Abstract: In this study, we present a general protocol for the making of surface-imprinted core-shell magnetic beads via reversible addition-fragmentation chain transfer (RAFT) polymerization using RAFT agent functionalized iron oxide nanoparticles as the chain transfer agent. The resulting composites were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) analysis, thermogravimetric analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The surface-imprinted magnetic beads were demonstrated with a homogeneous polymer films (thickness of about 22 nm), spherical shape, and exhibited magnetic property (Ms = 0.41 mA m2 g-1) and thermal stability. Rebinding experiments were carried out to determine the specific binding capacity and selective recognition. The as-synthesized surface-imprinted core-shell magnetic beads showed outstanding affinity and selectivity towards bisphenol A over structurally related compounds, and easily reach the magnetic separation under an external magnetic field. In addition, the resulting composites reusability without obviously deterioration in performance was demonstrated at least five repeated cycles
Template and target information: bisphenol A, BPA, endocrine disrupters
Author keywords: Endocrine disrupting chemicals, molecularly imprinted polymer, Iron oxide, removal