)
   
resolution
Koter I et al., Kinetic resolution of chiral alcohols in bifunctional membrane exhibiting enzyme activity and enantioselective permeation.
Journal of Molecular Catalysis B: Enzymatic, 24-25, (1), 17-26, (2003)
   
resolution
Nopper D et al., Amidine-based molecularly imprinted polymers - new sensitive elements for chiral chemosensors.
Analytical and Bioanalytical Chemistry, 377, (4), 608-613, (2003)
   
resolution
Book chapter, Noyes KLet al., Synthesis and evaluation of resins for actinide separations,
In: Scientific Basis For Nuclear Waste Management XXVI, Finch RJ, Bullen DB (Eds.)
Materials Research Society: Warrendale, 635-640, (2003)    
resolution
Wu LQ et al., Picolinamide-Cu(Ac)2-imprinted polymer with high potential for recognition of picolinamide-copper acetate complex.
Analytica Chimica Acta, 482, (2), 175-181, (2003)
   
resolution
Wu LQ et al., Study properties of molecular imprinting polymer using a computational approach.
Analyst, 128, (7), 944-949, (2003)
   
resolution
Yan WY et al., Capillary electrochromatographic separation of ionizable compounds with a molecular imprinted monolithic cationic exchange column.
Journal of Separation Science, 26, (6-7), 555-561, (2003)
   
resolution
Carter SR et al., Surface molecularly imprinted polymer core-shell particles.
Advanced Functional Materials, 14, (6), 553-561, (2004)
   
resolution
Habaue S et al., Synthesis of polymer gel with chiral helical cavity by molecular imprinting using bifunctional vinyl monomers.
Polymer, 45, (15), 5095-5100, (2004)
   
resolution
Haginaka J et al., Chiral resolution of derivatized amino acids using uniformly sized molecularly imprinted polymers in hydro-organic mobile phases.
Analytical and Bioanalytical Chemistry, 378, (8), 1907-1912, (2004)
   
resolution
Hua F et al., Polymer imprint lithography with molecular-scale resolution.
Nano Letters, 4, (12), 2467-2471, (2004)
   
resolution
Huang HC et al., Photo-lithographically impregnated and molecularly imprinted polymer thin film for biosensor applications.
Journal of Chromatography A, 1027, (1-2), 263-268, (2004)
   
resolution
Jin Y et al., Separation characteristics of mixed-template imprinted polymer.
Korean Chemical Engineering Research, 42, (4), 413-419, (2004)
   
resolution
Liu ZS et al., Preparation and characterization of molecularly imprinted monolithic column based on 4-hydroxybenzoic acid for the molecular recognition in capillary electrochromatography.
Analytica Chimica Acta, 523, (2), 243-250, (2004)
   
resolution
Machtejevas E et al., Screening of oxazepine indole enantiomers by means of high performance liquid chromatography with imprinted polymer stationary phase.
Journal of Separation Science, 27, (7-8), 547-551, (2004)
   
resolution
Simon RL et al., Performance analysis of molecularly imprinted polymers for carboxylate and aminophosphate templates using commercially available basic functional monomers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 203-209, (2004)
   
resolution
Book chapter, Ulubayram K, Molecularly imprinted polymers,
In: Biomaterials: From Molecules To Engineered Tissues, Hasirci N, Hasirici V (Eds.)
Springer: 123-138, (2004)    
resolution
Yan C et al., Capillary electrochromatography: Advances in instrumentation and stationary phases.
Abstracts of Papers of the American Chemical Society, 227, (ANYL), 254-254, (2004)
   
resolution
Jiao FP et al., Study on Process of Thermodynamics for Chiral Separation of Naproxen in Molecular Imprinting.
Materials Review, 19, (8), 114-116, (2005)
   
resolution
Yamamoto C et al., Preparation of HPLC chiral packing materials using cellulose tris(4-methylbenzoate) for the separation of chrysanthemate isomers.
Journal of Polymer Science Part A: Polymer Chemistry, 44, (17), 5087-5097, (2006)
   
resolution
Le Jeune J et al., Chiral effects of alkyl-substituted derivatives of N,O-bismethacryloyl ethanolamine on the performance of one monomer molecularly imprinted polymers (OMNiMIPs).
Analytical and Bioanalytical Chemistry, 389, (2), 433-440, (2007)
   
resolution
Tang ML et al., Development of chiral stationary phases for high-performance liquid chromatographic separation.
TrAC Trends in Analytical Chemistry, 39, 180-194, (2012)
   
resolution of racemates
Wulff G et al., The use of polymers with enzyme-analogous structures for the resolution of racemates.
Angewandte Chemie International Edition, 11, (4), 341-341, (1972)
   
resolution of racemates
Wulff G et al., Enzyme-analogue built polymers and their use for the resolution of racemates.
Tetrahedron Letters, 14, (44), 4329-4332, (1973)
   
resolution of racemates
Shi RX et al., The development of research in molecular imprinting technique.
Progress In Chemistry, 14, (3), 182-191, (2002)
   
resolving racemic mixtures
Ansell RJ et al., Towards artificial antibodies prepared by molecular imprinting.
Clinical Chemistry, 42, (9), 1506-1512, (1996)
   
RESONANCE
Heegaard NHH et al., Identification, quantitation, and characterization of biomolecules by capillary electrophoretic analysis of binding interactions.
Electrophoresis, 20, (15-16), 3122-3133, (1999)
   
RESONANCE
Iamamoto Y et al., Porphyrinosilica and metalloporphyrinosilica: Hybrid organic-inorganic materials prepared by sol-gel processing.
Anais Da Academia Brasileira De Ciencias, 72, (1), 59-66, (2000)
   
RESONANCE
Sharma AC et al., Surface grafting of cobalt complexes on polymeric supports: Evidence for site isolation and applications to reversible dioxygen binding.
Journal of Polymer Science Part A: Polymer Chemistry, 39, (6), 888-897, (2001)
   
RESONANCE
Surugiu I et al., Biomimetic arrays for optical multisensing.
Abstracts of Papers of the American Chemical Society, 221, (AGRO), 60-60, (2001)
   
RESONANCE
Cui A et al., Enzyme-based molecular imprinting with metals.
Biomacromolecules, 3, (6), 1353-1358, (2002)
   
RESONANCE
Lai E, New developments towards the use of molecularly imprinted polymers in drug discovery.
Business Briefings, 92-95, (2002)
   
RESONANCE
Molochnikov LS et al., Coordination of Cu(II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation.
Polymer, 44, (17), 4805-4815, (2003)
   
RESONANCE
Raitman OA et al., Molecularly imprinted polymer matrices for analysis of the cofactor NADH: A surface plasmon resonance study.
Doklady Physical Chemistry, 392, (4-6), 256-258, (2003)
   
RESONANCE
Ray RJ, Development of polymer coated surface plasmon resonance sensors.
Abstracts of Papers of the American Chemical Society, 226, (ANYL), 048-048, (2003)
   
RESONANCE
Seong H et al., Preparation of liposomes with glucose binding sites: liposomes containing di-branched amino acid derivatives.
Biomaterials, 24, (24), 4487-4493, (2003)
   
RESONANCE
Taniwaki K et al., Evaluation of the recognition ability of molecularly imprinted materials by surface plasmon resonance (SPR) spectroscopy.
Analytica Chimica Acta, 489, (2), 191-198, (2003)
   
RESONANCE
Lin CI et al., Molecularly imprinted polymeric film on semiconductor nanoparticles - Analyte detection by quantum dot photoluminescence.
Journal of Chromatography A, 1027, (1-2), 259-262, (2004)
   
RESONANCE
Lotierzo M et al., Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer.
Biosensors and Bioelectronics, 20, (2), 145-152, (2004)
   
RESONANCE