+C
Jin Y et al., Separation of caffeine and catechin compounds from green tea by quercetin molecular imprinted solid-phase extraction.
Journal of the Korean Chemical Society, 51, (2), 165-170, (2007)
   
+ C
Jin Y et al., Solid-phase extraction of caffeine and catechin compounds from green tea by caffeine molecular imprinted polymer.
Bulletin of the Korean Chemical Society, 28, (2), 276-280, (2007)
   
(+) C
Jin Y et al., Multi-SPE of caffeine and catechin compounds from green tea by caffeine and (+) catechin MIPS.
Journal of Liquid Chromatography & Related Technologies, 34, (15), 1604-1616, (2011)
   
+C
Tian M et al., Solid-Phase Extraction of Catechin Compounds From Green Tea by Catechin Molecular Imprinted Polymers.
Asian Journal of Chemistry, 24, (10), 4606-4610, (2012)
   
C
Büyüktuncel E et al., Catechin-molecularly imprinted cryogel for determination of catechin in red wines by HPLC-DAD-fluorescence detector.
Acta Chromatographica, 30, (1), 54-61, (2017)
   
C
Büyüktuncel E et al., Catechin-molecularly imprinted cryogel for determination of catechin in red wines by HPLC-DAD-fluorescence detector.
Acta Chromatographica, 30, (1), 54-61, (2018)
   
+C
Chatterjee TN et al., Molecular Imprinted Polymer Based Electrode for Sensing Catechin (+C) in Green Tea.
IEEE Sensors Journal, 18, (6), 2236-2244, (2018)
   
Ca2+
Rosatzin T et al., Preparation of Ca2+ selective sorbents by molecular imprinting using polymerizable ionophores.
Journal of the Chemical Society-Perkin Transactions 2, (8), 1261-1265, (1991)
   
CA
Proceeding, Zhang RW et al, Selective recognition of bile acids by molecular imprints,
In: IEEE Sensors 2007 Proceedings, 1048-1051, (2007)
   
CA
Valero-Navarro A et al., Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.
Journal of Chromatography A, 1218, (41), 7289-7296, (2011)
   
CA
Bi W et al., Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.
Journal of Chromatography A, 1232, (1), 37-42, (2012)
   
CA
Bibi NS et al., Synthesis and sorption performance of highly specific imprinted particles for the direct recovery of carminic acid.
Process Biochemistry, 47, (9), 1327-1334, (2012)
   
CA
Dai CM et al., Selective removal of acidic pharmaceuticals from contaminated lake water using multi-templates molecularly imprinted polymer.
Chemical Engineering Journal, 211-212, 302-309, (2012)
   
CA 125
Viswanathan S et al., Molecular imprinted nanoelectrodes for ultra sensitive detection of ovarian cancer marker.
Biosensors and Bioelectronics, 33, (1), 179-183, (2012)
   
CA
Dai CM et al., Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.
Environmental Science and Pollution Research, 20, (8), 5492-5501, (2013)
   
CA
Duan YP et al., Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers.
Analytica Chimica Acta, 758, 93-100, (2013)
   
CA
Li N et al., Separation and purification of the antioxidant compounds, caffeic acid phenethyl ester and caffeic acid from mushrooms by molecularly imprinted polymer.
Food Chemistry, 139, (1-4), 1161-1167, (2013)
   
CA
Chen TF et al., System-level Study on Synergism and Antagonism of Active Ingredients in Traditional Chinese Medicine by Using Molecular Imprinting Technology.
Scientific Reports, 4, Article No 7159-(2014)
   
CA
Dai CM et al., Molecularly imprinted polymer assembled on Fe3O4/graphene oxide for clofibric acid (CA) removal from aqueous solution.
Abstracts of Papers of the American Chemical Society, 248, (ENVR), 285-(2014)
   
CA199
Feng XB et al., A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru(bpy)32+-Silica@Poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers.
Electrochimica Acta, 139, 127-136, (2014)
   
CA
Leite FRF et al., Selective determination of caffeic acid in wines with electrochemical sensor based on molecularly imprinted siloxanes.
Sensors and Actuators B: Chemical, 193, 238-246, (2014)
   
CA
Garcia D et al., Molecularly imprinted polymers as a tool for the study of the 4-ethylphenol metabolic pathway in red wines.
Journal of Chromatography A, 1410, 164-172, (2015)
   
CA
Fan DX et al., Hollow molecular imprinted polymers towards rapid, effective and selective extraction of caffeic acid from fruits.
Journal of Chromatography A, 1470, 27-32, (2016)
   
CA
Li GZ et al., Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.
Journal of Chromatographic Science, 54, (2), 271-279, (2016)
   
CA
Miura C et al., Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves.
Journal of Pharmaceutical and Biomedical Analysis, 127, 32-38, (2016)
   
CA 125
Büyüktiryaki S et al., Phosphoserine imprinted nanosensor for detection of Cancer Antigen 125.
Talanta, 167, 172-180, (2017)
   
CA
Fan DX et al., Synthesis and characterization of hollow porous molecular imprinted polymers for the selective extraction and determination of caffeic acid in fruit samples.
Food Chemistry, 224, 32-36, (2017)
   
CA
Fu NJ et al., Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent.
Journal of Chromatography A, 1530, 23-34, (2017)
   
CA
He XP et al., Multipoint recognition of domoic acid from seawater by dummy template molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography.
Journal of Chromatography A, 1500, 61-68, (2017)
   
CA
Baek IH et al., Detection of Acidic Pharmaceutical Compounds Using Virus-Based Molecularly Imprinted Polymers.
Polymers, 10, (9), ArticleNo974-(2018)
   
CA15-3
Gomes RS et al., Sensing CA 15-3 in point-of-care by electropolymerizing O-phenylenediamine (oPDA) on Au-screen printed electrodes.
PLoS ONE, 13, (5), ArticleNoe0196656-(2018)
   
CA 15-3
Pacheco JG et al., Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3).
Sensors and Actuators B: Chemical, 256, 905-912, (2018)
   
CA 15-3
Ribeiro JA et al., Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly(Toluidine Blue) as imprinted polymer receptor.
Biosensors and Bioelectronics, 109, 246-254, (2018)
   
CA 15-3
Santos ART et al., Antibody Biomimetic Material Made of Pyrrole for CA 15-3 and Its Application as Sensing Material in Ion-Selective Electrodes for Potentiometric Detection.
Biosensors, 8, (1), ArticleNo8-(2018)
   
CA
Sun YK et al., A strategy of utilizing Zn(II) as metallic pivot in room temperature ionic liquid to prepare molecularly imprinted polymers for compound with intramolecular hydrogen bonds.
Analytical and Bioanalytical Chemistry, 410, (2), 349-359, (2018)
   
CA
Xu XM et al., Carbon dots coated with molecularly imprinted polymers: A facile bioprobe for fluorescent determination of caffeic acid.
Journal of Colloid and Interface Science, 529, 568-574, (2018)
   
CA125
Han S et al., A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells.
Journal of Materials Science, 54, (4), 3331-3341, (2019)
   
CA-125
Rebelo TSCR et al., Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum.
Analytica Chimica Acta, 1082, 126-135, (2019)
   
CA
Zhang YZ et al., Specific enrichment of caffeic acid from Taraxacum mon-golicum Hand.-Mazz. by pH and magnetic dual-responsive molecularly imprinted polymers.
Analytica Chimica Acta, 1096, 193-202, (2020)
   
CA125
Bahari D et al., Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters.
Analytical and Bioanalytical Chemistry, 413, (15), 4049-4061, (2021)
   
CA15-3
Bahari D et al., Ultrasensitive molecularly imprinted fluorescence sensor for simultaneous determination of CA125 and CA15-3 in human serum and OVCAR-3 and MCF-7 cells lines using Cd and Ni nanoclusters as new emitters.
Analytical and Bioanalytical Chemistry, 413, (15), 4049-4061, (2021)
   
CA153
Han S et al., An ionic liquid-molecularly imprinted composite based on graphene oxide for the specific recognition and extraction of cancer antigen 153.
RSC Advances, 11, (22), 13085-13090, (2021)
   
CA
Lu ZW et al., Novel dual-template molecular imprinted electrochemical sensor for simultaneous detection of CA and TPH based on peanut twin-like NiFe2O4/CoFe2O4/NCDs nanospheres: Fabrication, application and DFT theoretical study.
Biosensors and Bioelectronics, 190, Article113408-(2021)
   
CAB1
Parisi OI et al., Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy.
Journal of Materials Chemistry B, 2, (38), 6619-6625, (2014)
   
CAB2
Parisi OI et al., Magnetic molecularly imprinted polymers (MMIPs) for carbazole derivative release in targeted cancer therapy.
Journal of Materials Chemistry B, 2, (38), 6619-6625, (2014)
   
CA-Cd
Liang P et al., Biosorption of citric acid-cadmium complex by imprinted chitosan polymer.
Desalination and Water Treatment, 51, (19-21), 3754-3761, (2013)
   
Caco-2 cells
Jaiswal L et al., A thalidomide templated molecularly imprinted polymer that promotes a biologically active chiral entity tagged in colon carcinoma cells and protein-related immune activation.
Process Biochemistry, 50, (12), 2035-2050, (2015)
   
cadmium
Candan N et al., Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column.
Materials Science and Engineering: C, 29, (1), 144-152, (2009)
   
cadmium
Ashraf S et al., Imprinted polymers for the removal of heavy metal ions from water.
Water Science And Technology, 64, (6), 1325-1332, (2011)
   
cadmium ion
Asir S et al., Ion-selective imprinted superporous monolith for cadmium removal from human plasma.
Separation Science and Technology, 40, (15), 3167-3185, (2005)
   
cadmium ion
Fang GZ et al., Synthesis and evaluation of an ion-imprinted functionalized sorbent for selective separation of cadmium ion.
Separation Science and Technology, 40, (8), 1597-1608, (2005)
   
cadmium ion
Fang GZ et al., An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol-gel process for selective solid-phase extraction of cadmium(II).
Analytical Chemistry, 77, (6), 1734-1739, (2005)
   
cadmium ion
Pan JY et al., Ion-imprinted interpenetrating polymer networks for preconcentration and determination of Cd(II) by flame atomic absorption spectrometry.
Chemia Analityczna, 51, (5), 701-713, (2006)
   
cadmium ion
Gao BJ et al., Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles.
Polymer, 48, (8), 2288-2297, (2007)
   
cadmium ion
Heitzmann M et al., Complexation of poly(pyrrole-EDTA like) film modified electrodes: Application to metal cations electroanalysis.
Electrochimica Acta, 52, (9), 3082-3087, (2007)
   
cadmium ion
Li F et al., An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(II) from aqueous solution.
Talanta, 71, (4), 1487-1493, (2007)
   
cadmium ion
Randhawa M et al., Imprinted polymers for water purification.
Journal of Applied Polymer Science, 106, (5), 3321-3326, (2007)
   
cadmium ion
Zhai YH et al., Selective solid-phase extraction of trace cadmium(II) with an ionic imprinted polymer prepared from a dual-ligand monomer.
Analytica Chimica Acta, 593, (1), 123-128, (2007)
   
cadmium ion
Yao J et al., Preparation of metal ion imprinting adsorbent resin by inverse microemulsion polymerization and its performance.
Petrochemical Technology, 37, (4), 397-401, (2008)
   
cadmium ion
Singh DK et al., Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer.
Journal of Hazardous Materials, 164, (2-3), 1547-1551, (2009)
   
cadmium ion
Proceeding, Wang LM et al, Selective Separation of Cd(II) Ion from Aqueous Solution by Cd(II)-Imprinted Polymers,
1-4, (2009)
   
cadmium ion
Buhani et al., Adsorption kinetics and isotherm of Cd(II) ion on Nannochloropsis sp biomass imprinted ionic polymer.
Desalination, 259, (1-3), 140-146, (2010)
   
cadmium ion
Buhani et al., Production of metal ion imprinted polymer from mercapto-silica through sol-gel process as selective adsorbent of cadmium.
Desalination, 251, (1-3), 83-89, (2010)
   
Cadmium ion
Gawin M et al., Preparation of a new Cd(II)-imprinted polymer and its application to determination of cadmium(II) via flow-injection-flame atomic absorption spectrometry.
Talanta, 80, (3), 1305-1310, (2010)
   
cadmium ion
Li CX et al., Synthesis and characterisation of sodium trititanate whisker surface CdII ion-imprinted polymer and selective solid-phase extraction of cadmium.
International Journal of Materials and Structural Integrity, 4, (2-3), 291-307, (2010)
   
cadmium ion
Özkütük EB et al., Selective Solid-Phase Extraction of Cd(II) Using Double Imprinting Strategy.
Gazi University Journal of Science, 23, (1), 19-26, (2010)
   
cadmium ion
Özkütük EB et al., Single and double imprinted polymer for selective recognition of Cd(II) ions in aqueous media.
Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 11, (2), 149-161, (2010)
   
Cadmium ion
Zhang ZL et al., Analysis of Properties of Cadmium Adsorption onto Whisker Surface Ion-Imprinted Polymer by Inductively Coupled Plasma Atomic Emission Spectrometry.
Spectroscopy and Spectral Analysis, 30, (3), 792-796, (2010)
   
cadmium ion
Alizadeh T, An imprinted polymer for removal of Cd+2 from water samples: optimization of adsorption and recovery steps by experimental design.
Chinese Journal of Polymer Science, 29, (6), 658-669, (2011)
   
cadmium ion
Alizadeh T et al., A carbon paste electrode impregnated with Cd2+ imprinted polymer as a new and high selective electrochemical sensor for determination of ultra-trace Cd2+ in water samples.
Journal of Electroanalytical Chemistry, 657, (1-2), 98-106, (2011)
   
cadmium ion
Ganjali H et al., Bio-Mimetic Cadmium Ion Imprinted Polymer Based Potentiometric Nano-Composite Sensor.
International Journal of Electrochemical Science, 6, (12), 6085-6093, (2011)
   
cadmium ion
Li LJ et al., Preparation and Adsorption Characteristics of the Cadmium(II) Ion Imprinted Polymer.
Journal of University of South China (Science and Technology), 25, (1), 81-86, (2011)
   
cadmium ion
Li ZC et al., Cd(II)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted sol-gel process for selective removal of cadmium(II) from aqueous solution.
Chemical Engineering Journal, 171, (2), 703-710, (2011)
   
cadmium ion
Proceeding, Li ZC et al, Application of Imprinted Functionalized Silica Gel Sorbent for Selective Removal of Cadmium (II) from Industial Wastewaters,
In: Advanced Materials Research, Yushu Z (Ed.), 441-444, (2011)
   
Cadmium ion
Liu BJ et al., Adsorption properties of Cd(II)-imprinted chitosan resin.
Journal of Materials Science, 46, (5), 1535-1541, (2011)
   
cadmium ion
Meng SM et al., Spectrophotometric determination of trace cadmium in vegetables with 3,5-bis(4-phenylazophenylaminodiazo)benzoic acid.
Journal of Analytical Chemistry, 66, (1), 31-36, (2011)
   
cadmium ion
Mu HY et al., Preparation of an Ion Imprinted Fluorescent Sensor for Selectivity Determination of Cadmium in Aqueous Media.
Journal of Instrumental Analysis, 30, (7), 795-798, (2011)
   
cadmium ion
Pereira E et al., Complexing Polymer Films in The Preparation of Modified Electrodes for Detection of Metal Ions.
Macromolecular Symposia, 304, (1), 115-125, (2011)
   
cadmium ion
Shi YY et al., The determination of a trace amount of Cd in water by FAAS after separation and preconcentration with imprinting of chitosan/attapulgite.
Chinese Journal of Analysis Laboratory, 30, (11), 56-59, (2011)
   
cadmium ion
Proceeding, Vardini MT et al, Molecularly Imprinted Polymer-Based Solid Phase Extraction Sorbent for the Preconcentration and Determination of Cd2+ Ions,
(2011)
   
cadmium ion
Zhang ML et al., Preparation and Adsorption Properties of Magnetic Fe3O4@SiO2@CS Cadmium Ion-imprinted Polymer.
Chemical Journal of Chinese Universities, 32, (12), 2763-2768, (2011)
   
cadmium ion
Ashkenani H et al., Determination of cadmium(II) using carbon paste electrode modified with a Cd-ion imprinted polymer.
Microchimica Acta, 178, (1), 53-60, (2012)
   
cadmium ion
Chen AW et al., Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol.
Chemical Engineering Journal, 191, (1), 85-94, (2012)
   
cadmium ion
Chen MX et al., Synthesis and adsorption behavior of Cd(II)-imprinted silica gel.
Polymer Materials Science and Engineering, 28, (8), 163-166, (2012)
   
cadmium ion
Fan HT et al., Preparation of Cd(II)-imprinted silica by hydrothermal-assisted surface imprinting technique and its adsorption properties.
Journal of Functional Materials, 43, (15), 2060-2064, (2012)
   
cadmium ion
Fan HT et al., An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (II) from aqueous solution.
Applied Surface Science, 258, (8), 3815-3822, (2012)
   
cadmium ion
Ge YS et al., Selective Solid-Phase Extraction of Cd(II) by an Ion-Imprinted Polymer from Environmental Samples.
Asian Journal of Chemistry, 24, (8), 3661-3664, (2012)
   
cadmium ion
Lai EPC et al., Cd2+, Cu2+, Pb2+, Sr2+, and Y3+ binding characteristics of 17β-estradiol molecularly imprinted polymer particles incorporated with dicyclohexano-18-crown-6 for urine bioassay.
Journal of Applied Polymer Science, 123, (1), 12-19, (2012)
   
cadmium ion
Poursharifi MJ et al., Determination of cadmium(II) using Cd(II)-imprinted nano diazoaminobenzene-vinylpyridine copolymers.
Asian Journal of Chemistry, 24, (10), 4563-4568, (2012)
   
cadmium ion
Zhang N et al., Cadmium (II) imprinted 3-mercaptopropyltrimethoxysilane coated stir bar for selective extraction of trace cadmium from environmental water samples followed by inductively coupled plasma mass spectrometry detection.
Analytica Chimica Acta, 723, (1), 54-60, (2012)
   
cadmium ion
Behbahani M et al., A nanosized cadmium(II)-imprinted polymer for use in selective trace determination of cadmium in complex matrices.
Microchimica Acta, 180, (11-12), 1117-1125, (2013)
   
cadmium ion
Fang XL et al., Studies on Preparation of Cd2+ Ion Surface-Imprinted Material with High Ion Recognition Ability and its Ion Recognition Mechanism.
Acta Chimica Sinica, 71, (3), 409-416, (2013)
   
Cadmium ion
Guo MM et al., Preparation, characterization and adsorption properties of cadmium(II) ion imprinted silica gel sorbents.
Journal of Functional Materials, 44, (6), 800-804, (2013)
   
cadmium ion
Hu NN et al., Enrichment and Chemiluminescence Detection of Cd2+ in a Cd2+ Imprinted Polymer Monolith Integrated in a Polydimethylsiloxane Microchip.
Journal of Analytical Science, 29, (1), 1-5, (2013)
   
cadmium ion
Lü HX et al., Ion-imprinted carboxymethyl chitosan - silica hybrid sorbent for extraction of cadmium from water samples.
International Journal of Biological Macromolecules, 56, 89-93, (2013)
   
cadmium ion
Wu JB et al., Sol-gel derived ion imprinted thiocyanato-functionalized silica gel as selective adsorbent of cadmium(II).
Journal of Sol-Gel Science and Technology, 66, (3), 434-442, (2013)
   
cadmium ion
Wu JB et al., Removal of cadmium from aqueous solution by organic-inorganic hybrid sorbent combining sol-gel processing and imprinting technique.
Korean Journal of Chemical Engineering, 30, (5), 1111-1118, (2013)
   
cadmium ion
Proceeding, Zhou DB et al, Preparation and Recognition Performance of Molecularly Imprinted Polymers for Cadmium with Surface-Imprinting Technique,
In: Advanced Materials Research, Liu ZL, Dong XF, Liu ZT, Liu QH (Eds.), 461-465, (2013)
   
cadmium ion
Aboufazeli F et al., Novel Cd(II) Ion Imprinted Polymer Coated on Multiwall Carbon Nanotubes as a Highly Selective Sorbent for Cadmium Determination in Food Samples.
Journal of AOAC International, 97, (1), 173-178, (2014)
   
cadmium ion
Barciela-Alonso MC et al., Ionic imprinted polymer based solid phase extraction for cadmium and lead pre-concentration/determination in seafood.
Microchemical Journal, 114, 106-110, (2014)
   
cadmium ion
Girija P et al., Bioremediation of waste water containing hazardous cadmium ion with ion imprinted interpenetrating polymer networks.
Advances in Environmental Chemistry, 2014, Article ID 394841-(2014)
   
cadmium ion
He J et al., Ca(II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions.
Chemical Engineering Journal, 244, 202-208, (2014)
   
cadmium ion
Lulinski P et al., Synthesis and characterization of cadmium(II)-imprinted poly(1-allyl-2-thiourea-co-ethylene glycol dimethacrylate) particles for selective separation.
Polymer Bulletin, 71, (7), 1727-1741, (2014)
   
cadmium ion
Luo XB et al., Synthesis of magnetic ion-imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd(II) from water.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 186-193, (2014)
   
Cadmium ion
Parameswaran G et al., Bioremediation of Waste Water Containing Hazardous Cadmium Ion with Ion Imprinted Interpenetrating Polymer Networks.
Advances in Environmental Chemistry, 2014, Article ID 394841-(2014)
   
cadmium ion
Prasad BB et al., A dual-ion imprinted polymer embedded in sol-gel matrix for the ultra trace simultaneous analysis of cadmium and copper.
Talanta, 120, 398-407, (2014)
   
cadmium ion
Roy E et al., Simultaneous determination of heavy metals in biological samples by a multiple-template imprinting technique: an electrochemical study.
RSC Advances, 4, (100), 56690-56700, (2014)
   
cadmium ion
Wang JJ et al., Synthesis and application of ion-imprinted interpenetrating polymer network gel for selective solid phase extraction of Cd2+.
Chemical Engineering Journal, 242, 117-126, (2014)
   
cadmium ion
Wei SL et al., Preparation of magnetic Pb(II) and Cd(II) ion-imprinted microspheres and their application in determining the Pb(II) and Cd(II) contents of environmental and food samples.
RSC Advances, 4, (56), 29715-29723, (2014)
   
cadmium ion
Yang CY et al., Synthesis and adsorption property of Cd(II) - 8-hydroxyquinoline molecularly imprinted polymer microspheres.
Environmental Science, 35, (6), 2223-2229, (2014)
   
cadmium ion
Zhao HY et al., Synthesis and properties of cadmium(II)-imprinted polymer supported by magnetic multi-walled carbon nanotubes.
Analytical Methods, 6, (23), 9313-9320, (2014)
   
cadmium ion
Asmawati et al., Synthesis And Characterization Of An Ion Imprinted Polymer For Cadmium Using Quinaldic Acid As Complexing Agent And Applying By Microwave.
International Journal of Scientific & Technology Research, 4, (1), 190-192, (2015)
   
cadmium ion
Fan HT et al., A method for measurement of free cadmium species in waters using diffusive gradients in thin films technique with an ion-imprinted sorbent.
Analytica Chimica Acta, 897, 24-33, (2015)
   
cadmium ion
Li M et al., Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution.
Applied Surface Science, 332, 463-472, (2015)
   
cadmium ion
Li Y et al., Crosslinked Electro-Spun Chitosan Nanofiber Mats with Cd(II) as Template Ions for Adsorption Applications.
Journal of Nanoscience and Nanotechnology, 15, (6), 4245-4254, (2015)
   
cadmium ion
Panjali Z et al., Development of a selective sorbent based on a magnetic ion imprinted polymer for the preconcentration and FAAS determination of urinary cadmium.
Analytical Methods, 7, (8), 3618-3624, (2015)
   
cadmium ion
Shofiyani A et al., Cadmium adsorption on chitosan/chlorella biomass sorbent prepared by ionic-imprinting technique.
Indonesian Journal of Chemistry, 15, (2), 163-171, (2015)
   
cadmium ion
Tabakli B et al., Particle-Assisted Ion-Imprinted Cryogels for Selective CdII Ion Removal.
Industrial & Engineering Chemistry Research, 54, (6), 1816-1823, (2015)
   
cadmium ion
Xi Y et al., Removal of Cadmium(II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers.
Journal of Chemical & Engineering Data, 60, (11), 3253-3261, (2015)
   
cadmium ion
Zhao BS et al., Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection.
Spectrochimica Acta Part B-Atomic Spectroscopy, 107, 115-124, (2015)
   
cadmium ion
Ashouri N et al., Preparation of a new nanoparticle Cd(II)-imprinted polymer and its application for selective separation of cadmium(II) ions from aqueous solutions and determination via inductively coupled plasma optical emission spectrometry.
Desalination and Water Treatment, 57, (30), 14280-14289, (2016)
   
cadmium ion
do Lago AC et al., Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.
Applied Spectroscopy, 70, (11), 1842-1850, (2016)
   
cadmium ion
Fu JQ et al., Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions.
RSC Advances, 6, (50), 44087-44095, (2016)
   
cadmium ion
Jalilzadeh M et al., Specific heavy metal ion recovery with ion-imprinted cryogels.
Journal of Applied Polymer Science, 133, (10), ArticleNo43095-(2016)
   
cadmium ion
Li WM et al., One-step synthesis of periodic ion imprinted mesoporous silica particles for highly specific removal of Cd2+ from mine wastewater.
Journal of Sol-Gel Science and Technology, 78, (3), 632-640, (2016)
   
cadmium ion
Liu Y et al., RAFT-mediated microemulsion polymerization to synthesize a novel high-performance graphene oxide-based cadmium imprinted polymer.
Chemical Engineering Journal, 302, 609-618, (2016)
   
cadmium ion
Panjali Z et al., A Simple and Fast Method Based on New Magnetic Ion Im-printed Polymer as a Highly Selective Sorbent for Preconcentra-tion and Determination of Cadmium in Environmental Samples.
Iranian Journal of Public Health, 45, (8), 1044-1053, (2016)
   
cadmium ion
Sun ZC et al., Preparation of Cadmium(II) Ion Imprinted Polymer Microspheres by Seedball Swelling Suspension Polymerization.
Chinese Journal of Materials Research, 30, (9), 669-674, (2016)
   
cadmium ion
Wang J et al., Fabrication of an "ion-imprinting" dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions.
Analyst, 141, (5886), 5892-(2016)
   
cadmium ion
Wang SR et al., Preparation and Characteristics of a Novel Sorptive Extraction Stir Bar Based on Cd-Imprinted Polymer Monoliths.
Journal of AOAC International, 99, (1), 279-286, (2016)
   
cadmium ion
Zarezade V et al., A new magnetic tailor made polymer for separation and trace determination of cadmium ions by flame atomic absorption spectrophotometry.
RSC Advances, 6, (105), 103499-103507, (2016)
   
cadmium ion
Cen SB et al., Application of magnetic Cd2+ ion-imprinted mesoporous organosilica nanocomposites for mineral wastewater treatment.
RSC Advances, 7, (13), 7996-8003, (2017)
   
cadmium ion
Ghanei-Motlagh M et al., Novel imprinted polymeric nanoparticles prepared by sol-gel technique for electrochemical detection of toxic cadmium(II) ions.
Chemical Engineering Journal, 327, 135-141, (2017)
   
cadmium ion
Huang K et al., Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(II) ions.
Journal of Hazardous Materials, 333, 137-143, (2017)
   
cadmium ion
Ivari SAR et al., Ion imprinted polymer based potentiometric sensor for the trace determination of Cadmium (II) ions.
Arabian Journal of Chemistry, 10, S864-S869, (2017)
   
cadmium ion
Liu Y et al., A novel dual temperature responsive mesoporous imprinted polymer for Cd(II) adsorption and temperature switchable controlled separation and regeneration.
Chemical Engineering Journal, 328, 11-24, (2017)
   
cadmium ion
Luo XB et al., Capturing Cadmium(II) Ion from Wastewater Containing Solid Particles and Floccules Using Ion-Imprinted Polymers with Broom Effect.
Industrial & Engineering Chemistry Research, 56, (9), 2350-2358, (2017)
   
cadmium ion
Perera R et al., The binding of metal ions to molecularly-imprinted polymers.
Water Science And Technology, 75, (7), 1643-1650, (2017)
   
cadmium ion
Tang XJ et al., A novel Cd2+-imprinted chitosan-based composite membrane for Cd2+ removal from aqueous solution.
Materials Letters, 198, 121-123, (2017)
   
cadmium ion
Tarley CRT et al., On-line micro-solid phase preconcentration of Cd2+ coupled to TS-FF-AAS using a novel ion-selective bifunctional hybrid imprinted adsorbent.
Microchemical Journal, 131, 57-69, (2017)
   
cadmium ion
Xu XY et al., Synthesis and Application of Novel Magnetic Ion-Imprinted Polymers for Selective Solid Phase Extraction of Cadmium (II).
Polymers, 9, (8), ArticleNo360-(2017)
   
cadmium ion
Yilmaz V et al., Novel Imprinted Polymer for the Preconcentration of Cadmium with Determination by Inductively Coupled Plasma Mass Spectrometry.
Analytical Letters, 50, (3), 482-499, (2017)
   
cadmium ion
Zargar B et al., Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination of trace amounts of cadmium ions.
Microchimica Acta, 184, (11), 4521-4529, (2017)
   
cadmium ion
Aravind A et al., Tailoring of nanostructured material as an electrochemical sensor and sorbent for toxic Cd(II) ions from various real samples.
Journal of Analytical Science and Technology, 9, (1), ArticleNo22-(2018)
   
cadmium ion
Dahaghin Z et al., Determination of cadmium(II) using a glassy carbon electrode modified with a Cd-ion imprinted polymer.
Journal of Electroanalytical Chemistry, 810, 185-190, (2018)
   
cadmium ion
Faghihian H et al., Comparative performance of novel magnetic ion-imprinted adsorbents employed for Cd2+, Cu2+ and Ni2+ removal from aqueous solutions.
Environmental Science and Pollution Research, 25, (15), 15068-15079, (2018)
   
cadmium ion
Jalilzadeh M et al., Oral Chelation Therapy for Cadmium Poisoning with Cd(II)- MAC Imprinted pHEMAC Nanoparticles.
Hacettepe Journal of Biology and Chemistry, 46, (4), 505-514, (2018)
   
cadmium ion
Kong QP et al., Adsorption of Cd2+ by an ion-imprinted thiol-functionalized polymer in competition with heavy metal ions and organic acids.
RSC Advances, 8, (16), 8950-8960, (2018)
   
cadmium ion
Li LW et al., Synthesis, adsorption and selectivity of inverse emulsion Cd(II) imprinted polymers.
Chinese Journal of Chemical Engineering, 26, (3), 494-500, (2018)
   
cadmium ion
Li XM et al., Preparation and properties of cadmium(II) ion imprinted polymers.
Chinese Journal of Analysis Laboratory, 37, (3), 311-315, (2018)
   
cadmium ion
Li YX et al., Synthesis of ion imprinted mesoporous adsorbent via one-pot synthesis in mild pH for removal of Cd2+ from water.
Journal of Sol-Gel Science and Technology, 85, (2), 259-268, (2018)
   
cadmium ion
Minaberry YS et al., An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS.
Analytical Methods, 10, (44), 5305-5312, (2018)
   
cadmium ion
Rahangdale D et al., Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium.
Carbohydrate Polymers, 202, 334-344, (2018)
   
cadmium ion
Rahangdale D et al., Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste.
Journal of Environmental Chemical Engineering, 6, (2), 1828-1839, (2018)
   
cadmium ion
Rahangdale D et al., Ion cum molecularly dual imprinted polymer for simultaneous removal of cadmium and salicylic acid.
Journal of Molecular Recognition, 31, (3), ArticleNoe2630-(2018)
   
cadmium ion
Tian DY et al., Synthesis, Characterization and Adsorption Behavior of Cd(II) Ion-Imprinted Mesoporous Materials.
Science of Advanced Materials, 10, (3), 324-330, (2018)
   
cadmium ion
Zhang SQ et al., Adsorption Behavior of Selective Recognition Functionalized Biochar to Cd(II) in Wastewater.
Materials, 11, (2), ArticleNo299-(2018)
   
cadmium ion
An FQ et al., Novel ionic surface imprinting technology: design and application for selectively recognizing heavy metal ions.
RSC Advances, 9, (5), 2431-2440, (2019)
   
cadmium ion
Baghel A et al., Synthesis and Characterisation of Ligand Free Cadmium Imprinted Polymer for Sensing of Cd(II) from Aqueous Solution.
Defence Life Science Journal, 4, (3), 153-157, (2019)
   
cadmium ion
de Oliveira LLG et al., Synthesis and application of restricted access material-ion imprinted poly(allylthiourea) for selective separation of Cd2+ and humic acid exclusion.
Reactive and Functional Polymers, 134, 93-103, (2019)
   
cadmium ion
Felix CSA et al., Application of a Novel Ion-Imprinted Polymer to the Separation of Traces of CdII Ions in Natural Water: Optimization by Box-Behnken Design.
Journal of the Brazilian Chemical Society, 30, (4), 873-881, (2019)
   
cadmium ion
Hu SW et al., An Electrochemical Sensor Based on ion Imprinted PPy/rGO Composite for Cd(II) Determination in Water.
International Journal of Electrochemical Science, 14, 11714-11730, (2019)
   
cadmium ion
Li SH et al., Fluorometric aptasensor for cadmium(II) by using an aptamer-imprinted polymer as the recognition element.
Microchimica Acta, 186, (12), Article823-(2019)
   
cadmium ion
Lu ZY et al., Magnetic Hierarchical Photocatalytic Nanoreactors: Toward Highly Selective Cd2+ Removal with Secondary Pollution Free Tetracycline Degradation.
ACS Applied Nano Materials, 2, (3), 1664-1674, (2019)
   
cadmium ion
Wang HP et al., A Novel Magnetic Cd(II) Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cadmium Ions from Aqueous Solution.
Journal of Inorganic and Organometallic Polymers and Materials, 29, (6), 1874-1885, (2019)
   
cadmium ion
Xie CS et al., Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(II) adsorption and detection.
RSC Advances, 9, (41), 23474-23483, (2019)
   
cadmium ion
Xing CL et al., Multiple Metal Ion Imprinted Electrochemical Sensor with Enhanced Sensitivity by Graphene Oxide-C60 Composite.
Chinese Journal of Applied Chemistry, 36, (3), 341-348, (2019)
   
cadmium ion
Alizadeh T et al., A new bio-compatible Cd2+-selective nanostructured fluorescent imprinted polymer for cadmium ion sensing in aqueous media and its application in bio imaging in Vero cells.
RSC Advances, 10, (7), 4110-4117, (2020)
   
cadmium ion
Bakhshpour M et al., Highly sensitive detection of Cd(II) ions using ion-imprinted surface plasmon resonance sensors.
Microchemical Journal, 159, Article105572-(2020)
   
cadmium ion
de Oliveira LLG et al., Restricted access material-ion imprinted polymer-based method for on-line flow preconcentration of Cd2+ prior to flame atomic absorption spectrometry determination.
Microchemical Journal, 157, Article105022-(2020)
   
cadmium ion
Gomes ACSA et al., Development of a new ion-imprinted polymer (IIP) with Cd2+ ions based on divinylbenzene copolymers containing amidoxime groups.
Polymer Bulletin, 77, (4), 1969-1981, (2020)
   
cadmium ion
Jagirani MS et al., Fabrication of cadmium tagged novel ion imprinted polymer for detoxification of the toxic Cd2+ion from aqueous environment.
Microchemical Journal, 158, Article105247-(2020)
   
cadmium ion
Wu SP et al., An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing cadmium (II) ions.
Microchemical Journal, 155, Article104710-(2020)
   
cadmium ion
Yang P et al., A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(II): Preparation, adsorption properties and binding mechanism to Cd(II).
Reactive and Functional Polymers, 151, Article104569-(2020)
   
cadmium ion
Zhou JR et al., ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip.
Sensors and Actuators B: Chemical, 305, Article127462-(2020)
   
cadmium ion
Abdallah AB et al., Selective and sensitive electrochemical sensors based on an ion imprinting polymer and graphene oxide for the detection of ultra-trace Cd(II) in biological samples.
RSC Advances, 11, (49), 30771-30780, (2021)
   
cadmium ion
Chen JY et al., Application of chitosan-N-doped graphene oxide ion-imprinted sensor in Cd (II) ions detection.
Diamond and Related Materials, 119, Article108591-(2021)
   
cadmium ion
Elsayed NH et al., Thiosemicarbazide-modified/ion-imprinted phenolic resin for selective uptake of cadmium ions.
Materials Chemistry and Physics, 264, Article124433-(2021)
   
cadmium ion
Hu JF et al., Chemiresistor sensor based on ion-imprinted polymer (IIP)-functionalized rGO for Cd(II) ions in water.
Sensors and Actuators B: Chemical, 346, Article130474-(2021)
   
cadmium ion
Xia XX et al., Nanostructured Shell-Layer Artificial Antibody with Fluorescence-Tagged Recognition Sites for the Trace Detection of Heavy Metal Ions by Self-Reporting Microsensor Arrays.
ACS Applied Materials & Interfaces, 13, (48), 57981-57997, (2021)
   
cadmium ion
Zhu F et al., Selective solid phase extraction and preconcentration of Cd(II) in the solution using microwave-assisted inverse emulsion-suspension Cd(II) ion imprinted polymer.
Microchemical Journal, 164, Article106060-(2021)
   
cadmium ion
Ma R et al., Preparation and optimization of diatom-based cadmium ion-imprinted materials.
Journal of Molecular Structure, 1251, Article132044-(2022)
   
cadmium ion
Wu SR et al., The ion-imprinted oyster shell material for targeted removal of Cd(II) from aqueous solution.
Journal of Environmental Management, 302, Article114031-(2022)
   
cadmium ion
Yu C et al., Tailor-made double-face imprinted membrane with ultra-high specific surface area asymmetric structure through a connective method of dip-coating and delayed phase inversion for selective adsorption of cadmium ion.
Separation and Purification Technology, 280, Article119865-(2022)
   
Cadmium ions
Segatelli MG et al., Cadmium ion-selective sorbent preconcentration method using ion imprinted poly(ethylene glycol dimethacrylate-co-vinylimidazole).
Reactive and Functional Polymers, 70, (6), 325-333, (2010)
   
cadmium ions
Proceeding, Shi YY et al, Studies on Preparation and Adsorption Behavior of Cd2+ Ions-Imprinted Polymer,
In: Advanced Materials Research, Li B (Ed.), 419-422, (2012)
   
cadmium ions
Shi YY et al., Determination of Trace Cd(II) in Traditional Chinese Medicine by Flame Atomic Absorption Spectrometry after Separation and Preconcentration with Ions Imprinting of Chitosan/Attapulgite.
Journal of Analytical Science, 28, (3), 348-352, (2012)
   
cadmium ions
Çorman ME et al., Reversible and easy post-crosslinking method for developing a surface ion-imprinted hypercrosslinked monolith for specific Cd(II) ion removal from aqueous solutions.
RSC Advances, 6, (91), 88777-88787, (2016)
   
cadmium ions
Chen AW et al., Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III): A novel adsorbent for simultaneous removal of tetracycline and cadmium.
Carbohydrate Polymers, 155, 19-27, (2017)
   
cadmium ions
Zhu F et al., Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism.
Journal of Hazardous Materials, 321, 103-110, (2017)
   
cadmiun ion
Wu P et al., A simple chemical etching strategy to generate "ion-imprinted" sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions.
Chemical Communications, (37), 7046-7048, (2010)
   
cadmiun ion
Ebrahimzadeh H et al., New magnetic polymeric nanoparticles for extraction of trace cadmium ions and the determination of cadmium content in diesel oil samples.
Analytical Methods, 6, (13), 4617-4624, (2014)
   
caesium ion
Iwasaki H et al., Molecularly imprinted polyacrylonitrile adsorbents for the capture of Cs+ ions.
Polymer Journal, 48, 1151-1156, (2016)
   
CAF
Wei HS et al., Preparation of inorganic molecularly imprinted polymers with higher adsorption and selectivity by sol-gel method.
Journal of Chromatography B, 836, (1-2), 57-62, (2006)
   
CAF
Lee SC et al., Studies on the preparation and properties of inorganic molecularly imprinted polymer (MIP) based on tetraethoxysilane and silane coupling agents.
Journal of Applied Polymer Science, 114, (6), 3994-3999, (2009)
   
CAF
Kan XW et al., A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection.
Journal of Solid State Electrochemistry, 16, (10), 3207-3213, (2012)
   
CAF
Latorre AL et al., Selective removal of ATP degradation products from food matrices I: Design and characterization of a dummy molecularly imprinted specific sorbent for hypoxanthine.
Reactive and Functional Polymers, 91-92, 51-61, (2015)
   
CAF
Schauperl M et al., Probing the Structural and Binding Mechanism Heterogeneity of Molecularly Imprinted Polymers.
The Journal of Physical Chemistry B, 119, (2), 563-571, (2015)
   
CAF
Lim KF et al., Effect of Formulation on the Binding Efficiency and Selectivity of Precipitation Molecularly Imprinted Polymers.
Molecules, 23, (11), ArticleNo2966-(2018)
   
CAF
Teixeira LS et al., Microextraction by packed molecularly imprinted polymer to selectively determine caffeine in soft and energy drinks.
Microchemical Journal, 158, Article105252-(2020)
   
CAFF
Parisi OI et al., Surface modifications of molecularly imprinted polymers for improved template recognition in water media.
Journal of Polymer Research, 17, (3), 355-362, (2010)
   
caffeic acid
Li H et al., Separation and purification of chlorogenic acid by molecularly imprinted polymer monolithic stationary phase.
Journal of Chromatography A, 1098, (1-2), 66-74, (2005)
   
caffeic acid
Valero-Navarro A et al., Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.
Journal of Chromatography A, 1218, (41), 7289-7296, (2011)
   
caffeic acid
Zhu T et al., Molecularly imprinted monolithic material for the extraction of three organic acids from Salicornia herbacea L.
Journal of Applied Polymer Science, 121, (3), 1691-1696, (2011)
   
caffeic acid
Bi W et al., Separation of phenolic acids from natural plant extracts using molecularly imprinted anion-exchange polymer confined ionic liquids.
Journal of Chromatography A, 1232, (1), 37-42, (2012)
   
caffeic acid
Li N et al., Separation and purification of the antioxidant compounds, caffeic acid phenethyl ester and caffeic acid from mushrooms by molecularly imprinted polymer.
Food Chemistry, 139, (1-4), 1161-1167, (2013)
   
caffeic acid
Chen TF et al., System-level Study on Synergism and Antagonism of Active Ingredients in Traditional Chinese Medicine by Using Molecular Imprinting Technology.
Scientific Reports, 4, Article No 7159-(2014)
   
caffeic acid
Gültekin A et al., Preparation of MIP-based QCM nanosensor for detection of caffeic acid.
Talanta, 119, 533-537, (2014)
   
Caffeic acid
Leite FRF et al., Selective determination of caffeic acid in wines with electrochemical sensor based on molecularly imprinted siloxanes.
Sensors and Actuators B: Chemical, 193, 238-246, (2014)
   
caffeic acid
Park HE et al., Molecularly Imprinted Polymer for Solid-Phase Extraction of Phenolic Acids from Salicornia herbacea L.
Separation Science and Technology, 49, (9), 1401-1406, (2014)
   
caffeic acid
Li GZ et al., Molecularly imprinted polymers combination with deep eutectic solvents for solid-phase extraction of caffeic acid from hawthorn.
Chinese Journal of Chromatography, 33, (8), 792-798, (2015)
   
caffeic acid
Fan DX et al., Hollow molecular imprinted polymers towards rapid, effective and selective extraction of caffeic acid from fruits.
Journal of Chromatography A, 1470, 27-32, (2016)
   
caffeic acid
Miura C et al., Molecularly imprinted polymer for caffeic acid by precipitation polymerization and its application to extraction of caffeic acid and chlorogenic acid from Eucommia ulmodies leaves.
Journal of Pharmaceutical and Biomedical Analysis, 127, 32-38, (2016)
   
caffeic acid
Yin YL et al., Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.
Journal of Separation Science, 39, (8), 1480-1488, (2016)
   
caffeic acid
Fan DX et al., Synthesis and characterization of hollow porous molecular imprinted polymers for the selective extraction and determination of caffeic acid in fruit samples.
Food Chemistry, 224, 32-36, (2017)
   
caffeic acid
Fu NJ et al., Ternary choline chloride/caffeic acid/ethylene glycol deep eutectic solvent as both a monomer and template in a molecularly imprinted polymer.
Journal of Separation Science, 40, (10), 2286-2291, (2017)
   
caffeic acid
Fu NJ et al., Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent.
Journal of Chromatography A, 1530, 23-34, (2017)
   
caffeic acid
Liu HL et al., Isolation and Purification of Three Analogues from Clematis akebioides by Molecularly Imprinted Solid-Phase Extraction and HSCCC.
Chromatographia, 80, (11), 1651-1658, (2017)
   
caffeic acid
Ishak N et al., Surface Modification of PVDF Membrane with a Caffeic Acid-Imprinted Polymer Layer.
Research Communication in Engineering Science & Technology 1 (2018)
   
caffeic acid
Li G et al., Ternary deep eutectic solvent magnetic molecularly imprinted polymers for the dispersive magnetic solid-phase microextraction of green tea.
Journal of Separation Science, 41, (17), 3424-3431, (2018)
   
caffeic acid
Xu XM et al., Carbon dots coated with molecularly imprinted polymers: A facile bioprobe for fluorescent determination of caffeic acid.
Journal of Colloid and Interface Science, 529, 568-574, (2018)
   
caffeic acid
Zhang YZ et al., Specific enrichment of caffeic acid from Taraxacum mon-golicum Hand.-Mazz. by pH and magnetic dual-responsive molecularly imprinted polymers.
Analytica Chimica Acta, 1096, 193-202, (2020)
   
caffeic acid phenethyl ester
Li N et al., Separation and purification of the antioxidant compounds, caffeic acid phenethyl ester and caffeic acid from mushrooms by molecularly imprinted polymer.
Food Chemistry, 139, (1-4), 1161-1167, (2013)
   
caffeine
Lai EPC et al., Surface plasmon resonance sensors using molecularly imprinted polymers for sorbent assay of theophylline, caffeine, and xanthine.
Canadian Journal of Chemistry - Revue Canadienne de Chimie, 76, 265-273, (1998)
   
caffeine
Su LQ et al., The condition of special selectivity forming molecular imprint stationary phase.
Journal of Qiqihar University (Natural Science Edition), 16, (4), 1-3, (2000)
   
caffeine
Su LQ et al., Investigation of separation of caffeine and theophylline on molecular imprinted polymer stationary phases by high performance liquid chromatography.
Chemical Journal of Chinese Universities, 22, (7), 1122-1124, (2001)
   
caffeine
Yan LS et al., Molecularly imprinted polymer monoliths prepared in capillaries by photoinitiated in situ polymerization for the screening of caffeine.
Chemical Journal of Chinese Universities, 22, (12), 2008-2010, (2001)
   
caffeine
Kajitani H et al., Asdorption Characteristics and Application of Caffeine-Imprinted Polymer.
Nippon Kagakkai Koen Yokoshu, 82, 284-(2002)
   
caffeine
Kajitani H et al., Caffeine-Imprinted Polymer.
Nippon Kagakkai Koen Yokoshu, 81, (1), 562-(2002)
   
caffeine
Theodoridis G et al., Selective solid-phase extraction sorbent for caffeine made by molecular imprinting.
Journal of Chromatography A, 948, (1-2), 163-169, (2002)
   
caffeine
Carter S et al., Core-shell molecular imprinted polymer colloids.
Supramolecular Chemistry, 15, (3), 213-220, (2003)
   
caffeine
Kajitani H et al., Synthesis and Adsorption Characteristics of Caffeine-Imprinted Polymer.
Nippon Kagakkai Koen Yokoshu, 83, (1), 58-(2003)
   
caffeine
Lin CI et al., Molecularly imprinted polymeric beads for decaffeination.
Journal of Medical and Biological Engineering, 23, (2), 53-56, (2003)
   
caffeine
Wang DX et al., Caffeine molecular imprinted microgel spheres by precipitation polymerization.
Korean Journal of Chemical Engineering, 20, (6), 1073-1076, (2003)
   
caffeine
Wang DX et al., Chromatographic separation of xanthine derivatives on single and mixed-template imprinted polymers.
Bulletin of the Korean Chemical Society, 25, (3), 357-360, (2004)
   
caffeine
Yan LS et al., Determination of caffeine by micro high performance liquid chromatography with a molecularly imprinted capillary monolithic column.
Chinese Journal of Analytical Chemistry, 32, (2), 148-152, (2004)
   
caffeine
Zhu XF et al., Studies on preparation and characteristics of binding and recognition of caffeine molecular template polymers.
Journal of Yunnan University (Natural Sciences Edition), 26, (6), 528-531, (2004)
   
caffeine
Carter SR et al., Aqueous compatible polymers in bionanotechnology.
IEE Proceedings Nanobiotechnology, 152, (5), 169-176, (2005)
   
caffeine
Chen YJ et al., Preparation of molecularly imprinted microspheres against caffeine by aqueous micro-suspension polymerization and its recognition characterstics.
Chinese Traditional and Herbal Drugs, 36, (5), 692-695, (2005)
   
caffeine
Proceeding, Chou TC et al, Molecular imprinting and its applications in bio-molecular sensing and purification,
785, (2005)
   
caffeine
Ebarvia BS et al., Biomimetic properties and surface studies of a piezoelectric caffeine sensor based on electrosynthesized polypyrrole.
Talanta, 66, (1), 145-152, (2005)
   
caffeine
Proceeding, Ebarvia BS et al, Biomimetic quartz crystal sensors for caffeine based on conducting polymers,
34-38, (2005)
   
caffeine
Ebarvia BS et al., Piezoelectric quartz sensor for caffeine based on molecularly imprinted polymethacrylic acid.
Sensors and Actuators B: Chemical, 107, (2), 782-790, (2005)
   
caffeine
Gill RS et al., Molecular imprinting of a cellulose/silica composite with caffeine and its characterization.
Microporous And Mesoporous Materials, 85, (1-2), 129-135, (2005)
   
caffeine
Hoang S-H et al., A novel measurement device for SAW chemical sensors with FT-IR spectro-microscopic analytical capability.
Tamkang Journal of Science and Engineering, 8, (1), 63-66, (2005)
   
caffeine
Silvestri D et al., Polymeric devices containing imprinted nanospheres: a novel approach to improve recognition in water for clinical uses.
Analytica Chimica Acta, 542, (1), 3-13, (2005)
   
caffeine
Yan H et al., Special selectivity of molecularly imprinted monolithic stationary phase.
Journal of Liquid Chromatography & Related Technologies, 28, (20), 3147-3155, (2005)
   
caffeine
Zougagh M et al., Automatic selective determination of caffeine in coffee and tea samples by using a supported liquid membrane-modified piezoelectric flow sensor with molecularly imprinted polymer.
Analytica Chimica Acta, 539, (1-2), 117-124, (2005)
   
caffeine
Proceeding, Ebarvia BS et al, Biomimetic quartz crystal sensors for caffeine based on conducting polymers,
Ghodgaonkar DK, Ahmad M, Heng LY, Habash RW, Wui WT, Taib MN (Eds.), 34-38, (2006)
   
caffeine
Farrington K et al., Predicting the performance of molecularly imprinted polymers: Selective extraction of caffeine by molecularly imprinted solid phase extraction.
Analytica Chimica Acta, 566, (1), 60-68, (2006)
   
caffeine
Gong CB et al., The Fabrication of a Photoresponsive Molecularly Imprinted Polymer for the Photoregulated Uptake and Release of Caffeine.
Advanced Functional Materials, 16, (13), 1759-1767, (2006)
   
caffeine
Jin YZ et al., Molecularly imprinted solid-phase extraction of caffeine from green tea.
Journal of Industrial and Engineering Chemistry, 12, (3), 494-499, (2006)
   
caffeine
Ramanaviciene A et al., Basic electrochemistry meets nanotechnology: Electrochemical preparation of artificial receptors based on a nanostructured conducting polymer, polypyrrole.
Journal of Chemical Education, 83, (8), 1212-1214, (2006)
   
caffeine
Silvestri D et al., Molecularly imprinted membranes for an improved recognition of biomolecules in aqueous medium.
Journal of Membrane Science, 282, (1-2), 284-295, (2006)
   
caffeine
Wei HS et al., Preparation of inorganic molecularly imprinted polymers with higher adsorption and selectivity by sol-gel method.
Journal of Chromatography B, 836, (1-2), 57-62, (2006)
   
caffeine
Jin Y et al., Separation of caffeine and catechin compounds from green tea by quercetin molecular imprinted solid-phase extraction.
Journal of the Korean Chemical Society, 51, (2), 165-170, (2007)
   
caffeine
Jin Y et al., Solid-phase extraction of caffeine and catechin compounds from green tea by caffeine molecular imprinted polymer.
Bulletin of the Korean Chemical Society, 28, (2), 276-280, (2007)
   
caffeine
Wang JF et al., Synthesis and characterization of micrometer-sized molecularly imprinted spherical polymer particulates prepared via precipitation polymerization.
Pure And Applied Chemistry, 79, (9), 1505-1519, (2007)
   
caffeine
Yan H et al., Characteristics of a monolithic molecularly imprinted column and its application for chromatographic separation.
Journal of Industrial and Engineering Chemistry, 13, (4), 552-557, (2007)
   
caffeine
Yao W et al., Study on the synthesis and performance of caffeine molecularly imprinted polymer micro-spheres via precipitation polymerization.
Chemical Industry and Engineering Progress, 26, (6), 869-872,877, (2007)
   
caffeine
Jin Y et al., Adsorption isotherms of caffeine on molecular imprinted polymer.
Korean Journal of Chemical Engineering, 25, (4), 816-818, (2008)
   
caffeine
Proceeding, Vinjamuri AK et al, Caffeine and Theobromine Selectivity Using Molecularly Imprinted Polypyrrole Modified Electrodes,
In: ECS Transactions, Trulove P, De Long H (Eds.), 9-20, (2008)
   
caffeine
Choong CL et al., Carbon nanotube array: A new MIP platform.
Biosensors and Bioelectronics, 25, (3), 652-656, (2009)
   
caffeine
Lee SC et al., Studies on the preparation and properties of inorganic molecularly imprinted polymer (MIP) based on tetraethoxysilane and silane coupling agents.
Journal of Applied Polymer Science, 114, (6), 3994-3999, (2009)
   
caffeine
Vendamme R et al., Influence of Polymer Morphology on the Capacity of Molecularly Imprinted Resins to Release or to Retain their Template.
Polymer Journal, 41, (12), 1055-1066, (2009)
   
caffeine
Wang CG, Synthesis and Properties of Caffeine Molecular Imprinted Polymer.
Guangzhou Chemical Industry, 37, (8), 138-139, (2009)
   
caffeine
Zhang ZH et al., Preparation and Evaluation of Caffeine Molecularly Imprinted Composite Membrane.
Acta Chimica Sinica, 67, (18), 2121-2126, (2009)
   
caffeine
Alizadeh T et al., Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement.
Electrochimica Acta, 55, (5), 1568-1574, (2010)
   
caffeine
Choong CL et al., Dynamic modulation of detection window in conducting polymer based biosensors.
Biosensors and Bioelectronics, 25, (10), 2384-2388, (2010)
   
caffeine
Proceeding, Chung IC et al, A portable electrochemical sensor for caffeine and (-)epigallocatechin gallate (EGCG) based on molecularly imprinted poly(ethylene-co-vinyl-alcohol) recognition element,
362-363, (2010)
   
caffeine
Parisi OI et al., Surface modifications of molecularly imprinted polymers for improved template recognition in water media.
Journal of Polymer Research, 17, (3), 355-362, (2010)
   
caffeine
Turner NW et al., Microwave induced MIP synthesis: comparative analysis of thermal and microwave induced polymerisation of caffeine imprinted polymers.
New Journal of Chemistry, 34, (4), 686-692, (2010)
   
caffeine
Zheng XM et al., The relationships between structure and properties of molecularly imprinted polymeric microspheres.
Journal of Chemical Engineering of Chinese Universities, 24, (3), 492-497, (2010)
   
caffeine
Chung IC et al., A Portable Electrochemical Sensor for Caffeine and (-)Epigallocatechin Gallate Based on Molecularly Imprinted Poly(ethylene-co-vinyl alcohol) Recognition Element.
Journal of Nanoscience and Nanotechnology, 11, (12), 10633-10638, (2011)
   
caffeine
Jafari MT et al., A new method based on electrospray ionisation ion mobility spectrometry (ESI-IMS) for simultaneous determination of caffeine and theophylline.
Food Chemistry, 126, (4), 1964-1970, (2011)
   
caffeine
Jin Y et al., Multi-SPE of caffeine and catechin compounds from green tea by caffeine and (+) catechin MIPS.
Journal of Liquid Chromatography & Related Technologies, 34, (15), 1604-1616, (2011)
   
caffeine
Proceeding, Khorrami AR et al, Preparation of a Fiber Coating for Selective Solid-phase Microextraction Based on Molecular Sol-gel Imprinting Process: Application for GC/MS Determination of Caffeine in Human Serum,
(2011)
   
caffeine
Book chapter, Kim YSet al., Preparation and Characteristics of Poly(St-co-MAA) Microgels,
In: Grid and Distributed Computing, Kim T, Adeli H, Cho H, Gervasi O, Yau SS, Kang BH, Villalba JG (Eds.) Springer Berlin Heidelberg: 263-270, (2011)
   
caffeine
Patachia S et al., Selectivity studies of caffeine molecularly imprinted poly (vinyl alcohol) hydrogels.
Environmental Engineering and Management Journal, 10, (2), 175-179, (2011)
   
caffeine
Patachia S et al., Imprinted poly (vinyl alcohol) as a promising tool for xanthine derivatives separation.
Journal of Applied Polymer Science, 122, (3), 2081-2089, (2011)
   
caffeine
Qiao FX et al., Simultaneous analysis of fluoroquinolones and xanthine derivatives in serum by molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography.
Journal of Chromatography B, 879, (30), 3551-3555, (2011)
   
caffeine
Chang HC et al., Molecular recognition properties of caffeine-imprinted phenolic resin sorbent.
Polymer Materials Science and Engineering, 28, (4), 106-109, (2012)
   
caffeine
Proceeding, Guo XJ et al, Highly Selective Caffeine Coated-Wire Electrode Based on the Molecularly Imprinted Polymer,
In: Advanced Materials Research, Chen SA, Liu ZT, Zeng QZ (Eds.), 369-373, (2012)
   
caffeine
Kan XW et al., A novel electrochemical sensor based on molecularly imprinted polymers for caffeine recognition and detection.
Journal of Solid State Electrochemistry, 16, (10), 3207-3213, (2012)
   
caffeine
Khorrami AR et al., Development of a fiber coating based on molecular sol-gel imprinting technology for selective solid-phase micro extraction of caffeine from human serum and determination by gas chromatography/mass spectrometry.
Analytica Chimica Acta, 727, (1), 20-25, (2012)
   
caffeine
Santos WdJR et al., Electrochemical sensor based on imprinted sol-gel and nanomaterial for determination of caffeine.
Sensors and Actuators B: Chemical, 166-167, (1), 739-745, (2012)
   
caffeine
Wang L et al., The Preparation of Caffeine Molecularly Imprinted Electrochemical Sensor cross linking with Maleic Rosin Acrylic Acid Glycol Ester.
Chemical Journal of Chinese Universities, 33, (8), 1708-1713, (2012)
   
caffeine
Wei SL et al., Preparation of Caffeine Molecularly Imprinted Polymers and Application on Solid Phase Extraction.
Chinese Journal of Analytical Chemistry, 40, (7), 1071-1075, (2012)
   
caffeine
Wu Y et al., Preparation and characterization of mesoporous silica SBA-15-supported molecularly caffeine-imprinted polymers by surface molecularly imprinting technique.
Journal of Jiangsu University (Medicine Edition), 22, (2), 151-154, (2012)
   
caffeine
Chang HC et al., Adsorption thermodynamics of caffeine on caffeine imprinted phenolic resin sorbent.
Polymer Materials Science and Engineering, 29, (5), 113-116, (2013)
   
caffeine
Cormack PAG et al., Molecularly imprinted polymer synthesis using RAFT polymerisation.
Sains Malaysiana, 42, (4), 529-535, (2013)
   
caffeine
Liu XF et al., Preparation, characterization and application of organic-inorganic hybrid caffeine imprinted monolith.
Journal of Chromatography A, 1304, 10-17, (2013)
   
caffeine
Luo XB et al., Preparation of water-compatible molecularly imprinted polymers for caffeine with a novel ionic liquid as a functional monomer.
Journal of Applied Polymer Science, 127, (4), 2884-2890, (2013)
   
caffeine
Peng YY, Determination of Caffeine Using an Electrochemical Sensor Based on the Electropolymerized Molecularly Imprinted Film on a Multi-walled Carbon Nanotube Modified Glassy Carbon Electrode.
Journal of Instrumental Analysis, 32, (12), 1427-1432, (2013)
   
caffeine
Phutthawong N et al., Facile synthesis of magnetic molecularly imprinted polymers for caffeine via ultrasound-assisted precipitation polymerization.
Polymer Bulletin, 70, (2), 691-705, (2013)
   
caffeine
Phutthawong N et al., Synthesis of highly selective spherical caffeine imprinted polymers via ultrasound-assisted precipitation polymerization.
Journal of Applied Polymer Science, 128, (6), 3893-3899, (2013)
   
caffeine
Shin MJ et al., Inorganic Molecularly Imprinted Polymer by Sol-Gel Process for Recognition of Caffeine.
Open Journal of Organic Polymer Materials, 3, 1-5, (2013)
   
caffeine
Xu SF et al., Photonic and magnetic dual responsive molecularly imprinted polymers: preparation, recognition characteristics and properties as a novel sorbent for caffeine in complicated samples.
Analytical Methods, 5, (1), 124-133, (2013)
   
caffeine
Rezaei B et al., Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode.
Biosensors and Bioelectronics, 60, 77-83, (2014)
   
caffeine
Rouhani S et al., Molecular imprinting-based fluorescent optosensor using a polymerizable 1,8-naphthalimide dye as a florescence functional monomer.
Sensors and Actuators B: Chemical, 197, 185-192, (2014)
   
caffeine
Zhu QF et al., A molecular imprint-coated stirrer bar for selective extraction of caffeine, theobromine and theophylline.
Microchimica Acta, 181, (3-4), 303-311, (2014)
   
caffeine
Latorre AL et al., Selective removal of ATP degradation products from food matrices I: Design and characterization of a dummy molecularly imprinted specific sorbent for hypoxanthine.
Reactive and Functional Polymers, 91-92, 51-61, (2015)
   
caffeine
Mehamod FS et al., The development of molecular imprinting technology for caffeine extraction.
International Journal of Technology, 6, (4), 546-554, (2015)
   
caffeine
Ratautaite V et al., Characterization of Caffeine-Imprinted Polypyrrole by a Quartz Crystal Microbalance and Electrochemical Impedance Spectroscopy.
Sensors and Actuators B: Chemical, 212, 63-71, (2015)
   
caffeine
Schauperl M et al., Probing the Structural and Binding Mechanism Heterogeneity of Molecularly Imprinted Polymers.
The Journal of Physical Chemistry B, 119, (2), 563-571, (2015)
   
caffeine
Dong Y et al., Preparation and properties of caffeine molecular composite imprinted membranes.
Digest Journal of Nanomaterials and Biostructures, 11, (4), 1319-1326, (2016)
   
caffeine
Oliveira D et al., Development of high performance and facile to pack molecularly imprinted particles for aqueous applications.
Biochemical Engineering Journal, 111, 87-99, (2016)
   
caffeine
Park JY, Effect of lithographically designed structures on the caffeine sensing properties of surface imprinted films.
Analyst, 141, (20), 5709-5713, (2016)
   
caffeine
Terracina JJ et al., Computational investigation of stoichiometric effects, binding site heterogeneities, and selectivities of molecularly imprinted polymers.
Journal of Molecular Modeling, 22, (6), ArticleNo139-(2016)
   
caffeine
Hashim F et al., In Vitro Toxicity Evaluation of Caffeine Imprinted Polymer (CAF-MIP) for Decaffeination Method on Normal Chang Liver Cells.
Makara Journal of Technology, 21, (1), 19-25, (2017)
   
caffeine
Tian DT et al., Synthesis and Properties of Caffeine Molecularly Imprinted Polymers Based on Konjac Glucomannan.
Advances in Polymer Technology, 36, (1), 68-76, (2017)
   
caffeine
Proceeding, Ali MF et al, Utilizing fluorescein methacrylate as fluorescent functional monomer on synthesizing fluorescent molecularly imprinted polymer in sensing caffeine,
ArticleNo050005, (2018)
   
caffeine
Betlem K et al., Development of a Flexible MIP-Based Biosensor Platform for the Thermal Detection of Neurotransmitters.
MRS Advances, 3, (28), 1569-1574, (2018)
   
caffeine
Hu R et al., Chemical nanosensors based on molecularly-imprinted polymers doped with silver nanoparticles for the rapid detection of caffeine in wastewater.
Analytica Chimica Acta, 1034, 176-183, (2018)
   
caffeine
Kong S et al., Caffeine-imprinted conducting polymeric films with 2D hierarchical pore arrays prepared via colloidal mask-assisted electrochemical polymerization.
Sensors and Actuators B: Chemical, 260, 587-592, (2018)
   
caffeine
Lim KF et al., Effect of Formulation on the Binding Efficiency and Selectivity of Precipitation Molecularly Imprinted Polymers.
Molecules, 23, (11), ArticleNo2966-(2018)
   
caffeine
Manzoor S et al., A new synthetic route to molecularly imprinted ORMOSIL: Characterization and evaluation.
Separation Science and Technology, 53, (6), 877-886, (2018)
   
caffeine
Xi WJ et al., Vibrational Frequency Shifts for Monitoring Noncovalent Interactions between Molecular Imprinted Polymers and Analgesics.
The Journal of Physical Chemistry C, 122, (40), 23068-23077, (2018)
   
caffeine
Betlem K et al., Evaluating the temperature dependence of heat-transfer based detection: A case study with caffeine and Molecularly Imprinted Polymers as synthetic receptors.
Chemical Engineering Journal, 359, 505-517, (2019)
   
caffeine
Deng HY et al., Rapidly colorimetric detection of caffeine in beverages by silver nanoparticle sensors coupled with magnetic molecularly imprinted polymeric microspheres.
International Journal of Food Science & Technology, 54, (1), 202-211, (2019)
   
caffeine
Mulyasuryani A et al., Simultaneous Voltammetric Detection of Acetaminophen and Caffeine Base on Cassava Starch-Fe3O4 Nanoparticles Modified Glassy Carbon Electrode.
Chemosensors, 7, (4), ArticleNo49-(2019)
   
caffeine
Teixeira LS et al., Microextraction by packed molecularly imprinted polymer to selectively determine caffeine in soft and energy drinks.
Microchemical Journal, 158, Article105252-(2020)
   
caffeine
Casarin F et al., Optimized Synthesis of Molecularly Imprinted Hybrid Polymer by Factorial Design for Selective Caffeine Extraction in Surface Water.
Journal of the Brazilian Chemical Society, 32, (9), 1789-1801, (2021)
   
caffeine and theophylline
Wang DX et al., Chromatographic separation of xanthine derivatives on single and mixed-template imprinted polymers.
Bulletin of the Korean Chemical Society, 25, (3), 357-360, (2004)
   
caffeinr
Silva RGC et al., Sol-gel molecular imprinted ormosil for solid-phase extraction of methylxanthines.
Journal of Chromatography A, 1114, (2), 216-223, (2006)
   
C6-AHL
Garcia Lopez J et al., Application of molecularly imprinted polymer nanoparticles for degradation of the bacterial autoinducer N-hexanoyl homoserine lactone.
Chemical Communications, 55, (18), 2664-2667, (2019)
   
Ca(II)
Hiratani H et al., Effect of reversible cross-linker, N,N-bis(acryloyl)cystamine, on calcium ion adsorption by imprinted gels.
Langmuir, 17, (14), 4431-4436, (2001)
   
Ca(II)
Basavaraja C et al., Dependence of molecular recognition for a specific cation on the change of the oxidation state of the metal catalyst component in the hydrogel network.
Bulletin of the Korean Chemical Society, 28, (5), 805-810, (2007)
   
Ca(II)
Ben-Amram Y et al., Ultrasensitive and selective detection of alkaline-earth metal ions using ion-imprinted Au NPs composites and surface plasmon resonance spectroscopy.
Chemical Science, 3, (1), 162-167, (2012)
   
Ca(II)
He J et al., Ca(II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions.
Chemical Engineering Journal, 244, 202-208, (2014)
   
Ca(II)
Wang Y et al., A calcium ion-imprinted porous film prepared from a cellulose-alginate composite.
Journal of Polymer Research, 21, (12), Article No 612-(2014)
   
Ca(II)
He J et al., Continuous Removal of Lead from Aqueous Solutions by Ca(II) Imprinted Chitosan Microspheres Packed Column.
Separation Science and Technology, 50, (8), 1127-1134, (2015)
   
Ca(II)
Alizadeh T et al., A Ca2+ selective membrane electrode based on calcium-imprinted polymeric nanoparticles.
New Journal of Chemistry, 40, (10), 8479-8487, (2016)
   
Ca(II)
Moirangthem M et al., An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum.
Advanced Functional Materials, 26, (8), 1154-1160, (2016)
   
Ca(II)
Kumar IA et al., Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption.
International Journal of Biological Macromolecules, 104, (Part B), 1539-1547, (2017)
   
CAL
Canlas CP et al., Shape-selective sieving layers on an oxide catalyst surface.
Nature Chemistry, 4, (12), 1030-1036, (2012)
   
CALA
Kahveci D et al., Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
Biotechnology Letters, 33, (10), 2065-2071, (2011)
   
calcitonin
Patra S et al., RETRACTED Imprinted ZnO nanostructure-based electrochemical sensing of calcitonin: A clinical marker for medullary thyroid carcinoma.
Analytica Chimica Acta, 853, 271-284, (2015)
   
calcium ion
Hiratani H et al., Effect of reversible cross-linker, N,N-bis(acryloyl)cystamine, on calcium ion adsorption by imprinted gels.
Langmuir, 17, (14), 4431-4436, (2001)
   
calcium ion
Basavaraja C et al., Dependence of molecular recognition for a specific cation on the change of the oxidation state of the metal catalyst component in the hydrogel network.
Bulletin of the Korean Chemical Society, 28, (5), 805-810, (2007)
   
calcium ion
Li QA et al., Strontium and calcium ion adsorption by molecularly imprinted hybrid gel.
Chemical Engineering Journal, 157, (2-3), 401-407, (2010)
   
calcium ion
He J et al., Ca(II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions.
Chemical Engineering Journal, 244, 202-208, (2014)
   
calcium ion
Wang Y et al., A calcium ion-imprinted porous film prepared from a cellulose-alginate composite.
Journal of Polymer Research, 21, (12), Article No 612-(2014)
   
calcium ion
He J et al., Continuous Removal of Lead from Aqueous Solutions by Ca(II) Imprinted Chitosan Microspheres Packed Column.
Separation Science and Technology, 50, (8), 1127-1134, (2015)
   
calcium ion
Alizadeh T et al., A Ca2+ selective membrane electrode based on calcium-imprinted polymeric nanoparticles.
New Journal of Chemistry, 40, (10), 8479-8487, (2016)
   
calcium ion
Kumar IA et al., Development of multivalent metal ions imprinted chitosan biocomposites for phosphate sorption.
International Journal of Biological Macromolecules, 104, (Part B), 1539-1547, (2017)
   
Calcium ions
Rosatzin T et al., Preparation of Ca2+ selective sorbents by molecular imprinting using polymerizable ionophores.
Journal of the Chemical Society-Perkin Transactions 2, (8), 1261-1265, (1991)
   
calcium ions
Ben-Amram Y et al., Ultrasensitive and selective detection of alkaline-earth metal ions using ion-imprinted Au NPs composites and surface plasmon resonance spectroscopy.
Chemical Science, 3, (1), 162-167, (2012)
   
calcium ions
Moirangthem M et al., An Optical Sensor Based on a Photonic Polymer Film to Detect Calcium in Serum.
Advanced Functional Materials, 26, (8), 1154-1160, (2016)
   
calcon
Fathi MR et al., Synthesis of calcon-imprinted magnetic chitosan nanoparticles as a novel adsorbent and its application in selective removal of calcon dye from aqueous solutions.
International Journal of Biological Macromolecules, 114, 1151-1160, (2018)
   
calycosin
Xie J et al., A efficient method to identify cardioprotective components of Astragali Radix using a combination of molecularly imprinted polymers-based knockout extract and activity evaluation.
Journal of Chromatography A, 1576, 10-18, (2018)
   
cAMP
Kochkodan VM et al., Composite template membranes as synthetic receptor systems. 2. Structural-morphological characteristics.
Ukrainskii Biokhimicheskii Zhurnal, 77, (4), 64-69, (2005)
   
cAMP
Sadowska M et al., Molecularly Imprinted Thin Polymeric Film as a Fluorescent Sensor for Nucleotides.
Molecular Crystals And Liquid Crystals, 486, (1), 203-212, (2008)
   
cAMP
Wandelt B et al., Polymeric Sensory Systems Based on Molecular Imprinting for Identification and Separation of Molecules and Bigger Biological Objects.
Molecular Crystals And Liquid Crystals, 486, (1), 257-270, (2008)
   
cAMP
Kugimiya A et al., Biomimetic sensor for cAMP using an ion-sensitive field-effect transistor.
Materials Science and Engineering: C, 29, (3), 959-962, (2009)
   
cAMP
Cywinski P, Fluorescent Molecularly Imprinted Polymers in Sensing of cAMP and cGMP.
Journal of Physical Chemistry and Biophysics, 3, (1), 111-(2013)
   
campesterol
Schwarz LJ et al., Phytosterol Recognition via Rationally Designed Molecularly Imprinted Polymers.
C, 4, (1), ArticleNo13-(2018)
   
campesterol
Mirzajani R et al., A nanocomposite consisting of graphene oxide, zeolite imidazolate framework 8, and a molecularly imprinted polymer for (multiple) fiber solid phase microextraction of sterol and steroid hormones prior to their quantitation by HPLC.
Microchimica Acta, 186, (3), Article129-(2019)
   
campesteryl glycoside
Hashim SNNS et al., Parallel enrichment of polyphenols and phytosterols from Pinot noir grape seeds with molecularly imprinted polymers and analysis by capillary high-performance liquid chromatography electrospray ionisation tandem mass spectrometry.
Talanta, 208, Article120397-(2020)
   
camphor
Sun L et al., Preparation and evaluation of camphor monolithic molecularly imprinted column.
Chinese Journal of Analysis Laboratory, 33, (7), 791-795, (2014)
   
camphor
Yin C et al., Separation and determination of camphor in the essential oil of lavandula angustifolia by magnetic molecularly imprinted polymer extraction/gas chromatography.
Chinese Journal of Analysis Laboratory, 33, (11), 1281-1285, (2014)
   
camphor-p-tosyl hydrazone
Zaidi SA et al., Comparison of enantioselective CEC separation of OT-MIP capillary columns with templates of various camphor derivatives made by the pre-established general preparation protocol.
Bulletin of the Korean Chemical Society, 31, (10), 2934-2938, (2010)
   
10-camphorsulfonamide
Zaidi SA et al., Comparison of enantioselective CEC separation of OT-MIP capillary columns with templates of various camphor derivatives made by the pre-established general preparation protocol.
Bulletin of the Korean Chemical Society, 31, (10), 2934-2938, (2010)
   
camphorsulfonic acid
Sheridan EM et al., Enantioselective detection of D- and L-phenylalanine using optically active polyaniline.
Electroanalysis, 17, (5-6), 532-537, (2005)
   
camphorsulfonic acid
Huang JY et al., Molecular imprinted polypyrrole nanowires for chiral amino acid recognition.
Sensors and Actuators B: Chemical, 134, (2), 573-578, (2008)
   
10-camphorsulfonic acid
Zaidi SA et al., Comparison of enantioselective CEC separation of OT-MIP capillary columns with templates of various camphor derivatives made by the pre-established general preparation protocol.
Bulletin of the Korean Chemical Society, 31, (10), 2934-2938, (2010)
   
camptothecin
Liu HC et al., Molecularly imprinted polymers coated on carbon nanotubes for matrix solid phase dispersion extraction of camptothecin from Camptotheca acuminate.
Analytical Methods, 7, (19), 8100-8108, (2015)
   
Campylobacter
Book chapter, Attia MSet al., Nano-optical Biosensors for Assessment of Food Contaminants,
In: Functional Biopolymers, Thakur VK, Thakur MK (Eds.) Springer International Publishing: Cham, 1-23, (2018)
   
cancer antigen 125
Büyüktiryaki S et al., Phosphoserine imprinted nanosensor for detection of Cancer Antigen 125.
Talanta, 167, 172-180, (2017)
   
cancer antigen 15-3
Pacheco JG et al., Molecularly imprinted electrochemical sensor for the point-of-care detection of a breast cancer biomarker (CA 15-3).
Sensors and Actuators B: Chemical, 256, 905-912, (2018)
   
cancer antigen 125
Han S et al., A molecularly imprinted composite based on graphene oxide for targeted drug delivery to tumor cells.
Journal of Materials Science, 54, (4), 3331-3341, (2019)
   
cancer antigen 153
Han S et al., An ionic liquid-molecularly imprinted composite based on graphene oxide for the specific recognition and extraction of cancer antigen 153.
RSC Advances, 11, (22), 13085-13090, (2021)
   
cancer biomarker
Rossetti C et al., Evaluation of affinity-based serum clean-up in mass spectrometric analysis: Plastic vs monoclonal antibodies.
Journal of Chromatography A, 1471, 19-26, (2016)
   
cancer biomarker
Rossetti C et al., Automated Protein Biomarker Analysis: on-line extraction of clinical samples by Molecularly Imprinted Polymers.
Scientific Reports, 7, ArticleNo44298-(2017)
   
cancer biomarker
Demir B et al., Tracking Hyaluronan: Molecularly Imprinted Polymer Coated Carbon Dots for Cancer Cell Targeting and Imaging.
ACS Applied Materials & Interfaces, 10, (4), 3305-3313, (2018)
   
cancer cell lines
Eersels K et al., Selective Identification of Macrophages and Cancer Cells Based on Thermal Transport through Surface-Imprinted Polymer Layers.
ACS Applied Materials & Interfaces, 5, (15), 7258-7267, (2013)
   
cancer cells
Murray LM et al., Bioimprinted polymer platforms for cell culture using soft lithography.
Journal of Nanobiotechnology, 12, Article No 60-(2014)
   
cancer cells
Barlev N et al., T86: New approaches to the rational design of anticancer drugs.
European Journal of Cancer Supplements, 13, (1), 3-4, (2015)
   
cancer cells
Yin DY et al., Surface-enhanced Raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags.
Chemical Communications, 51, (100), 17696-17699, (2015)
   
cancer cells
Medlock J et al., Cancer bioimprinting and cell shape recognition for diagnosis and targeted treatment.
Chemical Society Reviews, 46, (16), 5110-5127, (2017)
   
cancer cells
Wang SS et al., Pattern Recognition of Cells via Multiplexed Imaging with Monosaccharide-Imprinted Quantum Dots.
Analytical Chemistry, 89, (10), 5646-5652, (2017)
   
cancer cells
Piletsky SS et al., Snapshot imprinting: rapid identification of cancer cell surface proteins and epitopes using molecularly imprinted polymers.
Nano Today, 41, Article101304-(2021)
   
cancer tissue
Yin DY et al., Surface-enhanced Raman scattering imaging of cancer cells and tissues via sialic acid-imprinted nanotags.
Chemical Communications, 51, (100), 17696-17699, (2015)
   
cancinoembryonic antigen
Tavares APM et al., Self-powered and self-signalled autonomous electrochemical biosensor applied to cancinoembryonic antigen determination.
Biosensors and Bioelectronics, 140, Article111320-(2019)
   
Candida antarctica lipase A
Kahveci D et al., Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
Biotechnology Letters, 33, (10), 2065-2071, (2011)
   
Candida rugosa lipase
Kahveci D et al., Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
Biotechnology Letters, 33, (10), 2065-2071, (2011)
   
cannabidiol
Cela-Pérez MC et al., Water-compatible imprinted pills for sensitive determination of cannabinoids in urine and oral fluid.
Journal of Chromatography A, 1429, 53-64, (2016)
   
cannabidiol
Marchioni C et al., In-tube solid-phase microextraction with a dummy molecularly imprinted monolithic capillary coupled to ultra-performance liquid chromatography-tandem mass spectrometry to determine cannabinoids in plasma samples.
Analytica Chimica Acta, 1099, 145-154, (2020)
   
cannabinoid CB1 receptor
Gómez-Caballero A et al., Solid-phase synthesis of imprinted nanoparticles as artificial antibodies against the C-terminus of the cannabinoid CB1 receptor: exploring a viable alternative for bioanalysis.
Microchimica Acta, 188, (11), Article368-(2021)
   
cannabinoids
Nestic M et al., Molecularly imprinted solid phase extraction for simultaneous determination of Δ 9-tetrahydrocannabinol and its main metabolites by gas chromatography-mass spectrometry in urine samples.
Forensic Science International, 231, (1-3), 317-324, (2013)
   
cannabinoids
Cela-Pérez MC et al., Water-compatible imprinted pills for sensitive determination of cannabinoids in urine and oral fluid.
Journal of Chromatography A, 1429, 53-64, (2016)
   
cannabinoids
Sánchez-González J et al., Cannabinoids assessment in plasma and urine by high performance liquid chromatography-tandem mass spectrometry after molecularly imprinted polymer microsolid-phase extraction.
Analytical and Bioanalytical Chemistry, 409, (5), 1207-1220, (2017)
   
cannabinoids
Marchioni C et al., In-tube solid-phase microextraction with a dummy molecularly imprinted monolithic capillary coupled to ultra-performance liquid chromatography-tandem mass spectrometry to determine cannabinoids in plasma samples.
Analytica Chimica Acta, 1099, 145-154, (2020)
   
cannabinoids
Sartore DM et al., Automated microextraction by packed sorbent of cannabinoids from human urine using a lab-made device packed with molecularly imprinted polymer.
Talanta, 219, Article121185-(2020)
   
cannabinol
Cela-Pérez MC et al., Water-compatible imprinted pills for sensitive determination of cannabinoids in urine and oral fluid.
Journal of Chromatography A, 1429, 53-64, (2016)
   
CAP
Suárez-Rodríguez JL et al., Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers.
Biosensors and Bioelectronics, 16, (9-12), 955-961, (2001)
   
CAP
Chen XX et al., Preparation of chloramphenicol molecularly imprinted solid-phase extraction cartridge and the optimization of extraction conditions.
Journal of South China University of Technology (Natural Science Edition), 32, (7), 51-55, (2004)
   
CAP
Schirmer C et al., Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey.
Journal of Chromatography A, 1132, (1-2), 325-328, (2006)
   
CAP
Corton E et al., Kinetics and binding properties of cloramphenicol imprinted polymers.
Journal of Non-Crystalline Solids, 353, (8-10), 974-980, (2007)
   
CAP
Mohamed R et al., Advantages of Molecularly Imprinted Polymers LC-ESI-MS/MS for the Selective Extraction and Quantification of Chloramphenicol in Milk-Based Matrixes. Comparison with a Classical Sample Preparation.
Analytical Chemistry, 79, (24), 9557-9565, (2007)
   
CAP
Shi XZ et al., Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods.
Journal of Chromatography B, 850, (1-2), 24-30, (2007)
   
CAP
Guo LY et al., Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination.
Analytical and Bioanalytical Chemistry, 392, (7-8), 1431-1438, (2008)
   
CAP
Wang RY et al., Synthesis of chloramphenicol molecularly imprinted polymer and its analytical application.
Journal of Instrumental Analysis, 27, (9), 947-950, (2008)
   
CAP
Schirmer C et al., Chromatographic evaluation of polymers imprinted with analogs of chloramphenicol and application to selective solid-phase extraction.
Analytical and Bioanalytical Chemistry, 394, (8), 2249-2255, (2009)
   
CAP
Wang RY et al., Study on the determination of trace chloramphenicol residue in milk by HPLC with matrix solid-phase dispersion using molecularly imprinted polymer as an adsorbent.
Chinese Journal of Analysis Laboratory, 28, (8), 26-28, (2009)
   
CAP
Shi XZ et al., Preparation and Chromatographic Evaluation of Molecularly Imprinted Polymer Microspheres for Chloramphenicol.
Food Science, 31, (18), 95-98, (2010)
   
CAP
Shi XZ et al., Determination of Chloramphenicol Residues in Foods by ELISA and LC-MS/MS Coupled with Molecularly Imprinted Solid Phase Extraction.
Analytical Letters, 43, (17), 2798-2807, (2010)
   
CAP
Kowalski D et al., Flow-Injection Preconcentration of Chloramphenicol Using Molecularly Imprinted Polymer for HPLC Determination in Environmental Samples.
Journal of Automated Methods and Management in Chemistry, 2011, Art. No. 143416-(2011)
   
CAP
Wang T et al., Fast and selective extraction of chloramphenicol from soil by matrix solid-phase dispersion using molecularly imprinted polymer as dispersant.
Journal of Separation Science, 34, (15), 1886-1892, (2011)
   
CAP
Zhang LJ et al., Fabrication and Application of CAP-MIP-OAP Film Electrode for Chloramphenical Detection.
Chinese Journal of Applied Chemistry, 28, (3), 338-342, (2011)
   
CAP
Zhang XZ, In Situ Synthesis and Performance Testing of Chloramphenicol Molecular Imprinted Polymer Membrane Induced by Light.
Journal of Anhui Agricultural Sciences, 39, (12), 7253-7254,7290, (2011)
   
CAP
Alizadeh T et al., Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer.
Food Chemistry, 130, (4), 1108-1114, (2012)
   
CAP
Ganjali MR et al., Chloramphenicol Biomimetic Molecular Imprinted Polymer Used as a Sensing Element in Nano-Composite Carbon Paste Potentiometric Sensor.
International Journal of Electrochemical Science, 7, (5), 4800-4810, (2012)
   
CAP
Hao TT et al., A highly sensitive electrochemiluminescence method for the determination of chloramphenicol in milk combined with molecularly imprinted solid phase extraction.
Chinese Journal of Analysis Laboratory, 31, (2), 105-108, (2012)
   
CAP
Kou X et al., Preparation of molecularly imprinted nanospheres by premix membrane emulsification technique.
Journal of Membrane Science, 417-418, 87-95, (2012)
   
CAP
Liu XY et al., Combinatorial synthesis and screening of uniform molecularly imprinted microspheres for chloramphenicol using microfluidic device.
Polymer Engineering & Science, 52, (10), 2099-2105, (2012)
   
CAP
Lv YK et al., Preparation of molecularly imprinted microspheres for solid-phase extraction coupled with HPLC for determination of the florfenicol residue in milk.
International Journal of Science Innovations and Discoveries, 2, (6), 610-616, (2012)
   
CAP
Sakamoto Y et al., Determination of Chloramphenicol in Honey and Royal Jelly by Sample Clean-up with Molecular Imprinted Polymer.
Bunseki Kagaku, 61, (5), 383-389, (2012)
   
CAP
Shi XZ et al., Characterisation and application of molecularly imprinted polymers for group-selective recognition of antibiotics in food samples.
Analyst, 137, (14), 3381-3389, (2012)
   
CAP
Zhao HM et al., Selectively Electrochemical Determination of Chloramphenicol in Aqueous Solution Using Molecularly Imprinted Polymer-Carbon Nanotubes-Gold Nanoparticles Modified Electrode.
Journal of The Electrochemical Society, 159, (6), J231-J236, (2012)
   
CAP
Zhao L et al., Fabrication of Chloramphenicol Molecular Imprinted Composite Film and Its Electrochemistry.
Chinese Journal of Applied Chemistry, 29, (10), 1212-1217, (2012)
   
CAP
Zhou CH et al., Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol.
Analyst, 137, (19), 4469-4474, (2012)
   
CAP
Barreiro R et al., Development of a HPLC-MS/MS confirmatory method for the simultaneous determination of amphenicols in baby formulas using molecularly imprinted polymers.
Analytical Methods, 5, (16), 3970-3976, (2013)
   
CAP
Chen LG et al., Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey.
Food Chemistry, 141, (1), 23-28, (2013)
   
CAP
Kara M et al., Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey.
Journal of Applied Polymer Science, 129, (4), 2273-2279, (2013)
   
CAP
Proceeding, Shen HX et al, Preparation and Recognition Performance of Chloramphenicol Molecularly Imprinted Polymer,
In: Applied Mechanics and Materials, Sun MJ, Zhang YJ (Eds.), 192-196, (2013)
   
CAP
Zhang Y et al., Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase.
Bulletin of the Korean Chemical Society, 34, (6), 1839-1844, (2013)
   
CAP
Du XJ et al., Substitution of antibody with molecularly imprinted 96-well plate in chemiluminescence enzyme immunoassay for the determination of chloramphenicol residues.
Food and Agricultural Immunology, 25, (3), 411-422, (2014)
   
CAP
Gao F et al., Detection and Quantification of Chloramphenicol in Milk and Honey Using Molecularly Imprinted Polymers: Canadian Penny-Based SERS Nano-Biosensor.
Journal of Food Science, 79, (12), N2542-N2549, (2014)
   
CAP
He GW et al., A Sensitive and Selective Amperometric Immunosensor for Chloramphenicol Detection Based on Magnetic Nanocomposites Modify Screen-Printed Carbon Electrode as a Disposable Platform.
International Journal of Electrochemical Science, 9, 6962-6974, (2014)
   
CAP
Li XQ et al., Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder.
Analytica Chimica Acta, 807, 75-83, (2014)
   
CAP
Wang YD et al., Synthesis of Chitosan-Based Molecularly Imprinted Polymers for Pre-Concentration and Clean-Up of Chloramphenicol.
Adsorption Science & Technology, 32, (4), 321-330, (2014)
   
CAP
Chen S et al., A portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter.
Analytical and Bioanalytical Chemistry, 407, (9), 2499-2507, (2015)
   
CAP
Yang GM et al., Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer.
Biosensors and Bioelectronics, 64, 416-422, (2015)
   
CAP
Amjadi M et al., A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.
Luminescence, 31, (3), 633-639, (2016)
   
CAP
Dai JD et al., Novel pitaya-inspired well-defined core-shell nanospheres with ultrathin surface imprinted nanofilm from magnetic mesoporous nanosilica for highly efficient chloramphenicol removal.
Chemical Engineering Journal, 284, 812-822, (2016)
   
CAP
Proceeding, Edańol YDG et al, Potentiometric determination of a regulated veterinary drug via MIP-modified electrode,
71-74, (2016)
   
CAP
Gaugain M et al., Comprehensive validation of a liquid chromatography-tandem mass spectrometry method for the confirmation of chloramphenicol in urine including stability of the glucuronide conjugate and efficiency of deconjugation.
Journal of Chromatography B, 1011, 145-150, (2016)
   
CAP
He JS et al., Magnetic organic-inorganic nanocomposite with ultrathin imprinted polymers via an in situ surface-initiated approach for specific separation of chloramphenicol.
RSC Advances, 6, (74), 70383-70393, (2016)
   
CAP
Wang XY et al., Preparation and Application of the Core-Shell Carbon Nanotubes-Molecularly Imprinted Composite for Chloramphenicols.
Journal of Analytical Science, 32, (6), 758-762, (2016)
   
CAP
Wei SL et al., Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples.
Journal of Chromatography A, 1473, 19-27, (2016)
   
CAP
Xie AT et al., Hollow imprinted polymer nanorods with a tunable shell using halloysite nanotubes as a sacrificial template for selective recognition and separation of chloramphenicol.
RSC Advances, 6, (56), 51014-51023, (2016)
   
CAP
Ahmed MB et al., Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application.
Science of The Total Environment, 609, 885-895, (2017)
   
CAP
Wang XY et al., Preparation and Application of Molecularly Imprinted Polymers for Chloramphenicol Based on Ionic Liquids Assistance.
Journal of Instrumental Analysis, 36, (1), 18-24, (2017)
   
CAP
You AM et al., Colorimetric Chemosensor for Chloramphenicol Based on Colloidal Magnetically Assembled Molecularly Imprinted Photonic Crystals.
Journal of the Chinese Chemical Society, 64, (10), 1235-1241, (2017)
   
CAP
Zhao FN et al., Selective Determination of Chloramphenicol in Milk Samples by the Solid-Phase Extraction Based on Dummy Molecularly Imprinted Polymer.
Food Analytical Methods, 10, (7), 2566-2575, (2017)
   
CAP
Zhao XJ et al., Highly Sensitive Molecularly Imprinted Sensor Based on Platinum Thin-film Microelectrode for Detection of Chloramphenicol in Food Samples.
Electroanalysis, 29, (8), 1918-1924, (2017)
   
CAP
Cardoso AR et al., In-situ generated molecularly imprinted material for chloramphenicol electrochemical sensing in waters down to the nanomolar level.
Sensors and Actuators B: Chemical, 256, 420-428, (2018)
   
CAP
Li ZW et al., Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food.
Journal of Chromatography B, 1100-1101, 113-121, (2018)
   
CAP
Wang X et al., A polyhedral oligomeric silsesquioxane/molecular sieve codoped molecularly imprinted polymer for gastroretentive drug-controlled release in vivo.
Biomaterials Science, 6, (12), 3170-3177, (2018)
   
CAP
Cardoso AR et al., Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes.
Biosensors and Bioelectronics, 124-125, 167-175, (2019)
   
CAP
Mo CE et al., Floating molecularly imprinted polymers based on liquid crystalline and polyhedral oligomeric silsesquioxanes for capecitabine sustained release.
International Journal of Pharmaceutics, 557, 293-303, (2019)
   
CAP
Qin D et al., Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles.
Microchimica Acta, 186, (7), Article428-(2019)
   
CAP
Roushani M et al., Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle.
Colloids and Surfaces B: Biointerfaces, 183, Article110451-(2019)
   
CAP
Sai N et al., A novel photonic sensor for the detection of chloramphenicol.
Arabian Journal of Chemistry, 12, (8), 4398-4406, (2019)
   
CAP
Vu VP et al., Possible detection of antibiotic residue using molecularly imprinted polyaniline-based sensor.
Vietnam Journal of Chemistry, 57, (3), 328-333, (2019)
   
CAP
Zarezadeh A et al., Application of a nano-structured molecularly imprinted polymer as an efficient modifier for the design of captopril drug selective sensor: Mechanism study and quantitative determination.
Materials Science and Engineering: C, 94, 879-885, (2019)
   
CAP
Mohamed Idris Z et al., Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption.
Journal of Environmental Chemical Engineering, 8, (5), Article103981-(2020)
   
CAP
Zhang Z et al., Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol.
Electrochimica Acta, 344, Article136161-(2020)
   
CAP
Amiripour F et al., Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey.
Food Chemistry, 347, Article129034-(2021)
   
CAP
Li SH et al., Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification.
Biosensors and Bioelectronics, 176, Article112944-(2021)
   
CAPE
Li N et al., Separation and purification of the antioxidant compounds, caffeic acid phenethyl ester and caffeic acid from mushrooms by molecularly imprinted polymer.
Food Chemistry, 139, (1-4), 1161-1167, (2013)
   
CAPE
Zhang LP et al., Preparation of Liquid Crystalline Molecularly Imprinted Polymer Coated Metal Organic Framework for Capecitabine Delivery.
Particle & Particle Systems Characterization, 36, (1), Article1800355-(2019)
   
capecitabine
Wang X et al., A polyhedral oligomeric silsesquioxane/molecular sieve codoped molecularly imprinted polymer for gastroretentive drug-controlled release in vivo.
Biomaterials Science, 6, (12), 3170-3177, (2018)
   
capecitabine
Mo CE et al., Floating molecularly imprinted polymers based on liquid crystalline and polyhedral oligomeric silsesquioxanes for capecitabine sustained release.
International Journal of Pharmaceutics, 557, 293-303, (2019)
   
capecitabine
Zhang LP et al., Preparation of Liquid Crystalline Molecularly Imprinted Polymer Coated Metal Organic Framework for Capecitabine Delivery.
Particle & Particle Systems Characterization, 36, (1), Article1800355-(2019)
   
capecitabine
Ansari S et al., Ultrasound-assisted dispersive solid-phase microextraction of capecitabine by multi-stimuli responsive molecularly imprinted polymer modified with chitosan nanoparticles followed by HPLC analysis.
Microchimica Acta, 187, (6), Article366-(2020)
   
CAP-glu
Gaugain M et al., Comprehensive validation of a liquid chromatography-tandem mass spectrometry method for the confirmation of chloramphenicol in urine including stability of the glucuronide conjugate and efficiency of deconjugation.
Journal of Chromatography B, 1011, 145-150, (2016)
   
capsaicin
Proceeding, Sun J et al, Preparation and Binding Characteristics of Molecularly Imprinted Polymers for Capsaicin,
In: Advanced Materials Research, Chen R, Sun DY, Sung WP (Eds.), 582-585, (2012)
   
capsaicin
Wang ZC et al., Preparation of Capsaicin Molecular Imprinting Polymers and Application to Solid Phase Extraction.
Food Science, 34, (12), 45-50, (2013)
   
capsaicin
Tahir I et al., Computer aided design of molecular imprinted polymer for selective recognition of capsaicin.
Indonesian Journal of Chemistry, 14, (1), 85-93, (2014)
   
capsaicin
Ma XL et al., Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers.
Journal of Separation Science, 38, (1), 100-107, (2015)
   
capsaicin
Wang HX et al., Comparative study of capsaicin molecularly imprinted polymers prepared by different polymerization methods.
Journal of Polymer Science Part A: Polymer Chemistry, 57, (2), 157-164, (2019)
   
capsaicin
Liu ZG et al., Three-template magnetic molecular imprinted polymer for the rapid separation and specific recognition of illegal cooking oil markers.
Microchemical Journal, 157, Article105052-(2020)
   
capsaicin
Wang M et al., Preparation of an Electrochemical Sensor Based on Multi-Walled Carbon Nanotubes/Molecularly Imprinted Polymers for the Detection of Capsaicin in Gutter Oil by Differential Pulse Voltammetry.
International Journal of Electrochemical Science, 15, 8437-8449, (2020)
   
CAP-SC
Zhang NW et al., Molecularly Imprinted Membrane-Based Sensor for the Detection of Chloramphenicol Succinate Residue in Milk.
Chinese Journal of Analytical Chemistry, 36, (10), 1380-1384, (2008)
   
captopril
Zarezadeh A et al., Application of a nano-structured molecularly imprinted polymer as an efficient modifier for the design of captopril drug selective sensor: Mechanism study and quantitative determination.
Materials Science and Engineering: C, 94, 879-885, (2019)
   
CAR
da Silva ATM et al., Efficient molecularly imprinted polymer as a pipette-tip solid-phase sorbent for determination of carvedilol enantiomers in human urine.
Journal of Chromatography B, 1061, 399-410, (2017)
   
CAR
Pereira TFD et al., Carvedilol-Imprinted Polymer: Rational design and selectivity studies.
Journal of Molecular Structure, 1177, 101-106, (2019)
   
Carba
Davoodi M et al., CdSe Quantum Dot Nanoparticles: Synthesis and Application in the Development of Molecularly Imprinted Polymer-Based Dual Optical Sensors.
Industrial & Engineering Chemistry Research, 60, (33), 12328-12342, (2021)
   
carbamate pesticide
Hantash J et al., Application of an in-line imprinted polymer column in a potentiometric flow-injection chemical sensor to the determination of the carbamate pesticide carbaryl in complex biological matrices.
Analytical and Bioanalytical Chemistry, 387, (1), 351-357, (2007)
   
carbamate pesticides
Qi PP et al., Computer-assisted design and synthesis of molecularly imprinted polymers for the simultaneous determination of six carbamate pesticides from environmental water.
Journal of Separation Science, 37, (20), 2955-2965, (2014)
   
carbamates
Gao L et al., Magnetic molecularly imprinted polymers based on carbon nanotubes for extraction of carbamates.
Microchimica Acta, 182, (3-4), 781-787, (2015)
   
carbamazepine
Beltran A et al., Synthesis and application of a carbamazepine-imprinted polymer for solid-phase extraction from urine and wastewater.
Analytica Chimica Acta, 597, (1), 6-11, (2007)
   
carbamazepine
Beltran A et al., Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine.
Journal of Chromatography A, 1216, (12), 2248-2253, (2009)
   
carbamazepine
Dai CM et al., Performance evaluation and application of molecularly imprinted polymer for separation of carbamazepine in aqueous solution.
Journal of Hazardous Materials, 184, (1-3), 156-163, (2010)
   
carbamazepine
Esfandyari-Manesh M et al., Effect of porogenic solvent on the morphology, recognition and release properties of carbamazepine-molecularly imprinted polymer nanospheres.
Journal of Applied Polymer Science, 121, (2), 1118-1126, (2011)
   
carbamazepine
Akbari-Adergani B et al., Development of Molecularly Imprinted Polymers (MIPS) nano particles for the selective determination of Carbamazepine in human serum and plasma.
Indian Journal of Science and Technology, 5, (S3), 2429-2431, (2012)
   
carbamazepine
Esfandyari-Manesh M et al., Molecularly imprinted nanoparticles prepared by miniemulsion polymerization as selective receptors and new carriers for the sustained release of carbamazepine.
Journal of Materials Science: Materials in Medicine, 23, (4), 963-972, (2012)
   
carbamazepine
Dai CM et al., Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.
Environmental Science and Pollution Research, 20, (8), 5492-5501, (2013)
   
carbamazepine
Esfandyari-Manesh M et al., The control of morphological and size properties of carbamazepine-imprinted microspheres and nanospheres under different synthesis conditions.
Journal of Materials Research, 28, (19), 2677-2686, (2013)
   
carbamazepine
Zhang YL et al., Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4.
Carbohydrate Polymers, 97, (2), 809-816, (2013)
   
carbamazepine
Lee JC et al., Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide.
Korean Journal of Chemical Engineering, 31, (12), 2266-2273, (2014)
   
carbamazepine
Khalilian F et al., Molecularly imprinted polymer on a SiO2-coated graphene oxide surface for the fast and selective dispersive solid-phase extraction of Carbamazepine from biological samples.
Journal of Separation Science, 39, (8), 1500-1508, (2016)
   
carbamazepine
Asgari S et al., An imprinted interpenetrating polymer network for microextraction in packed syringe of carbamazepine.
Journal of Chromatography A, 1491, 1-8, (2017)
   
carbamazepine
Liu J et al., Electrochemical microfluidic chip based on molecular imprinting technique applied for therapeutic drug monitoring.
Biosensors and Bioelectronics, 91, 714-720, (2017)
   
carbamazepine
Claude B et al., Synthesis and Preliminary Assays of a Novel Molecularly Imprinted Polymer Dedicated to the Extraction of Carbamazepine from River Water.
Chromatography and Spectroscopy Techniques, 1, (1), 3-11, (2018)
   
carbamazepine
Chen CF et al., A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine.
Microchemical Journal, 147, 191-197, (2019)
   
carbamazepine
Combes A et al., Synthesis and Characterization of Molecularly Imprinted Polymers for the Selective Extraction of Carbamazepine and Analogs from Human Urine Samples.
Chromatographia, 82, (1), 287-295, (2019)
   
carbamazepine
Kadhirvel P et al., Development and application of water-compatible molecularly imprinted polymers for the selective extraction of carbamazepine from environmental waters.
Analytical and Bioanalytical Chemistry, 411, (8), 1525-1536, (2019)
   
carbamazepine
Mohiuddin I et al., Preparation and evaluation of a porous molecularly imprinted polymer for selective recognition of the antiepileptic drug carbamazepine.
Environmental Research, 176, Article108580-(2019)
   
carbamazepine
Wang RY et al., Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization.
Journal of Chromatography A, 1591, 62-70, (2019)
   
carbamazepine
Nuchtavorn N et al., Paper-based molecularly imprinted-interpenetrating polymer network for on-spot collection and microextraction of dried blood spots for capillary electrophoresis determination of carbamazepine.
Analytical and Bioanalytical Chemistry, 412, (12), 2721-2730, (2020)
   
carbamazepine
Davoodi M et al., CdSe Quantum Dot Nanoparticles: Synthesis and Application in the Development of Molecularly Imprinted Polymer-Based Dual Optical Sensors.
Industrial & Engineering Chemistry Research, 60, (33), 12328-12342, (2021)
   
carbamazepine
Elmasry MR et al., Ultrasensitive detection and removal of carbamazepine in wastewater using UCNPs functionalized with thin-shell MIPs.
Microchemical Journal, 170, Article106674-(2021)
   
carbamazepine
Hammoud A et al., A new molecular imprinted PEDOT glassy carbon electrode for carbamazepine detection.
Biosensors and Bioelectronics, 180, Article113089-(2021)
   
carbamazepine
Khulu S et al., Multivariate optimization of a two-way technique for extraction of pharmaceuticals in surface water using a combination of membrane assisted solvent extraction and a molecularly imprinted polymer.
Chemosphere, 286, Article131973-(2022)
   
carbamzepine
Esfandyari-Manesh M et al., Synthesis and evaluation of uniformly sized carbamazepine-imprinted microspheres and nanospheres prepared with different mole ratios of methacrylic acid to methyl methacrylate for analytical and biomedical applications.
Journal of Applied Polymer Science, 125, (3), 1804-1813, (2012)
   
carbanyls
He JH et al., Trace carbonyl analysis in water samples by integrating magnetic molecular imprinting and capillary electrophoresis.
RSC Advances, 11, (52), 32841-32851, (2021)
   
carbaryl
Hantash J et al., Use of an on-line imprinted polymer pre-column, for the liquid chromatographic-UV absorbance determination of carbaryl and its metabolite in complex matrices.
Journal of Chromatography A, 1125, (1), 104-111, (2006)
   
carbaryl
Hantash J et al., Application of an in-line imprinted polymer column in a potentiometric flow-injection chemical sensor to the determination of the carbamate pesticide carbaryl in complex biological matrices.
Analytical and Bioanalytical Chemistry, 387, (1), 351-357, (2007)
   
carbaryl
Sánchez-Barragán I et al., A molecularly imprinted polymer for carbaryl determination in water.
Sensors and Actuators B: Chemical, 123, (2), 798-804, (2007)
   
carbaryl
Gao ZX et al., Quartz Crystal Microbalance for the Determination of Carbaryl Using Molecularly Imprinted Polymers as Recognition Element.
Acta Scientiarum Naturalium Universitatis Nankaiensis (Natural Science Edition), 41, (3), 34-40, (2008)
   
carbaryl
Yao W et al., Adsorption of carbaryl using molecularly imprinted microspheres prepared by precipitation polymerization.
Polymers for Advanced Technologies, 19, (7), 812-816, (2008)
   
carbaryl
Alvarez-Diaz A et al., Halogenated molecularly imprinted polymers for selective determination of carbaryl by phosphorescence measurements.
Analytical and Bioanalytical Chemistry, 394, (6), 1569-1576, (2009)
   
carbaryl
Yao W et al., Quartz crystal microbalance for the detection of carbaryl using molecularly imprinted polymers as recognition element.
Journal of Separation Science, 32, (19), 3334-3339, (2009)
   
carbaryl
Book chapter, Mascini Met al., Multiple Minima Hypersurfaces Procedures for Biomimetic Ligands Screening,
In: Sensors and Microsystems, Neri G, Donato N, DAmico A, Di Natale C (Eds.) Springer Netherlands: 403-407, (2011)
   
carbaryl
Zhang T et al., Selective microextraction of carbaryl and naproxen using organic-inorganic monolithic columns containing a double molecular imprint.
Microchimica Acta, 180, (7-8), 695-702, (2013)
   
carbaryl
Qi PP et al., Computer-assisted design and synthesis of molecularly imprinted polymers for the simultaneous determination of six carbamate pesticides from environmental water.
Journal of Separation Science, 37, (20), 2955-2965, (2014)
   
carbaryl
Zhang C et al., Synthesis, characterization and application of organic-inorganic hybrid and carbaryl-imprinted capillary monolithic column.
Chemical Research in Chinese Universities, 30, (3), 374-378, (2014)
   
carbaryl
Zhao LJ et al., Electrochemical Determination of Carbaryl by Using a Molecularly Imprinted Polymer/Graphene-Ionic Liquid-Nano Au/chitosan-AuPt Alloy Nanoparticles Composite Film Modified Electrode.
International Journal of Electrochemical Science, 9, 1366-1377, (2014)
   
carbaryl
Zhang C et al., Development of Fluorescence Sensing Material Based on CdSe/ZnS Quantum Dots and Molecularly Imprinted Polymer for the Detection of Carbaryl in Rice and Chinese Cabbage.
Journal of Agricultural and Food Chemistry, 63, (20), 4966-4972, (2015)
   
carbaryl
Bazrafshan AA et al., Nano-sized molecularly imprinted polymer for selective ultrasound-assisted microextraction of pesticide Carbaryl from water samples: Spectrophotometric determination.
Journal of Colloid and Interface Science, 498, 313-322, (2017)
   
carbaryl
Guo XY et al., Study on preparation and characterization of carbaryl fluorescent molecularly imprintied polymers.
Chinese Journal of Analysis Laboratory, 36, (12), 1439-1443, (2017)
   
carbaryl
So J et al., Adsorption of 1-naphthyl methyl carbamate in water by utilizing a surface molecularly imprinted polymer.
Chemical Physics Letters, 699, 199-207, (2018)
   
carbaryl
Zhang C et al., Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl.
Food Chemistry, 240, 893-897, (2018)
   
carbaryl
Long ZR et al., Monodisperse core-shell-structured SiO2@Gd2O3:Eu3+@SiO2@MIP nanospheres for specific identification and fluorescent determination of carbaryl in green tea.
Analytical and Bioanalytical Chemistry, 411, (18), 4221-4229, (2019)
   
carbaryl
Chen SJ et al., Preparation and characterization of magnetic molecular imprinted polymers with ionic liquid for the extraction of carbaryl in food.
Analytical and Bioanalytical Chemistry, 412, (5), 1049-1062, (2020)
   
carbaryl
Cheshari EC et al., Core-shell magnetic Ag-molecularly imprinted composite for surface enhanced Raman scattering detection of carbaryl.
Journal of Environmental Science and Health, Part B, 56, (3), 222-234, (2021)
   
carbazole
Abdul-Quadir MS et al., Adsorptive denitrogenation of fuel over molecularly imprinted poly-2-(1H-imidazol-2-yl)-4-phenol microspheres.
New Journal of Chemistry, 42, (15), 13135-13146, (2018)
   
carbazole
Abdul-Quadir MS et al., Remarkable adsorptive removal of nitrogen-containing compounds from hydrotreated fuel by molecularly imprinted poly-2-(1H-imidazol-2-yl)-4-phenol nanofibers.
RSC Advances, 8, (15), 8039-8050, (2018)
   
carbendazim
Anfossi L et al., Molecular Recognition of the Fungicide Carbendazim by a Molecular Imprinted Polymer Obtained through a Mimic Template Approach.
Analytical Letters, 42, (5), 807-820, (2009)
   
carbendazim
Cacho C et al., Molecularly imprinted polymers: An analytical tool for the determination of benzimidazole compounds in water samples.
Talanta, 78, (3), 1029-1035, (2009)
   
carbendazim
Zamora O et al., Determination of benzimidazole fungicides in water samples by on-line MISPE–HPLC.
Analytical and Bioanalytical Chemistry, 393, (6), 1745-1753, (2009)
   
carbendazim
Baggiani C et al., Binding behaviour of molecularly imprinted polymers prepared by a hierarchical approach in mesoporous silica beads of varying porosity.
Journal of Chromatography A, 1218, (14), 1828-1834, (2011)
   
carbendazim
Li SH et al., Synergetic dual recognition and separation of the fungicide carbendazim by using magnetic nanoparticles carrying a molecularly imprinted polymer and immobilized β-cyclodextrin.
Microchimica Acta, 183, (4), 1433-1439, (2016)
   
carbendazim
Mobram M et al., Study the Sensory Effects of Toxic Compounds of Benzimidazoles by Conductometry.
Bulletin of Environment, Pharmacology and Life Sciences, 5, (12), 1-10, (2016)
   
carbendazim
Ilktaç R et al., Selective and sensitive fluorimetric determination of carbendazim in apple and orange after preconcentration with magnetite-molecularly imprinted polymer.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 174, 86-93, (2017)
   
carbendazim
Akkbik M et al., Novel Molecularly Imprinted Polymer for the Determination of Carbendazim From Water and Food by Solid-Phase Extraction and High-Performance Liquid Chromatography.
Analytical Letters, 51, (1-2), 7-23, (2018)
   
carbendazim
Díaz-Álvarez M et al., Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of thiabendazole and carbendazim from orange samples.
Analytica Chimica Acta, 1045, 117-122, (2019)
   
carbendazim
Feng SX et al., A novel electrochemical sensor based on molecularly imprinted polymer modified hollow N, S-Mo2C/C spheres for highly sensitive and selective carbendazim determination.
Biosensors and Bioelectronics, 142, Article111491-(2019)
   
carbendazim
Liang GH et al., Molecularly imprinted monolithic column based on functionalized β-cyclodextrin and multi-walled carbon nanotubes for selective recognition of benzimidazole residues in citrus samples.
Microchemical Journal, 146, 1285-1294, (2019)
   
carbendazim
Farooq S et al., Selective extraction of fungicide carbendazim in fruits using β-cyclodextrin based molecularly imprinted polymers.
Journal of Separation Science, 43, (6), 1145-1153, (2020)
   
carbendazim
Li YG et al., A novel electrochemical sensor based on molecularly imprinted polymer-modified C-ZIF67@Ni for highly sensitive and selective determination of carbendazim.
Talanta, 237, Article122909-(2022)
   
carbobenzyloxy-L-alanine
Lee SW et al., Molecular imprinting of protected amino acids in ultrathin multilayers of TiO2 gel.
Chemistry Letters, 27, (12), 1193-1194, (1998)
   
carbobenzyloxy-L (and D)-amino acids
Lee SW et al., Enantioselective binding of amino acid derivatives onto imprinted TiO2 ultrathin films.
Chemistry Letters, 31, (7), 678-679, (2002)
   
carbobenzyloxy-l-phenylalanine
Ton XA et al., A Versatile Fiber-Optic Fluorescence Sensor Based on Molecularly Imprinted Microstructures Polymerized in Situ.
Angewandte Chemie International Edition, 52, (32), 8317-8321, (2013)
   
carbofuran
Zhang Y et al., Synthesis and Evaluation of Carbofuran Molecularly Imprinted Polymer.
Journal of Instrumental Analysis, 29, (10), 993-998, (2010)
   
carbofuran
Ge SG et al., Multi-branch chemiluminescence-molecular imprinting sensor for sequential determination of carbofuran and omethoate in foodstuff.
Analytical Methods, 4, (10), 3150-3156, (2012)
   
carbofuran
Qi PP et al., Computer-assisted design and synthesis of molecularly imprinted polymers for the simultaneous determination of six carbamate pesticides from environmental water.
Journal of Separation Science, 37, (20), 2955-2965, (2014)
   
carbofuran
Wang XY et al., Research on the properties of molecular imprinting polymers synthesized by seed swelling and polymerization method.
Journal of Shenyang Pharmaceutical University, 31, (2), 87-93, (2014)
   
carbofuran
Tan XC et al., Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran.
Sensors and Actuators B: Chemical, 220, 216-221, (2015)
   
carbofuran
Li SH et al., Supramolecular imprinted sensor for carbofuran detection based on a functionalized multiwalled carbon nanotube-supported Pd-Ir composite and methylene blue as catalyst.
Electrochimica Acta, 188, 294-300, (2016)
   
carbofuran
Zhou Q et al., Development and Applications of Quantum Dot-based Molecularly Imprinted Polymer Composites for Optosensing of Carbofuran in Water.
Analytical Sciences, 33, (8), 957-962, (2017)
   
carbofuran
Amatatongchai M et al., Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode.
Talanta, 179, 700-709, (2018)
   
carbofuran
Li SH et al., A microfluidic chip containing a molecularly imprinted polymer and a DNA aptamer for voltammetric determination of carbofuran.
Microchimica Acta, 185, (6), ArticleNo295-(2018)
   
carbofuran
Qi PP et al., Sensitive and selective detection of the highly toxic pesticide carbofuran in vegetable samples by a molecularly imprinted electrochemical sensor with signal enhancement by AuNPs.
RSC Advances, 8, (45), 25334-25341, (2018)
   
carbofuran
Sroysee W et al., Molecularly imprinted polymers to detect profenofos and carbofuran selectively with QCM sensors.
Physics in Medicine, 7, Article100016-(2019)
   
carbofuran
Amatatongchai M et al., Novel amino-containing molecularly-imprinted polymer coating on magnetite-gold core for sensitive and selective carbofuran detection in food.
Microchemical Journal, 158, Article105298-(2020)
   
carbohydrate
Okutucu B et al., Noncovalently galactose imprinted polymer for the recognition of different saccharides.
Talanta, 78, (3), 1190-1193, (2009)
   
carbohydrate antigen-199
Feng XB et al., A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru(bpy)32+-Silica@Poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers.
Electrochimica Acta, 139, 127-136, (2014)
   
carbohydrate antigen 15-3
Ribeiro JA et al., Disposable electrochemical detection of breast cancer tumour marker CA 15-3 using poly(Toluidine Blue) as imprinted polymer receptor.
Biosensors and Bioelectronics, 109, 246-254, (2018)
   
carbohydrate antigen 125
Rebelo TSCR et al., Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum.
Analytica Chimica Acta, 1082, 126-135, (2019)
   
carbohydrates
Kubo T et al., Selective adsorption of carbohydrates and glycoproteins via molecularly imprinted hydrogels: application to visible detection by a boronic acid monomer.
Chemical Communications, 53, (53), 7290-7293, (2017)
   
carbon dioxide
Zhao Y et al., Synthesis and CO2 Adsorption Properties of Molecularly Imprinted Adsorbents.
Environmental Science & Technology, 46, (3), 1789-1795, (2012)
   
carbon dioxide
Shi YQ et al., Molecular Template-Directed Synthesis of Microporous Polymer Networks for Highly Selective CO2 Capture.
ACS Applied Materials & Interfaces, 6, (22), 20340-20349, (2014)
   
carbon dioxide
Zhao Y et al., Adsorption Separation of Carbon Dioxide from Flue Gas by a Molecularly Imprinted Adsorbent.
Environmental Science & Technology, 48, (3), 1601-1608, (2014)
   
carbon dioxide
He H et al., Structure design of a hyperbranched polyamine adsorbent for CO2 adsorption.
Green Chemistry, 18, (21), 5859-5869, (2016)
   
carbon dioxide
He H et al., Solid Amine Adsorbent Prepared by Molecular Imprinting and Its Carbon Dioxide Adsorption Properties.
Chemistry - An Asian Journal, 11, (21), 3055-3061, (2016)
   
carbon dioxide
Nabavi SA et al., Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO2 molecule recognition properties.
Chemical Engineering Journal, 306, 214-225, (2016)
   
carbon dioxide
Nabavi SA et al., Production of molecularly imprinted polymer particles with amide-decorated cavities for CO2 capture using membrane emulsification/suspension polymerisation.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 521, 231-238, (2017)
   
carbon dioxide
Nabavi SA et al., Synthesis of Size-Tunable CO2-Philic Imprinted Polymeric Particles (MIPs) for Low-Pressure CO2 Capture Using Oil-in-Oil Suspension Polymerization.
Environmental Science & Technology, 51, (19), 11476-11483, (2017)
   
carbon dioxide
Hanak DP et al., Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using molecularly imprinted polymer.
Fuel, 214, 512-520, (2018)
   
carbon dioxide
Liu FL et al., Preparation and characterization of molecularly imprinted solid amine adsorbent for CO2 adsorption.
New Journal of Chemistry, 42, (12), 10016-10023, (2018)
   
carbon dioxide
Chaterjee S et al., Amino acid-imprinted polymers as highly selective CO2 capture materials.
Environmental Chemistry Letters, 17, (1), 465-472, (2019)
   
carbonic anhydrase
Uygun M et al., Molecularly imprinted cryogels for carbonic anhydrase purification from bovine erythrocyte.
Artificial Cells, Nanomedicine, and Biotechnology, 42, (2), 128-137, (2014)
   
carbon monoxide
Li CJ et al., SnO2 Highly Sensitive CO Gas Sensor Based on Quasi-Molecular-Imprinting Mechanism Design.
Sensors, 15, (2), 3789-3800, (2015)
   
carbonyls-DNPH derivatives
He JH et al., Trace carbonyl analysis in water samples by integrating magnetic molecular imprinting and capillary electrophoresis.
RSC Advances, 11, (52), 32841-32851, (2021)
   
carboxybenzyl-homoserine lactone
Susmel S et al., Selectivity and Efficiency of Conductive Molecularly Imprinted Polymer (c-MIP) Based on 5-Phenyl-Dipyrromethane and 5-Phenol-Dipyrromethane for Quorum Sensing Precursors Detection.
Chemosensors, 5, (1), ArticleNo5-(2017)
   
carboxyl-fentanyl
Liu LL et al., Carboxyl-fentanyl detection using optical fibre grating-based sensors functionalised with molecularly imprinted nanoparticles.
Biosensors and Bioelectronics, 177, Article113002-(2021)
   
3-carboxy-4-nitrobenzenethiol
Huang X et al., Construction of the Active Site of Glutathione Peroxidase on Polymer-Based Nanoparticles.
Biomacromolecules, 9, (5), 1467-1473, (2008)
   
carboxyphenyl aminohydantoin
Athikomrattanakul U et al., Development of molecularly imprinted polymers for the binding of nitrofurantoin.
Biosensors and Bioelectronics, 25, (1), 82-87, (2009)
   
carcinoembryonic antigen
Casey BJ et al., Selective binding of carcinoembryonic antigen using imprinted polymeric hydrogels.
Journal of Biomedical Materials Research Part A, 87A, (2), 359-363, (2008)
   
carcinoembryonic antigen
Wang YT et al., Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses.
Sensors and Actuators B: Chemical, 146, (1), 381-387, (2010)
   
carcinoembryonic antigen
Feng XB et al., A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru(bpy)32+-Silica@Poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers.
Electrochimica Acta, 139, 127-136, (2014)
   
carcinoembryonic antigen
Wang D et al., Simultaneous electrochemical immunoassay using graphene-Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes.
Biosensors and Bioelectronics, 65, 78-82, (2015)
   
carcinoembryonic antigen
Yu YJ et al., Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting.
Analyst, 141, (14), 4424-4431, (2016)
   
carcino-embryonic antigen
Proceeding, Luo L et al, Paper-Based Microfluidic Analytical Device Based on Molecularly Imprinted Polymer for Detection of Carcinoembryonic Antigen,
659-660, (2018)
   
carcinoembryonic antigen
Carneiro MCCG et al., Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen.
Biosensors and Bioelectronics, 146, Article111761-(2019)
   
carcinoembryonic antigen
Feng J et al., A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen.
Microchimica Acta, 186, (12), Article774-(2019)
   
carcinoembryonic antigen
Lin XL et al., Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood.
Biosensors and Bioelectronics, 143, Article111599-(2019)
   
carcinoembryonic antigen
Qi J et al., The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device.
Biosensors and Bioelectronics, 142, Article111533-(2019)
   
carcinoembryonic antigen
Tavares APM et al., Photovoltaics, plasmonics, plastic antibodies and electrochromism combined for a novel generation of self-powered and self-signalled electrochemical biomimetic sensors.
Biosensors and Bioelectronics, 137, 72-81, (2019)
   
carcinoembryonic antigen
Truta LAAN et al., Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples.
Sensors and Actuators B: Chemical, 287, 53-63, (2019)
   
carcinoembryonic antigen
Wang CY et al., Molecularly imprinted photoelectrochemical sensor for carcinoembryonic antigen based on polymerized ionic liquid hydrogel and hollow gold nanoballs/MoSe2 nanosheets.
Analytica Chimica Acta, 1090, 64-71, (2019)
   
carcinoembryonic antigen
Zhou LL et al., Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins.
Biosensors and Bioelectronics, 145, Article111729-(2019)
   
carcino-embryonic antigen
Han S et al., Drug-loaded dual targeting graphene oxide-based molecularly imprinted composite and recognition of carcino-embryonic antigen.
RSC Advances, 10, (19), 10980-10988, (2020)
   
carcinoembryonic antigen
Tawfik SM et al., Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection.
Biosensors and Bioelectronics, 160, Article112211-(2020)
   
carcinoembryonic antigen
Abdollahiyan P et al., Chemical binding of molecular-imprinted polymer to biotinilated antibody: Utilization of molecular imprinting polymer as intelligent synthetic biomaterials toward recognition of carcinoma embryonic antigen in human plasma sample.
Journal of Molecular Recognition, 34, (9), Article_e2897-(2021)
   
carcinogenic embryonic antigen
Moreira FTC et al., Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material.
Sensors and Actuators B: Chemical, 223, 927-935, (2016)
   
carcinogenic embryonic antigen
Moreira FTC et al., Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection.
Scientific Reports, 8, (1), ArticleNo10205-(2018)
   
carcinogenic embryonic antigen
Moreira FTC et al., Autonomous biosensing device merged with photovoltaic technology for cancer biomarker detection.
Journal of Electroanalytical Chemistry, 855, Article113611-(2019)
   
cardiac troponin I
Li CX et al., Electrochemical biosensor of molecular imprinting with cardiac troponin I.
Chinese Journal of Bioprocess Engineering, 10, (3), 61-66, (2012)
   
cardiac troponin I
Zuo JJ et al., A New Molecularly Imprinted Polymer (MIP)-based Electrochemical Sensor for Monitoring Cardiac Troponin I (cTnI) in the Serum.
Electroanalysis, 28, (9), 2044-2049, (2016)
   
cardiac troponin I
Cenci L et al., Micro- versus nano-sized molecularly imprinted polymers in MALDI-TOF mass spectrometry analysis of peptides.
Analytical and Bioanalytical Chemistry, 409, (26), 6253-6261, (2017)
   
cardiac troponin I
Ma Y et al., MIPs-graphene nanoplatelets-MWCNTs modified glassy carbon electrode for the determination of cardiac troponin I.
Analytical Biochemistry, 520, 9-15, (2017)
   
cardiac troponin I
Mokhtari Z et al., Evaluation of molecular imprinted polymerized methylene blue/aptamer as a novel hybrid receptor for Cardiac Troponin I (cTnI) detection at glassy carbon electrodes modified with new biosynthesized ZnONPs.
Sensors and Actuators B: Chemical, 320, Article128316-(2020)
   
cardiac troponin I
Zhang GH et al., Dual-mode of electrochemical-colorimetric imprinted sensing strategy based on self-sacrifice beacon for diversified determination of cardiac troponin I in serum.
Biosensors and Bioelectronics, 167, Article112502-(2020)
   
cardiac troponin I
McClements J et al., Immobilization of Molecularly Imprinted Polymer Nanoparticles onto Surfaces Using Different Strategies: Evaluating the Influence of the Functionalized Interface on the Performance of a Thermal Assay for the Detection of the Cardiac Biomarker Troponin I.
ACS Applied Materials & Interfaces, 13, (24), 27868-27879, (2021)
   
cardiac troponin T
Karimian N et al., An ultrasensitive molecularly-imprinted human cardiac troponin sensor.
Biosensors and Bioelectronics, 50, 492-498, (2013)
   
cardiac troponin T
Silva BVM et al., An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer.
Biosensors and Bioelectronics, 77, 978-985, (2016)
   
cardiac troponin T
Karimi M et al., A graphene based-biomimetic molecularly imprinted polyaniline sensor for ultrasensitive detection of human cardiac troponin T (cTnT).
Synthetic Metals, 256, Article116136-(2019)
   
cardiac troponin T
Phonklam K et al., A novel molecularly imprinted polymer PMB/MWCNTs sensor for highly-sensitive cardiac troponin T detection.
Sensors and Actuators B: Chemical, 308, Article127630-(2020)
   
cardiomyocytes
Abadi PPSS et al., Engineering of Mature Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Using Substrates with Multiscale Topography.
Advanced Functional Materials, 28, (19), ArticleNo1707378-(2018)
   
cardiovascular drugs
Abbasi S et al., Enrichment of cardiovascular drugs using rhamnolipid bioaggregates after dispersive solid phase extraction based water compatible magnetic molecularly imprinted biopolymers.
Microchemical Journal, 157, Article104874-(2020)
   
3-carene
Ghatak B et al., Application of Polymethacrylic Acid Imprinted Quartz Crystal Microbalance Sensor for Detection of 3-Carene in Mango.
IEEE Sensors Journal, 18, (7), 2697-2704, (2018)
   
carminic acid
Bibi NS et al., Synthesis and sorption performance of highly specific imprinted particles for the direct recovery of carminic acid.
Process Biochemistry, 47, (9), 1327-1334, (2012)
   
carmoisine
Ghasempour Z et al., Synthesis of a molecularly imprinted polymer for the selective recognition of carmoisine (Azorubin E122) from pomegranate juice.
Journal of Separation Science, 40, (4), 962-970, (2017)
   
carnidazole
Mitrowska K et al., Selective Determination of Fourteen Nitroimidazoles in Honey by High-Performance Liquid Chromatography-Tandem Mass Spectrometry.
Analytical Letters, 47, (10), 1634-1649, (2014)
   
Carnidazole
Guo XC et al., Molecularly imprinted solid phase extraction method for simultaneous determination of seven nitroimidazoles from honey by HPLC-MS/MS.
Talanta, 166, 101-108, (2017)
   
carnitine
Moret J et al., New molecularly-imprinted polymer for carnitine and its application as ionophore in potentiometric selective membranes.
Materials Science and Engineering: C, 43, 481-487, (2014)
   
carnitine
Truta LAAN et al., Graphene-based biomimetic materials targeting urine metabolite as potential cancer biomarker: Application over different conductive materials for potentiometric transduction.
Electrochimica Acta, 150, 99-107, (2014)
   
carnitine
Tavares APM et al., Conductive Paper with Antibody-Like Film for Electrical Readings of Biomolecules.
Scientific Reports, 6, ArticleNo26132-(2016)
   
carnosine
Okutucu B et al., Different approaches to synthesize carnosine selective imprinted polymers.
Materials Science and Engineering: C, 32, (5), 1174-1178, (2012)
   
carnosine
Singh LK et al., Biopolymeric receptor for peptide recognition by molecular imprinting approach-Synthesis, characterization and application.
Materials Science and Engineering: C, 45, 383-394, (2014)
   
carnosine
Wojnarowicz A et al., An electropolymerized molecularly imprinted polymer for selective carnosine sensing with impedimetric capacity.
Journal of Materials Chemistry B, 4, (6), 1156-1165, (2016)
   
carnosine-copper complex
Okutucu B et al., Different approaches to synthesize carnosine selective imprinted polymers.
Materials Science and Engineering: C, 32, (5), 1174-1178, (2012)
   
Carprofen
Siewing A, The Extraction of Acid NSAIDs from Muscle Tissue using Molecularly Imprinted Polymer SPE.
The Reporter, 29, (1), 18-19, (2011)
   
carprofen
Ban L et al., Carprofen-imprinted monolith prepared by reversible addition-fragmentation chain transfer polymerization in room temperature ionic liquids.
Analytical and Bioanalytical Chemistry, 405, (26), 8597-8605, (2013)
   
cartap
Wu M et al., Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements.
Molecules, 23, (6), ArticleNo1443-(2018)
   
carvacrol
Kasiri E et al., Highly effective pre-concentration of thymol and carvacrol using nano-sized magnetic molecularly imprinted polymer based on experimental design optimization and their trace determination in summer savoury, Origanum majorana and Origanum vulgare extracts.
Journal of Chromatography B, 1182, Article122941-(2021)
   
carvedilol
He JF et al., Study on Preparation of Carvedilol Molecularly Imprinted Polymer and Its Recognition Properties.
Journal of Analytical Science, 22, (3), 253-257, (2006)
   
carvedilol
He JF et al., Studies on the Recognition-behaviors of Molecularly Imprinted Polymerintroduced β-cyclodextrin towards β-blocked Reagents.
China Pharmacy, 19, (1), 17-19, (2008)
   
carvedilol
Azodi-Deilami S et al., Magnetic molecularly imprinted polymer nanoparticles coupled with high performance liquid chromatography for solid-phase extraction of carvedilol in serum samples.
Journal of Applied Polymer Science, 131, (23), Article No 41209-(2014)
   
carvedilol
Coelho MKL et al., Development and Application of Electrochemical Sensor Based on Molecularly Imprinted Polymer and Carbon Nanotubes for the Determination of Carvedilol.
Chemosensors, 4, (4), ArticleNo22-(2016)
   
carvedilol
da Silva ATM et al., Efficient molecularly imprinted polymer as a pipette-tip solid-phase sorbent for determination of carvedilol enantiomers in human urine.
Journal of Chromatography B, 1061, 399-410, (2017)
   
carvedilol
Pereira TFD et al., Carvedilol-Imprinted Polymer: Rational design and selectivity studies.
Journal of Molecular Structure, 1177, 101-106, (2019)
   
β-caryophyllene
de Assis IM et al., Novel electrochemical sensor based on molecularly imprinted polymer for selective recognition of sesquiterpene β-caryophyllene.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 217, 271-277, (2019)
   
CAs
Zhang XF et al., Molecularly imprinted solid phase microextraction fiber for trace analysis of catecholamines in urine and serum samples by capillary electrophoresis.
Talanta, 99, 270-276, (2012)
   
CAs
Podjava A et al., Synthesis and sorptive properties of molecularly imprinted polymer for simultaneous isolation of catecholamines and their metabolites from biological fluids.
Journal of Liquid Chromatography & Related Technologies, 44, (3-4), 181-188, (2021)
   
α-casein
Ashley J et al., Synthesis of Molecularly Imprinted Polymer Nanoparticles for α-Casein Detection Using Surface Plasmon Resonance as a Milk Allergen Sensor.
ACS Sensors, 3, (2), 418-424, (2018)
   
casein
Sun YH et al., Molecularly imprinted polymers fabricated via Pickering emulsions stabilized solely by food-grade casein colloidal nanoparticles for selective protein recognition.
Analytical and Bioanalytical Chemistry, 410, (13), 3133-3143, (2018)
   
β-casomorphin bovine
Lin CC et al., A novel monolithic column for capillary electrochromatographic separation of oligopeptides.
Analytica Chimica Acta, 572, (2), 197-204, (2006)
   
β-casomorphin human
Lin CC et al., A novel monolithic column for capillary electrochromatographic separation of oligopeptides.
Analytica Chimica Acta, 572, (2), 197-204, (2006)
   
castasterone
Kugimiya A et al., Synthesis of castasterone selective polymers prepared by molecular imprinting.
Analytica Chimica Acta, 365, (1-3), 75-79, (1998)
   
CAT
Fuchiwaki Y et al., Development of CAT sensor based on artifical receptor for CAT.
Chem Sens, 22, (Supplement B), 37-39, (2006)
   
CAT
Fuchiwaki Y et al., Development of an electrochemical sensing system for 6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT) utilizing an amalgamated gold electrode and artificial sensor receptor.
Electrochemistry, 75, (9), 709-714, (2007)
   
CAT
Fuchiwaki Y et al., 6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT) sensor based on biomimetic recognition utilizing a molecularly imprinted artificial receptor.
Analytical Sciences, 23, (1), 49-53, (2007)
   
CAT
Vanossi D et al., Electropolymerization of ortho-phenylenediamine. Structural characterisation of the resulting polymer film and its interfacial capacitive behaviour.
Journal of Electroanalytical Chemistry, 710, 22-28, (2013)
   
CAT
Chen JX et al., Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy.
Nano Research, 10, (7), 2351-2363, (2017)
   
catalase
Saridakis E et al., Protein crystallization facilitated by molecularly imprinted polymers.
Proceedings of the National Academy of Sciences of the United States of America, 108, (27), 11081-11086, (2011)
   
catalase
El-Sharif HF et al., Determination of protein binding affinities within hydrogel-based molecularly imprinted polymers (HydroMIPs).
Physical Chemistry Chemical Physics, 16, (29), 15483-15489, (2014)
   
catalase
Xing Y et al., Zwitterion-Immobilized Imprinted Polymers for Promoting the Crystallization of Proteins.
Crystal Growth & Design, 15, (10), 4932-4937, (2015)
   
catalase
Chen JX et al., The Molecular Imprinted Nanotrapper for Catalase: A Chemical-Free Inhibition Way to Trigger Tumor Cells Apoptosis.
Particle & Particle Systems Characterization, 34, (2), ArticleNo1600260-(2017)
   
catalase
Chen JX et al., Catalase-imprinted Fe3O4/Fe@fibrous SiO2/polydopamine nanoparticles: An integrated nanoplatform of magnetic targeting, magnetic resonance imaging, and dual-mode cancer therapy.
Nano Research, 10, (7), 2351-2363, (2017)
   
catalysis
de Escobar CC et al., Molecularly imprinted photocatalyst for glyceraldehyde production.
Journal of Sol-Gel Science and Technology, 88, (1), 220-226, (2018)
   
catalysis
Hu L et al., Molecularly imprinted artificial esterases with highly specific active sites and precisely installed catalytic groups.
Organic & Biomolecular Chemistry, 16, (31), 5580-5584, (2018)
   
catalysis
Hu L et al., A Bait-and-Switch Method for the Construction of Artificial Esterases for Substrate-Selective Hydrolysis.
Chemistry - A European Journal, 25, (32), 7702-7710, (2019)
   
catalyst
Arifuzzaman M et al., Artificial Zinc Enzymes with Fine-Tuned Active Sites for Highly Selective Hydrolysis of Activated Esters.
ACS Catalysis, 8154-8161, (2018)
   
catalyst
Wei WJ et al., An enzyme-like imprinted-polymer reactor with segregated quantum confinements for a tandem catalyst.
RSC Advances, 8, (3), 1610-1620, (2018)
   
catalyst
Lin F et al., Catalytic gold-platinum alloy nanoparticles and a novel glucose oxidase mimic with enhanced activity and selectivity constructed by molecular imprinting.
Analytical Methods, 11, (36), 4586-4592, (2019)
   
catalyst
Wang RY et al., Molecularly imprinted nanocapsule mimicking phosphotriesterase for the catalytic hydrolysis of organophosphorus pesticides.
European Polymer Journal, 110, 1-8, (2019)
   
(+)-catechin
Blahova E et al., The use of molecularly imprinted polymer for selective extraction of (+)-catechin.
Journal of Liquid Chromatography & Related Technologies, 27, (17), 2715-2731, (2004)
   
(+)-catechin
Proceeding, Wu CT et al, Amperometric (+)-catechin sensing using a molecularly imprinted polymer-modified electrode,
1471, (2005)
   
(+)-catechin
Jin Y et al., Separation of caffeine and catechin compounds from green tea by quercetin molecular imprinted solid-phase extraction.
Journal of the Korean Chemical Society, 51, (2), 165-170, (2007)
   
(+) Catechin
Jin Y et al., Solid-phase extraction of caffeine and catechin compounds from green tea by caffeine molecular imprinted polymer.
Bulletin of the Korean Chemical Society, 28, (2), 276-280, (2007)
   
(+)-catechin
Jin Y et al., Multi-SPE of caffeine and catechin compounds from green tea by caffeine and (+) catechin MIPS.
Journal of Liquid Chromatography & Related Technologies, 34, (15), 1604-1616, (2011)
   
catechin
Castro-López MdM et al., Preparation, evaluation and characterization of quercetin-molecularly imprinted polymer for preconcentration and clean-up of catechins.
Analytica Chimica Acta, 721, (1), 68-78, (2012)
   
(+) catechin
Tian M et al., Solid-Phase Extraction of Catechin Compounds From Green Tea by Catechin Molecular Imprinted Polymers.
Asian Journal of Chemistry, 24, (10), 4606-4610, (2012)
   
catechin
Jin Y et al., Adsorption Mechanisms of Quercetin, Catechin and Epicatechin on Quercetin Molecular Imprinted Polymer using Linear Solvation Energy Relationship.
Asian Journal of Chemistry, 26, (21), 7249-7254, (2014)
   
catechin
Nolvachai Y et al., Miniaturized molecularly imprinted polymer extraction method for the gas chromatographic analysis of flavonoids.
Journal of Separation Science, 37, (8), 1018-1025, (2014)
   
catechin
Guerreiro JRL et al., Molecular Imprinting of Complex Matrices at Localized Surface Plasmon Resonance Biosensors for Screening of Global Interactions of Polyphenols and Proteins.
ACS Sensors, 1, (3), 258-264, (2016)
   
catechin
Büyüktuncel E et al., Catechin-molecularly imprinted cryogel for determination of catechin in red wines by HPLC-DAD-fluorescence detector.
Acta Chromatographica, 30, (1), 54-61, (2017)
   
catechin
Büyüktuncel E et al., Catechin-molecularly imprinted cryogel for determination of catechin in red wines by HPLC-DAD-fluorescence detector.
Acta Chromatographica, 30, (1), 54-61, (2018)
   
catechin
Chatterjee TN et al., Molecular Imprinted Polymer Based Electrode for Sensing Catechin (+C) in Green Tea.
IEEE Sensors Journal, 18, (6), 2236-2244, (2018)
   
(+)-catechin
Ma W et al., Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea.
Electrophoresis, 39, (15), 2039-2046, (2018)
   
catechin
Ma W et al., Molecular imprinted polymers based on magnetic chitosan with different deep eutectic solvent monomers for the selective separation of catechins in black tea.
Electrophoresis, 39, (15), 2039-2046, (2018)
   
catechin
Paredes-Ramos M et al., Computational approximations of molecularly imprinted polymers with sulphur based monomers for biological purposes.
Materials Today Communications, 20, Article100526-(2019)
   
catechin
Hashim SNNS et al., Parallel enrichment of polyphenols and phytosterols from Pinot noir grape seeds with molecularly imprinted polymers and analysis by capillary high-performance liquid chromatography electrospray ionisation tandem mass spectrometry.
Talanta, 208, Article120397-(2020)
   
catechin
Martins RO et al., Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources.
Journal of Chromatography A, 1620, Article460977-(2020)
   
catechin
Fu YF et al., Magnetic molecularly imprinting polymers, reduced graphene oxide, and zeolitic imidazolate frameworks modified electrochemical sensor for the selective and sensitive detection of catechin.
Microchimica Acta, 188, (3), Article71-(2021)
   
catechin
Lu ZW et al., Novel dual-template molecular imprinted electrochemical sensor for simultaneous detection of CA and TPH based on peanut twin-like NiFe2O4/CoFe2O4/NCDs nanospheres: Fabrication, application and DFT theoretical study.
Biosensors and Bioelectronics, 190, Article113408-(2021)
   
catechin compounds
Jin Y et al., Separation of caffeine and catechin compounds from green tea by quercetin molecular imprinted solid-phase extraction.
Journal of the Korean Chemical Society, 51, (2), 165-170, (2007)
   
catechin compounds
Jin Y et al., Solid-phase extraction of caffeine and catechin compounds from green tea by caffeine molecular imprinted polymer.
Bulletin of the Korean Chemical Society, 28, (2), 276-280, (2007)
   
(+)-catechin hydrate
Li G et al., Ternary deep eutectic solvent magnetic molecularly imprinted polymers for the dispersive magnetic solid-phase microextraction of green tea.
Journal of Separation Science, 41, (17), 3424-3431, (2018)
   
catechins
Castro-López MdM et al., Preparation, evaluation and characterization of quercetin-molecularly imprinted polymer for preconcentration and clean-up of catechins.
Analytica Chimica Acta, 721, (1), 68-78, (2012)
   
catechol
Piletsky SA et al., Molecularly imprinted polymers - Tyrosinase mimics.
Ukrainskii Biokhimicheskii Zhurnal, 77, (6), 63-67, (2005)
   
catechol
Tarley CRT et al., Molecularly-imprinted solid phase extraction of catechol from aqueous effluents for its selective determination by differential pulse voltammetry.
Analytica Chimica Acta, 548, (1-2), 11-19, (2005)
   
catechol
Figueiredo EC et al., On-line molecularly imprinted solid phase extraction for the selective spectrophotometric determination of catechol.
Microchemical Journal, 85, (2), 290-296, (2007)
   
catechol
Lakshmi D et al., Electrochemical Sensor for Catechol and Dopamine Based on a Catalytic Molecularly Imprinted Polymer-Conducting Polymer Hybrid Recognition Element.
Analytical Chemistry, 81, (9), 3576-3584, (2009)
   
catechol
Sergeyeva TA et al., A portable sensor system for phenols detection based on molecularly-imprinted polymers with catalytic properties.
Ukrainskii Biokhimicheskii Zhurnal, 81, (1), 41-51, (2009)
   
catechol
Atta NF et al., Computational investigation and synthesis of a sol-gel imprinted material for sensing application of some biologically active molecules.
Analytica Chimica Acta, 667, (1-2), 63-70, (2010)
   
catechol
Berti F et al., Quasi-monodimensional polyaniline nanostructures for enhanced molecularly imprinted polymer-based sensing.
Biosensors and Bioelectronics, 26, (2), 497-503, (2010)
   
catechol
Sergeyeva TA et al., Catalytic molecularly imprinted polymer membranes: Development of the biomimetic sensor for phenols detection.
Analytica Chimica Acta, 659, (1-2), 274-279, (2010)
   
catechol
Book chapter, Berti Fet al., One-Dimensional Polyaniline Nanotubes for Enhanced Chemical and Biochemical Sensing,
In: Sensors and Microsystems, Neri G, Donato N, DAmico A, Di Natale C (Eds.) Springer Netherlands: 311-315, (2011)
   
catechol
Dubey L et al., Selective Recognition of Bifunctional Molecules by Synthetic Polymers Prepared by Covalent Molecular Imprinting.
The Open Analytical Chemistry Journal, 6, 15-21, (2012)
   
catechol
Qiu HM et al., A chemiluminescence array sensor based on graphene-magnetite-molecularly imprinted polymers for determination of benzenediol isomers.
Analytica Chimica Acta, 744, 75-81, (2012)
   
catechol
Vanossi D et al., Electropolymerization of ortho-phenylenediamine. Structural characterisation of the resulting polymer film and its interfacial capacitive behaviour.
Journal of Electroanalytical Chemistry, 710, 22-28, (2013)
   
catechol
Zhang WL et al., Novel surface molecularly imprinted polymers as solid-phase extraction sorbents for selective extraction of dihydroxybenzenes from environmental water samples.
Fresenius Environmental Bulletin, 22, (8), 2324-2333, (2013)
   
catechol
Zheng HY et al., Molecularly imprinted cellulose membranes for pervaporation separation of xylene isomers.
Journal of Membrane Science, 478, 148-154, (2015)
   
catechol
Zhang MS et al., Layer-by-layer coated molecular-imprinted solid-phase microextraction fibers for the determination of polar compounds in water samples.
RSC Advances, 6, (96), 94098-94104, (2016)
   
catechol
Rao HB et al., Nitrogen-doped carbon nanosheet frameworks decorated with Fe and molecularly imprinted polymer for simultaneous detection of mebendazole and catechol.
Chemical Engineering Journal, 338, 478-487, (2018)
   
catechol
Hou XY et al., Hollow dummy template imprinted boronate-modified polymers for extraction of norepinephrine, epinephrine and dopamine prior to quantitation by HPLC.
Microchimica Acta, 186, (11), Article686-(2019)
   
catechol
Abu-Alsoud GF et al., Comparison of Four Adsorption Isotherm Models for Characterizing Molecular Recognition of Individual Phenolic Compounds in Porous Tailor-Made Molecularly Imprinted Polymer Films.
ACS Applied Materials & Interfaces, 12, (10), 11998-12009, (2020)
   
catechol
Hou XY et al., Using self-polymerization synthesis of boronate-affinity hollow stannic oxide based fragment template molecularly imprinted polymers for the selective recognition of polyphenols.
Journal of Chromatography A, 1612, Article460631-(2020)
   
catechol
Qi LB et al., Stimulus-Responsive Imprinted Polymer-Based Potentiometric Sensor for Reversible Detection of Neutral Phenols.
Analytical Chemistry, 92, (6), 4284-4291, (2020)
   
catechol
Abu-Alsoud GF et al., Porous thin-film molecularly imprinted polymer device for simultaneous determination of phenol, alkylphenol and chlorophenol compounds in water.
Talanta, 223, Article121727-(2021)
   
catechol
Xu YQ et al., SiO2-coated molecularly imprinted sensor based on Si quantum dots for selective detection of catechol in river water.
Journal of Environmental Chemical Engineering, 10, (1), Article106850-(2022)
   
catecholamines
Bouri M et al., Selective extraction and determination of catecholamines in urine samples by using a dopamine magnetic molecularly imprinted polymer and capillary electrophoresis.
Talanta, 99, 897-903, (2012)
   
catecholamines
Zhang XF et al., Molecularly imprinted solid phase microextraction fiber for trace analysis of catecholamines in urine and serum samples by capillary electrophoresis.
Talanta, 99, 270-276, (2012)
   
catecholamines
Ma JB et al., Fast determination of catecholamines in human plasma using carboxyl-functionalized magnetic-carbon nanotube molecularly imprinted polymer followed by liquid chromatography-tandem quadrupole mass spectrometry.
Journal of Chromatography A, 1429, 86-96, (2016)
   
catecholamines
Qiu XZ et al., Preparation of a Molecularly Imprinted Polymer Nanotubes Membrane and Its Application in the Determination of Catecholamines in Urine Samples.
Chemical Journal of Chinese Universities, 39, (4), 653-659, (2018)
   
catecholamines
Podjava A et al., Synthesis and sorptive properties of molecularly imprinted polymer for simultaneous isolation of catecholamines and their metabolites from biological fluids.
Journal of Liquid Chromatography & Related Technologies, 44, (3-4), 181-188, (2021)
   
catecholamines
Yuan XC et al., Fe3O4/graphene molecularly imprinted composite for selective separation of catecholamine neurotransmitters and their analysis in rat brain tissues.
Talanta, 224, Article121843-(2021)
   
catharanthine
Lopez C et al., Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts.
Analytica Chimica Acta, 683, (2), 198-205, (2011)
   
Cathine
Balamurugan K et al., Preparation and evaluation of molecularly imprinted polymer liquid chromatography column for the separation of Cathine enantiomers.
Saudi Pharmaceutical Journal, 20, (1), 53-61, (2012)
   
cathine
Atlabachew M et al., A (-)-norephedrine-based molecularly imprinted polymer for the solid-phase extraction of psychoactive phenylpropylamino alkaloids from Khat (Catha edulis Vahl. Endl.) chewing leaves.
Biomedical Chromatography, 30, (7), 1007-1015, (2016)
   
cathinone
Zang DJ et al., A disposable simultaneous electrochemical sensor array based on a molecularly imprinted film at a NH2-graphene modified screen-printed electrode for determination of psychotropic drugs.
Analyst, 138, (9), 2704-2711, (2013)
   
cathinone
Atlabachew M et al., A (-)-norephedrine-based molecularly imprinted polymer for the solid-phase extraction of psychoactive phenylpropylamino alkaloids from Khat (Catha edulis Vahl. Endl.) chewing leaves.
Biomedical Chromatography, 30, (7), 1007-1015, (2016)
   
cathinone
Saputra A et al., Determination of Effective Functional Monomer and Solvent for R(+)-Cathinone Imprinted Polymer Using Density Functional Theory and Molecular Dynamics Simulation Approaches.
Indonesian Journal of Chemistry, 17, (3), 516-522, (2017)
   
cathinones
Murakami T et al., Molecularly imprinted polymer solid-phase extraction of synthetic cathinones from urine and whole blood samples.
Journal of Separation Science, 41, (24), 4506-4514, (2018)
   
cations
Liu ZH et al., Cation-Selective Microcontact Printing Based on Surface-Molecular-Imprinted Layer-by-Layer Films.
Advanced Materials, 22, (24), 2689-2693, (2010)
   
C3AzoCO2H
Lee SW et al., Regioselective imprinting of anthracenecarboxylic acids onto TiO2 gel ultrathin films: an approach to thin film sensor.
Sensors and Actuators B: Chemical, 104, (1), 35-42, (2005)
   
CB15
Hasson CD et al., Imprinting chiral structure on liquid crystalline elastomers.
Molecular Crystals And Liquid Crystals Science And Technology Section A-Molecular Crystals And Liquid Crystals, 332, 155-162, (1999)
   
CBC
Paik P et al., Chiral-mesoporous-polypyrrole nanoparticles: Its chiral recognition abilities and use in enantioselective separation.
Journal of Materials Chemistry, 20, (20), 4085-4093, (2010)
   
CBCPHs
Lin CY et al., Detection of oxytocin, atrial natriuretic peptide, and brain natriuretic peptide using novel imprinted polymers produced with amphiphilic monomers.
Journal of Peptide Science, 25, (3), Article_e3150-(2019)
   
CBD
Cela-Pérez MC et al., Water-compatible imprinted pills for sensitive determination of cannabinoids in urine and oral fluid.
Journal of Chromatography A, 1429, 53-64, (2016)
   
CBD
Feng SX et al., A novel electrochemical sensor based on molecularly imprinted polymer modified hollow N, S-Mo2C/C spheres for highly sensitive and selective carbendazim determination.
Biosensors and Bioelectronics, 142, Article111491-(2019)
   
CBD
Marchioni C et al., In-tube solid-phase microextraction with a dummy molecularly imprinted monolithic capillary coupled to ultra-performance liquid chromatography-tandem mass spectrometry to determine cannabinoids in plasma samples.
Analytica Chimica Acta, 1099, 145-154, (2020)
   
CBD
Li YG et al., A novel electrochemical sensor based on molecularly imprinted polymer-modified C-ZIF67@Ni for highly sensitive and selective determination of carbendazim.
Talanta, 237, Article122909-(2022)
   
CBF
Tan XC et al., Electrochemical sensor based on molecularly imprinted polymer reduced graphene oxide and gold nanoparticles modified electrode for detection of carbofuran.
Sensors and Actuators B: Chemical, 220, 216-221, (2015)
   
CBF
Li SH et al., Supramolecular imprinted sensor for carbofuran detection based on a functionalized multiwalled carbon nanotube-supported Pd-Ir composite and methylene blue as catalyst.
Electrochimica Acta, 188, 294-300, (2016)
   
CBF
Amatatongchai M et al., Selective amperometric flow-injection analysis of carbofuran using a molecularly-imprinted polymer and gold-coated-magnetite modified carbon nanotube-paste electrode.
Talanta, 179, 700-709, (2018)
   
CBF
Sroysee W et al., Molecularly imprinted polymers to detect profenofos and carbofuran selectively with QCM sensors.
Physics in Medicine, 7, Article100016-(2019)
   
CBL
So J et al., Adsorption of 1-naphthyl methyl carbamate in water by utilizing a surface molecularly imprinted polymer.
Chemical Physics Letters, 699, 199-207, (2018)
   
CBN
Cela-Pérez MC et al., Water-compatible imprinted pills for sensitive determination of cannabinoids in urine and oral fluid.
Journal of Chromatography A, 1429, 53-64, (2016)
   
CBZ
Beltran A et al., Synthesis and application of a carbamazepine-imprinted polymer for solid-phase extraction from urine and wastewater.
Analytica Chimica Acta, 597, (1), 6-11, (2007)
   
CBZ
Beltran A et al., Synthesis by precipitation polymerisation of molecularly imprinted polymer microspheres for the selective extraction of carbamazepine and oxcarbazepine from human urine.
Journal of Chromatography A, 1216, (12), 2248-2253, (2009)
   
CBZ
Dai CM et al., Performance evaluation and application of molecularly imprinted polymer for separation of carbamazepine in aqueous solution.
Journal of Hazardous Materials, 184, (1-3), 156-163, (2010)
   
CBZ
Esfandyari-Manesh M et al., Synthesis and evaluation of uniformly sized carbamazepine-imprinted microspheres and nanospheres prepared with different mole ratios of methacrylic acid to methyl methacrylate for analytical and biomedical applications.
Journal of Applied Polymer Science, 125, (3), 1804-1813, (2012)
   
CBZ
Dai CM et al., Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.
Environmental Science and Pollution Research, 20, (8), 5492-5501, (2013)
   
CBZ
Zhang YL et al., Sorption of carbamazepine from water by magnetic molecularly imprinted polymers based on chitosan-Fe3O4.
Carbohydrate Polymers, 97, (2), 809-816, (2013)
   
CBZ
Claude B et al., Synthesis and Preliminary Assays of a Novel Molecularly Imprinted Polymer Dedicated to the Extraction of Carbamazepine from River Water.
Chromatography and Spectroscopy Techniques, 1, (1), 3-11, (2018)
   
CBZ
Chen CF et al., A novel sensitive and selective electrochemical sensor based on integration of molecularly imprinted with hollow silver nanospheres for determination of carbamazepine.
Microchemical Journal, 147, 191-197, (2019)
   
CBZ
Díaz-Álvarez M et al., Molecularly imprinted polymer monolith containing magnetic nanoparticles for the stir-bar sorptive extraction of thiabendazole and carbendazim from orange samples.
Analytica Chimica Acta, 1045, 117-122, (2019)
   
CBZ
Kadhirvel P et al., Development and application of water-compatible molecularly imprinted polymers for the selective extraction of carbamazepine from environmental waters.
Analytical and Bioanalytical Chemistry, 411, (8), 1525-1536, (2019)
   
CBZ
Mohiuddin I et al., Preparation and evaluation of a porous molecularly imprinted polymer for selective recognition of the antiepileptic drug carbamazepine.
Environmental Research, 176, Article108580-(2019)
   
CBZ
Sun XL et al., Preparation and evaluation of dummy-template molecularly imprinted polymer as a potential sorbent for solid phase extraction of imidazole fungicides from river water.
Journal of Chromatography A, 1586, 1-8, (2019)
   
CBZ
Wang RY et al., Selective recognition and enrichment of carbamazepine in biological samples by magnetic imprinted polymer based on reversible addition-fragmentation chain transfer polymerization.
Journal of Chromatography A, 1591, 62-70, (2019)
   
CBZ
Zhang XX et al., Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples.
Journal of Chromatography A, 1620, Article461013-(2020)
   
CBZ
Elmasry MR et al., Ultrasensitive detection and removal of carbamazepine in wastewater using UCNPs functionalized with thin-shell MIPs.
Microchemical Journal, 170, Article106674-(2021)
   
Cbz-Ala
Lee SW et al., Enantioselective binding of amino acid derivatives onto imprinted TiO2 ultrathin films.
Chemistry Letters, 31, (7), 678-679, (2002)
   
Cbz-aspartic acid
Kim KS et al., Preparation and characterization of molecularly imprinted uniform-sized Poly(4VP-co-EGDMA) microgels.
Polymer Journal, 37, (9), 669-676, (2005)
   
Cbz-DL-Trp
Huang XD et al., Short columns with molecularly imprinted monolithic stationary phases for rapid separation of diastereomers and enantiomers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 13-18, (2004)
   
Cbz-HS
Susmel S et al., Selectivity and Efficiency of Conductive Molecularly Imprinted Polymer (c-MIP) Based on 5-Phenyl-Dipyrromethane and 5-Phenol-Dipyrromethane for Quorum Sensing Precursors Detection.
Chemosensors, 5, (1), ArticleNo5-(2017)
   
Cbz-L-Ala
Wang JF et al., Effect of rigidity of the imprinted molecule to chiral separation of molecular imprinting chiral stationary phase.
Chinese Journal of Analytical Chemistry, 27, (12), 1420-1423, (1999)
   
CBZ-L-aspartic acid
Andersson LI et al., Enantiomeric resolution on molecularly imprinted polymers prepared with only noncovalent and nonionic interactions.
Journal of Chromatography A, 516, (2), 313-322, (1990)
   
Cbz-Leu
Lee SW et al., Enantioselective binding of amino acid derivatives onto imprinted TiO2 ultrathin films.
Chemistry Letters, 31, (7), 678-679, (2002)
   
Cbz-L-Glu
Yu C et al., Enantiomeric recognition by molecularly imprinted polymers using hydrophobic interactions.
Analytical Letters, 30, (12), 2123-2140, (1997)
   
CBZ-L-glutamic acid
Andersson LI et al., Enantiomeric resolution on molecularly imprinted polymers prepared with only noncovalent and nonionic interactions.
Journal of Chromatography A, 516, (2), 313-322, (1990)
   
Cbz-L-histidine
Chaitidou S et al., Precipitation polymerization for the synthesis of nanostructured particles.
Materials Science and Engineering: B, 152, (1-3), 55-59, (2008)
   
Cbz-l-Phe
Wan W et al., Fluorescent Sensory Microparticles that "Light-up" Consisting of a Silica Core and a Molecularly Imprinted Polymer (MIP) Shell.
Angewandte Chemie International Edition, 52, (27), 7023-7027, (2013)
   
Cbz-L-Pro
Wang JF et al., Effect of rigidity of the imprinted molecule to chiral separation of molecular imprinting chiral stationary phase.
Chinese Journal of Analytical Chemistry, 27, (12), 1420-1423, (1999)
   
Cbz-L-Ser
Wang JF et al., Effect of rigidity of the imprinted molecule to chiral separation of molecular imprinting chiral stationary phase.
Chinese Journal of Analytical Chemistry, 27, (12), 1420-1423, (1999)
   
CBZ-l-serine
LeJeune J et al., Analyte separation by OMNiMIPs imprinted with multiple templates.
Biosensors and Bioelectronics, 25, (3), 604-608, (2009)
   
Cbz-L-Trp
Yu C et al., Enantiomeric recognition by molecularly imprinted polymers using hydrophobic interactions.
Analytical Letters, 30, (12), 2123-2140, (1997)
   
Cbz-L-Trp
Yu C et al., Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers.
Journal of Chromatography A, 888, (1-2), 63-72, (2000)
   
Cbz-L-Trp
Futagami A et al., Preparation and Evaluation of Monolithic Molecularly Imprinted Polymers for Nilvadipine and Naproxen.
Chromatography, 27, (Supplement 2), 113-114, (2006)
   
CBZ-L-tryptophan
Andersson LI et al., Enantiomeric resolution on molecularly imprinted polymers prepared with only noncovalent and nonionic interactions.
Journal of Chromatography A, 516, (2), 313-322, (1990)
   
CBZ-l-tryptophan
LeJeune J et al., Analyte separation by OMNiMIPs imprinted with multiple templates.
Biosensors and Bioelectronics, 25, (3), 604-608, (2009)
   
CBZ-L-tryptophan methyl ester
Andersson LI et al., Enantiomeric resolution on molecularly imprinted polymers prepared with only noncovalent and nonionic interactions.
Journal of Chromatography A, 516, (2), 313-322, (1990)
   
CBZ-L-tyrosine
Ramström O et al., Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting.
Journal of Organic Chemistry, 58, (26), 7562-7564, (1993)
   
Cbz-Phe
Lee SW et al., Enantioselective binding of amino acid derivatives onto imprinted TiO2 ultrathin films.
Chemistry Letters, 31, (7), 678-679, (2002)
   
CBZ-ser
LeJeune J et al., Analyte separation by OMNiMIPs imprinted with multiple templates.
Biosensors and Bioelectronics, 25, (3), 604-608, (2009)
   
CBZ-trp
LeJeune J et al., Analyte separation by OMNiMIPs imprinted with multiple templates.
Biosensors and Bioelectronics, 25, (3), 604-608, (2009)
   
CC
Nakamura Y et al., Preparation of molecularly imprinted polymers for warfarin and coumachlor by multi-step swelling and polymerization method and their imprinting effects.
Journal of Chromatography A, 1516, 71-78, (2017)
   
CC
Rao HB et al., Nitrogen-doped carbon nanosheet frameworks decorated with Fe and molecularly imprinted polymer for simultaneous detection of mebendazole and catechol.
Chemical Engineering Journal, 338, 478-487, (2018)
   
CCK-5
Papaioannou EH et al., Molecularly Imprinted Polymers for Cholecystokinin C-Terminal Pentapeptide Recognition.
Macromolecular Chemistry And Physics, 208, (24), 2621-2627, (2007)
   
CCK-5
Papaioannou EH et al., Artificial receptor for peptide recognition in protic media: The role of metal ion coordination.
Materials Science and Engineering: B, 152, (1-3), 28-32, (2008)
   
CCK
Ji X et al., Preparation and application of a novel molecularly imprinted solid-phase microextraction monolith for selective enrichment of cholecystokinin neuropeptides in human cerebrospinal fluid.
Biomedical Chromatography, 29, (8), 1280-1289, (2015)
   
CCK
Li H et al., Preparation of Cholecystokinin Molecularly Imprinted Polymer Monolith and its Application in Solid Phase Microextraction and HPLC Analysis.
Chinese Journal of Analytical Chemistry, 43, (8), 1130-1135, (2015)
   
CCK hormone
Papaioannou EH et al., Artificial receptor for peptide recognition in protic media: The role of metal ion coordination.
Materials Science and Engineering: B, 152, (1-3), 28-32, (2008)
   
CCK-5P
Papaioannou E et al., The role of different ions in molecular recognition process of C-terminal cholecystokinin pentapeptide in polymeric receptors.
Amino Acids, 33, (3), XXVIII-XXIX, (2007)
   
cCMP
Wandelt B et al., Polymeric Sensory Systems Based on Molecular Imprinting for Identification and Separation of Molecules and Bigger Biological Objects.
Molecular Crystals And Liquid Crystals, 486, (1), 257-270, (2008)
   
CCN
Yin F et al., Construction and analytical application of a novel ion-selective capacitive sensor for determination of cinchonine.
Analytical Letters, 37, (15), 3129-3147, (2004)
   
CCN
Tong PH et al., Molecularly imprinted electrochemical luminescence sensor based on core-shell magnetic particles with ZIF-8 imprinted material.
Sensors and Actuators B: Chemical, 330, Article129405-(2021)
   
CCrP
Abo-Elmagd IF et al., Impedimetric Sensors for Cyclocreatine Phosphate Determination in Plasma Based on Electropolymerized Poly(o-phenylenediamine) Molecularly Imprinted Polymers.
ACS Omega, 6, (46), 31282-31291, (2021)
   
CD
Takeuchi T et al., Signaling molecularly imprinted polymers: Molecular recognition-based sensing materials.
Chemical Record, 5, (5), 263-275, (2005)
   
CD
Matsui J et al., Molecularly-imprinted polymeric logic gates selective for predetermined chemical input species.
Chemical Communications, (30), 3217-3219, (2006)
   
Cd2+
Candan N et al., Cadmium removal out of human plasma using ion-imprinted beads in a magnetic column.
Materials Science and Engineering: C, 29, (1), 144-152, (2009)
   
CD12
Kaulpiboon J et al., Altered product specificity of a cyclodextrin glycosyltransferase by molecular imprinting with cyclomaltododecaose.
Journal of Molecular Recognition, 23, (5), 480-485, (2010)
   
CD
Liu YQ et al., Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization.
Talanta, 80, (5), 1713-1718, (2010)
   
CD
Liu L et al., Development and Characterization of an Electrochemical Sensor for Cinchonidine Detection Based on Molecularly Imprinted Polymer with Modified Rosin as Cross-linker.
Chemical Research in Chinese Universities, 28, (3), 410-414, (2012)
   
CD
Yang HP et al., Entrapment of alkaloids within silver: from enantioselective hydrogenation to chiral recognition.
Chemical Communications, 50, (64), 8868-8870, (2014)
   
α-CD
Fan HR et al., Monodisperse hollow-shell structured molecularly imprinted polymers for photocontrolled extraction α-cyclodextrin from complex samples.
Food Chemistry, 281, 1-7, (2019)
   
CD56
Ma XH et al., A strategy for construction of highly sensitive glycosyl imprinted electrochemical sensor based on sandwich-like multiple signal enhancement and determination of neural cell adhesion molecule.
Biosensors and Bioelectronics, 156, Article112150-(2020)
   
CDCA
Chen FQ et al., Preparation of molecularly imprinted polymer microspheres and their recognition for chenodeoxycholic acid.
Chemical Journal of Chinese Universities, 28, (11), 2195-2199, (2007)
   
CDCA
Yu X et al., Computational design of a molecularly imprinted polymer compatible with an aqueous environment for solid phase extraction of chenodeoxycholic acid.
Journal of Chromatography A, 1609, Article460490-(2020)
   
CD59 cell membrane glycoprotein
Qin YT et al., Tumor-Sensitive Biodegradable Nanoparticles of Molecularly Imprinted Polymer-Stabilized Fluorescent Zeolitic Imidazolate Framework-8 for Targeted Imaging and Drug Delivery.
ACS Applied Materials & Interfaces, 12, (22), 24585-24598, (2020)
   
CD4 extracellular region
Wang HY et al., H2O2 self-supplying degradable epitope imprinted polymers for targeted fluorescence imaging and chemodynamic therapy.
Nanoscale, 13, (29), 12553-12564, (2021)
   
CDHB
Urraca JL et al., Molecularly imprinted polymers with a streamlined mimic for zearalenone analysis.
Journal of Chromatography A, 1116, (1-2), 127-134, (2006)
   
CDHB
Urraca JL et al., Molecularly imprinted polymers applied to the clean-up of zearalenone and α-zearalenol from cereal and swine feed sample extracts.
Analytical and Bioanalytical Chemistry, 385, (7), 1155-1161, (2006)
   
CDHB
Urraca JL et al., Effect of the template and functional monomer on the textural properties of molecularly imprinted polymers.
Biosensors and Bioelectronics, 24, (1), 155-161, (2008)
   
CDHB
Fang GZ et al., A novel molecularly imprinted polymer on CdSe/ZnS quantum dots for highly selective optosensing of mycotoxin zearalenone in cereal samples.
RSC Advances, 4, (6), 2764-2771, (2014)
   
Cd(II)
Ohga K et al., Adsorption of Cu2+ or Hg2+ ion on resins prepared by cross-linking metal-complexed chitosans.
Bulletin of the Chemical Society of Japan, 60, (1), 444-446, (1987)
   
Cd(II)
Murata M et al., Template-dependent selectivity in metal adsorption on phosphoric diester-carrying resins prepared by surface template polymerization technique.
Bulletin of the Chemical Society of Japan, 69, (3), 637-642, (1996)
   
Cd(II)
Asir S et al., Ion-selective imprinted superporous monolith for cadmium removal from human plasma.
Separation Science and Technology, 40, (15), 3167-3185, (2005)
   
Cd(II)
Fang GZ et al., Synthesis and evaluation of an ion-imprinted functionalized sorbent for selective separation of cadmium ion.
Separation Science and Technology, 40, (8), 1597-1608, (2005)
   
Cd(II)
Fang GZ et al., An ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique combined with a sol-gel process for selective solid-phase extraction of cadmium(II).
Analytical Chemistry, 77, (6), 1734-1739, (2005)
   
Cd(II)
Pan JY et al., Ion-imprinted interpenetrating polymer networks for preconcentration and determination of Cd(II) by flame atomic absorption spectrometry.
Chemia Analityczna, 51, (5), 701-713, (2006)
   
Cd(II)
Gao BJ et al., Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles.
Polymer, 48, (8), 2288-2297, (2007)
   
Cd(II)
Heitzmann M et al., Complexation of poly(pyrrole-EDTA like) film modified electrodes: Application to metal cations electroanalysis.
Electrochimica Acta, 52, (9), 3082-3087, (2007)
   
Cd(II)
Li F et al., An ion-imprinted silica-supported organic-inorganic hybrid sorbent prepared by a surface imprinting technique combined with a polysaccharide incorporated sol-gel process for selective separation of cadmium(II) from aqueous solution.
Talanta, 71, (4), 1487-1493, (2007)
   
Cd(II)
Randhawa M et al., Imprinted polymers for water purification.
Journal of Applied Polymer Science, 106, (5), 3321-3326, (2007)
   
Cd(II)
Zhai YH et al., Selective solid-phase extraction of trace cadmium(II) with an ionic imprinted polymer prepared from a dual-ligand monomer.
Analytica Chimica Acta, 593, (1), 123-128, (2007)
   
Cd(II)
Singh DK et al., Synthesis, characterization and removal of Cd(II) using Cd(II)-ion imprinted polymer.
Journal of Hazardous Materials, 164, (2-3), 1547-1551, (2009)
   
Cd(II)
Proceeding, Wang LM et al, Selective Separation of Cd(II) Ion from Aqueous Solution by Cd(II)-Imprinted Polymers,
1-4, (2009)
   
Cd(II)
Buhani et al., Adsorption kinetics and isotherm of Cd(II) ion on Nannochloropsis sp biomass imprinted ionic polymer.
Desalination, 259, (1-3), 140-146, (2010)
   
Cd(II)
Buhani et al., Production of metal ion imprinted polymer from mercapto-silica through sol-gel process as selective adsorbent of cadmium.
Desalination, 251, (1-3), 83-89, (2010)
   
Cd(II)
Gawin M et al., Preparation of a new Cd(II)-imprinted polymer and its application to determination of cadmium(II) via flow-injection-flame atomic absorption spectrometry.
Talanta, 80, (3), 1305-1310, (2010)
   
Cd(II)
Li CX et al., Synthesis and characterisation of sodium trititanate whisker surface CdII ion-imprinted polymer and selective solid-phase extraction of cadmium.
International Journal of Materials and Structural Integrity, 4, (2-3), 291-307, (2010)
   
Cd(II)
Özkütük EB et al., Selective Solid-Phase Extraction of Cd(II) Using Double Imprinting Strategy.
Gazi University Journal of Science, 23, (1), 19-26, (2010)
   
Cd(II)
Özkütük EB et al., Single and double imprinted polymer for selective recognition of Cd(II) ions in aqueous media.
Anadolu University Journal of Science and Technology-A Applied Sciences and Engineering, 11, (2), 149-161, (2010)
   
Cd(II)
Segatelli MG et al., Cadmium ion-selective sorbent preconcentration method using ion imprinted poly(ethylene glycol dimethacrylate-co-vinylimidazole).
Reactive and Functional Polymers, 70, (6), 325-333, (2010)
   
Cd(II)
Wu P et al., A simple chemical etching strategy to generate "ion-imprinted" sites on the surface of quantum dots for selective fluorescence turn-on detecting of metal ions.
Chemical Communications, (37), 7046-7048, (2010)
   
Cd(II)
Zhang ZL et al., Analysis of Properties of Cadmium Adsorption onto Whisker Surface Ion-Imprinted Polymer by Inductively Coupled Plasma Atomic Emission Spectrometry.
Spectroscopy and Spectral Analysis, 30, (3), 792-796, (2010)
   
Cd(II)
Alizadeh T, An imprinted polymer for removal of Cd+2 from water samples: optimization of adsorption and recovery steps by experimental design.
Chinese Journal of Polymer Science, 29, (6), 658-669, (2011)
   
Cd(II)
Alizadeh T et al., A carbon paste electrode impregnated with Cd2+ imprinted polymer as a new and high selective electrochemical sensor for determination of ultra-trace Cd2+ in water samples.
Journal of Electroanalytical Chemistry, 657, (1-2), 98-106, (2011)
   
Cd(II)
Ganjali H et al., Bio-Mimetic Cadmium Ion Imprinted Polymer Based Potentiometric Nano-Composite Sensor.
International Journal of Electrochemical Science, 6, (12), 6085-6093, (2011)
   
Cd(II)
Li LJ et al., Preparation and Adsorption Characteristics of the Cadmium(II) Ion Imprinted Polymer.
Journal of University of South China (Science and Technology), 25, (1), 81-86, (2011)
   
Cd(II)
Li ZC et al., Cd(II)-imprinted polymer sorbents prepared by combination of surface imprinting technique with hydrothermal assisted sol-gel process for selective removal of cadmium(II) from aqueous solution.
Chemical Engineering Journal, 171, (2), 703-710, (2011)
   
Cd(II)
Proceeding, Li ZC et al, Application of Imprinted Functionalized Silica Gel Sorbent for Selective Removal of Cadmium (II) from Industial Wastewaters,
In: Advanced Materials Research, Yushu Z (Ed.), 441-444, (2011)
   
Cd(II)
Liu BJ et al., Adsorption properties of Cd(II)-imprinted chitosan resin.
Journal of Materials Science, 46, (5), 1535-1541, (2011)
   
Cd(II)
Meng SM et al., Spectrophotometric determination of trace cadmium in vegetables with 3,5-bis(4-phenylazophenylaminodiazo)benzoic acid.
Journal of Analytical Chemistry, 66, (1), 31-36, (2011)
   
Cd(II)
Mu HY et al., Preparation of an Ion Imprinted Fluorescent Sensor for Selectivity Determination of Cadmium in Aqueous Media.
Journal of Instrumental Analysis, 30, (7), 795-798, (2011)
   
Cd(II)
Pereira E et al., Complexing Polymer Films in The Preparation of Modified Electrodes for Detection of Metal Ions.
Macromolecular Symposia, 304, (1), 115-125, (2011)
   
Cd(II)
Shi YY et al., The determination of a trace amount of Cd in water by FAAS after separation and preconcentration with imprinting of chitosan/attapulgite.
Chinese Journal of Analysis Laboratory, 30, (11), 56-59, (2011)
   
Cd(II)
Proceeding, Vardini MT et al, Molecularly Imprinted Polymer-Based Solid Phase Extraction Sorbent for the Preconcentration and Determination of Cd2+ Ions,
(2011)
   
Cd(II)
Zhang ML et al., Preparation and Adsorption Properties of Magnetic Fe3O4@SiO2@CS Cadmium Ion-imprinted Polymer.
Chemical Journal of Chinese Universities, 32, (12), 2763-2768, (2011)
   
Cd(II)
Ashkenani H et al., Determination of cadmium(II) using carbon paste electrode modified with a Cd-ion imprinted polymer.
Microchimica Acta, 178, (1), 53-60, (2012)
   
Cd(II)
Chen AW et al., Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2,4-dichlorophenol.
Chemical Engineering Journal, 191, (1), 85-94, (2012)
   
Cd(II)
Chen MX et al., Synthesis and adsorption behavior of Cd(II)-imprinted silica gel.
Polymer Materials Science and Engineering, 28, (8), 163-166, (2012)
   
Cd(II)
Fan HT et al., Preparation of Cd(II)-imprinted silica by hydrothermal-assisted surface imprinting technique and its adsorption properties.
Journal of Functional Materials, 43, (15), 2060-2064, (2012)
   
Cd(II)
Fan HT et al., An ion-imprinted amino-functionalized silica gel sorbent prepared by hydrothermal assisted surface imprinting technique for selective removal of cadmium (II) from aqueous solution.
Applied Surface Science, 258, (8), 3815-3822, (2012)
   
Cd(II)
Ge YS et al., Selective Solid-Phase Extraction of Cd(II) by an Ion-Imprinted Polymer from Environmental Samples.
Asian Journal of Chemistry, 24, (8), 3661-3664, (2012)
   
Cd(II)
Lai EPC et al., Cd2+, Cu2+, Pb2+, Sr2+, and Y3+ binding characteristics of 17β-estradiol molecularly imprinted polymer particles incorporated with dicyclohexano-18-crown-6 for urine bioassay.
Journal of Applied Polymer Science, 123, (1), 12-19, (2012)
   
Cd(II)
Poursharifi MJ et al., Determination of cadmium(II) using Cd(II)-imprinted nano diazoaminobenzene-vinylpyridine copolymers.
Asian Journal of Chemistry, 24, (10), 4563-4568, (2012)
   
Cd(II)
Proceeding, Shi YY et al, Studies on Preparation and Adsorption Behavior of Cd2+ Ions-Imprinted Polymer,
In: Advanced Materials Research, Li B (Ed.), 419-422, (2012)
   
Cd(II)
Shi YY et al., Determination of Trace Cd(II) in Traditional Chinese Medicine by Flame Atomic Absorption Spectrometry after Separation and Preconcentration with Ions Imprinting of Chitosan/Attapulgite.
Journal of Analytical Science, 28, (3), 348-352, (2012)
   
Cd(II)
Zhang N et al., Cadmium (II) imprinted 3-mercaptopropyltrimethoxysilane coated stir bar for selective extraction of trace cadmium from environmental water samples followed by inductively coupled plasma mass spectrometry detection.
Analytica Chimica Acta, 723, (1), 54-60, (2012)
   
Cd(II)
Behbahani M et al., A nanosized cadmium(II)-imprinted polymer for use in selective trace determination of cadmium in complex matrices.
Microchimica Acta, 180, (11-12), 1117-1125, (2013)
   
Cd(II)
Fang XL et al., Studies on Preparation of Cd2+ Ion Surface-Imprinted Material with High Ion Recognition Ability and its Ion Recognition Mechanism.
Acta Chimica Sinica, 71, (3), 409-416, (2013)
   
Cd(II)
Guo MM et al., Preparation, characterization and adsorption properties of cadmium(II) ion imprinted silica gel sorbents.
Journal of Functional Materials, 44, (6), 800-804, (2013)
   
Cd(II)
Hu NN et al., Enrichment and Chemiluminescence Detection of Cd2+ in a Cd2+ Imprinted Polymer Monolith Integrated in a Polydimethylsiloxane Microchip.
Journal of Analytical Science, 29, (1), 1-5, (2013)
   
Cd(II)
Lü HX et al., Ion-imprinted carboxymethyl chitosan - silica hybrid sorbent for extraction of cadmium from water samples.
International Journal of Biological Macromolecules, 56, 89-93, (2013)
   
Cd(II)
Wu JB et al., Sol-gel derived ion imprinted thiocyanato-functionalized silica gel as selective adsorbent of cadmium(II).
Journal of Sol-Gel Science and Technology, 66, (3), 434-442, (2013)
   
Cd(II)
Wu JB et al., Removal of cadmium from aqueous solution by organic-inorganic hybrid sorbent combining sol-gel processing and imprinting technique.
Korean Journal of Chemical Engineering, 30, (5), 1111-1118, (2013)
   
Cd(II)
Proceeding, Zhou DB et al, Preparation and Recognition Performance of Molecularly Imprinted Polymers for Cadmium with Surface-Imprinting Technique,
In: Advanced Materials Research, Liu ZL, Dong XF, Liu ZT, Liu QH (Eds.), 461-465, (2013)
   
Cd(II)
Aboufazeli F et al., Novel Cd(II) Ion Imprinted Polymer Coated on Multiwall Carbon Nanotubes as a Highly Selective Sorbent for Cadmium Determination in Food Samples.
Journal of AOAC International, 97, (1), 173-178, (2014)
   
Cd(II)
Barciela-Alonso MC et al., Ionic imprinted polymer based solid phase extraction for cadmium and lead pre-concentration/determination in seafood.
Microchemical Journal, 114, 106-110, (2014)
   
Cd(II)
Ebrahimzadeh H et al., New magnetic polymeric nanoparticles for extraction of trace cadmium ions and the determination of cadmium content in diesel oil samples.
Analytical Methods, 6, (13), 4617-4624, (2014)
   
Cd(II)
Girija P et al., Bioremediation of waste water containing hazardous cadmium ion with ion imprinted interpenetrating polymer networks.
Advances in Environmental Chemistry, 2014, Article ID 394841-(2014)
   
Cd(II)
He J et al., Ca(II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions.
Chemical Engineering Journal, 244, 202-208, (2014)
   
Cd(II)
Lulinski P et al., Synthesis and characterization of cadmium(II)-imprinted poly(1-allyl-2-thiourea-co-ethylene glycol dimethacrylate) particles for selective separation.
Polymer Bulletin, 71, (7), 1727-1741, (2014)
   
Cd(II)
Luo XB et al., Synthesis of magnetic ion-imprinted fluorescent CdTe quantum dots by chemical etching and their visualization application for selective removal of Cd(II) from water.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 462, 186-193, (2014)
   
Cd(II)
Parameswaran G et al., Bioremediation of Waste Water Containing Hazardous Cadmium Ion with Ion Imprinted Interpenetrating Polymer Networks.
Advances in Environmental Chemistry, 2014, Article ID 394841-(2014)
   
Cd(II)
Prasad BB et al., A dual-ion imprinted polymer embedded in sol-gel matrix for the ultra trace simultaneous analysis of cadmium and copper.
Talanta, 120, 398-407, (2014)
   
Cd(II)
Roy E et al., Simultaneous determination of heavy metals in biological samples by a multiple-template imprinting technique: an electrochemical study.
RSC Advances, 4, (100), 56690-56700, (2014)
   
Cd(II)
Wang JJ et al., Synthesis and application of ion-imprinted interpenetrating polymer network gel for selective solid phase extraction of Cd2+.
Chemical Engineering Journal, 242, 117-126, (2014)
   
Cd(II)
Wei SL et al., Preparation of magnetic Pb(II) and Cd(II) ion-imprinted microspheres and their application in determining the Pb(II) and Cd(II) contents of environmental and food samples.
RSC Advances, 4, (56), 29715-29723, (2014)
   
Cd(II)
Yang CY et al., Synthesis and adsorption property of Cd(II) - 8-hydroxyquinoline molecularly imprinted polymer microspheres.
Environmental Science, 35, (6), 2223-2229, (2014)
   
Cd(II)
Zhao HY et al., Synthesis and properties of cadmium(II)-imprinted polymer supported by magnetic multi-walled carbon nanotubes.
Analytical Methods, 6, (23), 9313-9320, (2014)
   
Cd(II)
Asmawati et al., Synthesis And Characterization Of An Ion Imprinted Polymer For Cadmium Using Quinaldic Acid As Complexing Agent And Applying By Microwave.
International Journal of Scientific & Technology Research, 4, (1), 190-192, (2015)
   
Cd(II)
Fan HT et al., A method for measurement of free cadmium species in waters using diffusive gradients in thin films technique with an ion-imprinted sorbent.
Analytica Chimica Acta, 897, 24-33, (2015)
   
Cd(II)
Li M et al., Synthesis and characterization of a surface-grafted Cd(II) ion-imprinted polymer for selective separation of Cd(II) ion from aqueous solution.
Applied Surface Science, 332, 463-472, (2015)
   
Cd(II)
Li Y et al., Crosslinked Electro-Spun Chitosan Nanofiber Mats with Cd(II) as Template Ions for Adsorption Applications.
Journal of Nanoscience and Nanotechnology, 15, (6), 4245-4254, (2015)
   
Cd(II)
Panjali Z et al., Development of a selective sorbent based on a magnetic ion imprinted polymer for the preconcentration and FAAS determination of urinary cadmium.
Analytical Methods, 7, (8), 3618-3624, (2015)
   
Cd(II)
Shofiyani A et al., Cadmium adsorption on chitosan/chlorella biomass sorbent prepared by ionic-imprinting technique.
Indonesian Journal of Chemistry, 15, (2), 163-171, (2015)
   
Cd(II)
Tabakli B et al., Particle-Assisted Ion-Imprinted Cryogels for Selective CdII Ion Removal.
Industrial & Engineering Chemistry Research, 54, (6), 1816-1823, (2015)
   
Cd(II)
Xi Y et al., Removal of Cadmium(II) from Wastewater Using Novel Cadmium Ion-Imprinted Polymers.
Journal of Chemical & Engineering Data, 60, (11), 3253-3261, (2015)
   
Cd(II)
Zhao BS et al., Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection.
Spectrochimica Acta Part B-Atomic Spectroscopy, 107, 115-124, (2015)
   
Cd(II)
Ashouri N et al., Preparation of a new nanoparticle Cd(II)-imprinted polymer and its application for selective separation of cadmium(II) ions from aqueous solutions and determination via inductively coupled plasma optical emission spectrometry.
Desalination and Water Treatment, 57, (30), 14280-14289, (2016)
   
Cd(II)
Çorman ME et al., Reversible and easy post-crosslinking method for developing a surface ion-imprinted hypercrosslinked monolith for specific Cd(II) ion removal from aqueous solutions.
RSC Advances, 6, (91), 88777-88787, (2016)
   
Cd(II)
do Lago AC et al., Ion Imprinted Polymer for Preconcentration and Determination of Ultra-Trace Cadmium, Employing Flow Injection Analysis with Thermo Spray Flame Furnace Atomic Absorption Spectrometry.
Applied Spectroscopy, 70, (11), 1842-1850, (2016)
   
Cd(II)
Fu JQ et al., Synthesis of multi-ion imprinted polymers based on dithizone chelation for simultaneous removal of Hg2+, Cd2+, Ni2+ and Cu2+ from aqueous solutions.
RSC Advances, 6, (50), 44087-44095, (2016)
   
Cd(II)
Jalilzadeh M et al., Specific heavy metal ion recovery with ion-imprinted cryogels.
Journal of Applied Polymer Science, 133, (10), ArticleNo43095-(2016)
   
Cd(II)
Li WM et al., One-step synthesis of periodic ion imprinted mesoporous silica particles for highly specific removal of Cd2+ from mine wastewater.
Journal of Sol-Gel Science and Technology, 78, (3), 632-640, (2016)
   
Cd(II)
Liu Y et al., RAFT-mediated microemulsion polymerization to synthesize a novel high-performance graphene oxide-based cadmium imprinted polymer.
Chemical Engineering Journal, 302, 609-618, (2016)
   
Cd(II)
Panjali Z et al., A Simple and Fast Method Based on New Magnetic Ion Im-printed Polymer as a Highly Selective Sorbent for Preconcentra-tion and Determination of Cadmium in Environmental Samples.
Iranian Journal of Public Health, 45, (8), 1044-1053, (2016)
   
Cd(II)
Sun ZC et al., Preparation of Cadmium(II) Ion Imprinted Polymer Microspheres by Seedball Swelling Suspension Polymerization.
Chinese Journal of Materials Research, 30, (9), 669-674, (2016)
   
Cd(II)
Wang J et al., Fabrication of an "ion-imprinting" dual-emission quantum dot nanohybrid for selective fluorescence turn-on and ratiometric detection of cadmium ions.
Analyst, 141, (5886), 5892-(2016)
   
Cd(II)
Wang SR et al., Preparation and Characteristics of a Novel Sorptive Extraction Stir Bar Based on Cd-Imprinted Polymer Monoliths.
Journal of AOAC International, 99, (1), 279-286, (2016)
   
Cd(II)
Zarezade V et al., A new magnetic tailor made polymer for separation and trace determination of cadmium ions by flame atomic absorption spectrophotometry.
RSC Advances, 6, (105), 103499-103507, (2016)
   
Cd(II)
Cen SB et al., Application of magnetic Cd2+ ion-imprinted mesoporous organosilica nanocomposites for mineral wastewater treatment.
RSC Advances, 7, (13), 7996-8003, (2017)
   
Cd(II)
Chen AW et al., Carbon disulfide-modified magnetic ion-imprinted chitosan-Fe(III): A novel adsorbent for simultaneous removal of tetracycline and cadmium.
Carbohydrate Polymers, 155, 19-27, (2017)
   
Cd(II)
Ghanei-Motlagh M et al., Novel imprinted polymeric nanoparticles prepared by sol-gel technique for electrochemical detection of toxic cadmium(II) ions.
Chemical Engineering Journal, 327, 135-141, (2017)
   
Cd(II)
Huang K et al., Integrated ion imprinted polymers-paper composites for selective and sensitive detection of Cd(II) ions.
Journal of Hazardous Materials, 333, 137-143, (2017)
   
Cd(II)
Ivari SAR et al., Ion imprinted polymer based potentiometric sensor for the trace determination of Cadmium (II) ions.
Arabian Journal of Chemistry, 10, S864-S869, (2017)
   
Cd(II)
Liu Y et al., A novel dual temperature responsive mesoporous imprinted polymer for Cd(II) adsorption and temperature switchable controlled separation and regeneration.
Chemical Engineering Journal, 328, 11-24, (2017)
   
Cd(II)
Luo XB et al., Capturing Cadmium(II) Ion from Wastewater Containing Solid Particles and Floccules Using Ion-Imprinted Polymers with Broom Effect.
Industrial & Engineering Chemistry Research, 56, (9), 2350-2358, (2017)
   
Cd(II)
Perera R et al., The binding of metal ions to molecularly-imprinted polymers.
Water Science And Technology, 75, (7), 1643-1650, (2017)
   
Cd(II)
Tang XJ et al., A novel Cd2+-imprinted chitosan-based composite membrane for Cd2+ removal from aqueous solution.
Materials Letters, 198, 121-123, (2017)
   
Cd(II)
Tarley CRT et al., On-line micro-solid phase preconcentration of Cd2+ coupled to TS-FF-AAS using a novel ion-selective bifunctional hybrid imprinted adsorbent.
Microchemical Journal, 131, 57-69, (2017)
   
Cd(II)
Xu XY et al., Synthesis and Application of Novel Magnetic Ion-Imprinted Polymers for Selective Solid Phase Extraction of Cadmium (II).
Polymers, 9, (8), ArticleNo360-(2017)
   
Cd(II)
Yilmaz V et al., Novel Imprinted Polymer for the Preconcentration of Cadmium with Determination by Inductively Coupled Plasma Mass Spectrometry.
Analytical Letters, 50, (3), 482-499, (2017)
   
Cd(II)
Zargar B et al., Synthesis of an ion-imprinted sorbent by surface imprinting of magnetized carbon nanotubes for determination of trace amounts of cadmium ions.
Microchimica Acta, 184, (11), 4521-4529, (2017)
   
Cd(II)
Zhu F et al., Selective adsorption behavior of Cd(II) ion imprinted polymers synthesized by microwave-assisted inverse emulsion polymerization: Adsorption performance and mechanism.
Journal of Hazardous Materials, 321, 103-110, (2017)
   
Cd(II)
Aravind A et al., Tailoring of nanostructured material as an electrochemical sensor and sorbent for toxic Cd(II) ions from various real samples.
Journal of Analytical Science and Technology, 9, (1), ArticleNo22-(2018)
   
Cd(II)
Dahaghin Z et al., Determination of cadmium(II) using a glassy carbon electrode modified with a Cd-ion imprinted polymer.
Journal of Electroanalytical Chemistry, 810, 185-190, (2018)
   
Cd(II)
Faghihian H et al., Comparative performance of novel magnetic ion-imprinted adsorbents employed for Cd2+, Cu2+ and Ni2+ removal from aqueous solutions.
Environmental Science and Pollution Research, 25, (15), 15068-15079, (2018)
   
Cd(II)
Jalilzadeh M et al., Oral Chelation Therapy for Cadmium Poisoning with Cd(II)- MAC Imprinted pHEMAC Nanoparticles.
Hacettepe Journal of Biology and Chemistry, 46, (4), 505-514, (2018)
   
Cd(II)
Kong QP et al., Adsorption of Cd2+ by an ion-imprinted thiol-functionalized polymer in competition with heavy metal ions and organic acids.
RSC Advances, 8, (16), 8950-8960, (2018)
   
Cd(II)
Li LW et al., Synthesis, adsorption and selectivity of inverse emulsion Cd(II) imprinted polymers.
Chinese Journal of Chemical Engineering, 26, (3), 494-500, (2018)
   
Cd(II)
Li XM et al., Preparation and properties of cadmium(II) ion imprinted polymers.
Chinese Journal of Analysis Laboratory, 37, (3), 311-315, (2018)
   
Cd(II)
Li YX et al., Synthesis of ion imprinted mesoporous adsorbent via one-pot synthesis in mild pH for removal of Cd2+ from water.
Journal of Sol-Gel Science and Technology, 85, (2), 259-268, (2018)
   
Cd(II)
Minaberry YS et al., An ion imprinted amino-functionalized mesoporous sorbent for the selective minicolumn preconcentration of cadmium ions and determination by GFAAS.
Analytical Methods, 10, (44), 5305-5312, (2018)
   
Cd(II)
Rahangdale D et al., Chitosan as a substrate for simultaneous surface imprinting of salicylic acid and cadmium.
Carbohydrate Polymers, 202, 334-344, (2018)
   
Cd(II)
Rahangdale D et al., Acrylamide grafted chitosan based ion imprinted polymer for the recovery of cadmium from nickel-cadmium battery waste.
Journal of Environmental Chemical Engineering, 6, (2), 1828-1839, (2018)
   
Cd(II)
Rahangdale D et al., Ion cum molecularly dual imprinted polymer for simultaneous removal of cadmium and salicylic acid.
Journal of Molecular Recognition, 31, (3), ArticleNoe2630-(2018)
   
Cd(II)
Tian DY et al., Synthesis, Characterization and Adsorption Behavior of Cd(II) Ion-Imprinted Mesoporous Materials.
Science of Advanced Materials, 10, (3), 324-330, (2018)
   
Cd(II)
Zhang SQ et al., Adsorption Behavior of Selective Recognition Functionalized Biochar to Cd(II) in Wastewater.
Materials, 11, (2), ArticleNo299-(2018)
   
Cd(II)
An FQ et al., Novel ionic surface imprinting technology: design and application for selectively recognizing heavy metal ions.
RSC Advances, 9, (5), 2431-2440, (2019)
   
Cd(II)
Baghel A et al., Synthesis and Characterisation of Ligand Free Cadmium Imprinted Polymer for Sensing of Cd(II) from Aqueous Solution.
Defence Life Science Journal, 4, (3), 153-157, (2019)
   
Cd(II)
de Oliveira LLG et al., Synthesis and application of restricted access material-ion imprinted poly(allylthiourea) for selective separation of Cd2+ and humic acid exclusion.
Reactive and Functional Polymers, 134, 93-103, (2019)
   
Cd(II)
Felix CSA et al., Application of a Novel Ion-Imprinted Polymer to the Separation of Traces of CdII Ions in Natural Water: Optimization by Box-Behnken Design.
Journal of the Brazilian Chemical Society, 30, (4), 873-881, (2019)
   
Cd(II)
Hu SW et al., An Electrochemical Sensor Based on ion Imprinted PPy/rGO Composite for Cd(II) Determination in Water.
International Journal of Electrochemical Science, 14, 11714-11730, (2019)
   
Cd(II)
Li SH et al., Fluorometric aptasensor for cadmium(II) by using an aptamer-imprinted polymer as the recognition element.
Microchimica Acta, 186, (12), Article823-(2019)
   
Cd(II)
Lu ZY et al., Magnetic Hierarchical Photocatalytic Nanoreactors: Toward Highly Selective Cd2+ Removal with Secondary Pollution Free Tetracycline Degradation.
ACS Applied Nano Materials, 2, (3), 1664-1674, (2019)
   
Cd(II)
Wang HP et al., A Novel Magnetic Cd(II) Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cadmium Ions from Aqueous Solution.
Journal of Inorganic and Organometallic Polymers and Materials, 29, (6), 1874-1885, (2019)
   
Cd(II)
Xie CS et al., Preparation of magnetic ion imprinted polymer with waste beer yeast as functional monomer for Cd(II) adsorption and detection.
RSC Advances, 9, (41), 23474-23483, (2019)
   
Cd(II)
Xing CL et al., Multiple Metal Ion Imprinted Electrochemical Sensor with Enhanced Sensitivity by Graphene Oxide-C60 Composite.
Chinese Journal of Applied Chemistry, 36, (3), 341-348, (2019)
   
Cd(II)
Alizadeh T et al., A new bio-compatible Cd2+-selective nanostructured fluorescent imprinted polymer for cadmium ion sensing in aqueous media and its application in bio imaging in Vero cells.
RSC Advances, 10, (7), 4110-4117, (2020)
   
Cd(II)
Bakhshpour M et al., Highly sensitive detection of Cd(II) ions using ion-imprinted surface plasmon resonance sensors.
Microchemical Journal, 159, Article105572-(2020)
   
Cd(II)
de Oliveira LLG et al., Restricted access material-ion imprinted polymer-based method for on-line flow preconcentration of Cd2+ prior to flame atomic absorption spectrometry determination.
Microchemical Journal, 157, Article105022-(2020)
   
Cd(II)
Gomes ACSA et al., Development of a new ion-imprinted polymer (IIP) with Cd2+ ions based on divinylbenzene copolymers containing amidoxime groups.
Polymer Bulletin, 77, (4), 1969-1981, (2020)
   
Cd(II)
Jagirani MS et al., Fabrication of cadmium tagged novel ion imprinted polymer for detoxification of the toxic Cd2+ion from aqueous environment.
Microchemical Journal, 158, Article105247-(2020)
   
Cd(II)
Wu SP et al., An ultrasensitive electrochemical platform based on imprinted chitosan/gold nanoparticles/graphene nanocomposite for sensing cadmium (II) ions.
Microchemical Journal, 155, Article104710-(2020)
   
Cd(II)
Yang P et al., A novel morphological ion imprinted polymers for selective solid phase extraction of Cd(II): Preparation, adsorption properties and binding mechanism to Cd(II).
Reactive and Functional Polymers, 151, Article104569-(2020)
   
Cd(II)
Zhou JR et al., ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip.
Sensors and Actuators B: Chemical, 305, Article127462-(2020)
   
Cd(II)
Abdallah AB et al., Selective and sensitive electrochemical sensors based on an ion imprinting polymer and graphene oxide for the detection of ultra-trace Cd(II) in biological samples.
RSC Advances, 11, (49), 30771-30780, (2021)
   
Cd(II)
Chen JY et al., Application of chitosan-N-doped graphene oxide ion-imprinted sensor in Cd (II) ions detection.
Diamond and Related Materials, 119, Article108591-(2021)
   
Cd(II)
Elsayed NH et al., Thiosemicarbazide-modified/ion-imprinted phenolic resin for selective uptake of cadmium ions.
Materials Chemistry and Physics, 264, Article124433-(2021)
   
Cd(II)
Hu JF et al., Chemiresistor sensor based on ion-imprinted polymer (IIP)-functionalized rGO for Cd(II) ions in water.
Sensors and Actuators B: Chemical, 346, Article130474-(2021)
   
Cd(II)
Xia XX et al., Nanostructured Shell-Layer Artificial Antibody with Fluorescence-Tagged Recognition Sites for the Trace Detection of Heavy Metal Ions by Self-Reporting Microsensor Arrays.
ACS Applied Materials & Interfaces, 13, (48), 57981-57997, (2021)
   
Cd(II)
Zhu F et al., Selective solid phase extraction and preconcentration of Cd(II) in the solution using microwave-assisted inverse emulsion-suspension Cd(II) ion imprinted polymer.
Microchemical Journal, 164, Article106060-(2021)
   
Cd(II)
Ma R et al., Preparation and optimization of diatom-based cadmium ion-imprinted materials.
Journal of Molecular Structure, 1251, Article132044-(2022)
   
Cd(II)
Wu SR et al., The ion-imprinted oyster shell material for targeted removal of Cd(II) from aqueous solution.
Journal of Environmental Management, 302, Article114031-(2022)
   
Cd(II)
Yu C et al., Tailor-made double-face imprinted membrane with ultra-high specific surface area asymmetric structure through a connective method of dip-coating and delayed phase inversion for selective adsorption of cadmium ion.
Separation and Purification Technology, 280, Article119865-(2022)
   
CDNB
Uzuriaga-Sánchez RJ et al., Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound.
Materials Science and Engineering: C, 74, 365-373, (2017)
   
CDNB
Ruiz-Córdova GA et al., Electrochemical sensing using magnetic molecularly imprinted polymer particles previously captured by a magneto-sensor.
Talanta, 181, 19-23, (2018)
   
CDNF
Kidakova A et al., Molecularly imprinted polymer-based SAW sensor for label-free detection of cerebral dopamine neurotrophic factor protein.
Sensors and Actuators B: Chemical, 308, Article127708-(2020)
   
5CDNT
Goud KY et al., Development of highly selective electrochemical impedance sensor for detection of sub-micromolar concentrations of 5-Chloro-2,4-dinitrotoluene.
Journal of Chemical Sciences, 128, (5), 763-770, (2016)
   
CDP
Motaharian A et al., Electrochemical sensor based on a carbon paste electrode modified by graphene nanosheets and molecularly imprinted polymer nanoparticles for determination of a chlordiazepoxide drug.
Analytical Methods, 8, (33), 6305-6312, (2016)
   
CD59 protein
Peng H et al., Epitope Molecularly Imprinted Polymer Nanoparticles for Chemo-/Photodynamic Synergistic Cancer Therapy Guided by Targeted Fluorescence Imaging.
ACS Applied Materials & Interfaces, 12, (11), 13360-13370, (2020)
   
CdS quantum dots
Vaneckova T et al., CdS quantum dots-based immunoassay combined with particle imprinted polymer technology and laser ablation ICP-MS as a versatile tool for protein detection.
Scientific Reports, 9, (1), Article11840-(2019)
   
CdTeSe/ZnS nanocrystals
Proceeding, Gam-Derouich S et al, Imprinted polymers and photonic crystals for sensing of molecules and nanoparticles,
1-4, (2016)
   
CD44v6
Ma XH et al., An electrochemiluminescence sensor of magnetic glycosyl-imprinted microspheres based on multi-probe signal amplification for CD44v6 determination.
Sensors and Actuators B: Chemical, 333, Article129562-(2021)
   
CE
Sánchez-González J et al., Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry.
Talanta, 147, 641-649, (2016)
   
CE
Sánchez-González J et al., Magnetic molecularly imprinted polymer based - micro-solid phase extraction of cocaine and metabolites in plasma followed by high performance liquid chromatography - tandem mass spectrometry.
Microchemical Journal, 127, 206-212, (2016)
   
CE
Sánchez-González J et al., Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1451, 15-22, (2016)
   
CEA
Wang YT et al., Potentiometric sensors based on surface molecular imprinting: Detection of cancer biomarkers and viruses.
Sensors and Actuators B: Chemical, 146, (1), 381-387, (2010)
   
CEA
Feng XB et al., A novel dual-template molecularly imprinted electrochemiluminescence immunosensor array using Ru(bpy)32+-Silica@Poly-L-lysine-Au composite nanoparticles as labels for near-simultaneous detection of tumor markers.
Electrochimica Acta, 139, 127-136, (2014)
   
CEA
Wang D et al., Simultaneous electrochemical immunoassay using graphene-Au grafted recombinant apoferritin-encoded metallic labels as signal tags and dual-template magnetic molecular imprinted polymer as capture probes.
Biosensors and Bioelectronics, 65, 78-82, (2015)
   
CEA
Moreira FTC et al., Screen-printed electrode produced by printed-circuit board technology. Application to cancer biomarker detection by means of plastic antibody as sensing material.
Sensors and Actuators B: Chemical, 223, 927-935, (2016)
   
CEA
Yu YJ et al., Quantitative real-time detection of carcinoembryonic antigen (CEA) from pancreatic cyst fluid using 3-D surface molecular imprinting.
Analyst, 141, (14), 4424-4431, (2016)
   
CEA
Lai YX et al., Molecular Imprinting Polymers Electrochemical Sensor Based on AuNPs/PTh Modified GCE for Highly Sensitive Detection of Carcinomaembryonic Antigen.
Journal of Biomedical Nanotechnology, 14, (10), 1688-1694, (2018)
   
CEA
Proceeding, Luo L et al, Paper-Based Microfluidic Analytical Device Based on Molecularly Imprinted Polymer for Detection of Carcinoembryonic Antigen,
659-660, (2018)
   
CEA
Moreira FTC et al., Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection.
Scientific Reports, 8, (1), ArticleNo10205-(2018)
   
CEA
Carneiro MCCG et al., Dual biorecognition by combining molecularly-imprinted polymer and antibody in SERS detection. Application to carcinoembryonic antigen.
Biosensors and Bioelectronics, 146, Article111761-(2019)
   
CEA
Feng J et al., A boronate-modified molecularly imprinted polymer labeled with a SERS-tag for use in an antibody-free immunoassay for the carcinoembryonic antigen.
Microchimica Acta, 186, (12), Article774-(2019)
   
CEA
Lin XL et al., Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood.
Biosensors and Bioelectronics, 143, Article111599-(2019)
   
CEA
Moreira FTC et al., Autonomous biosensing device merged with photovoltaic technology for cancer biomarker detection.
Journal of Electroanalytical Chemistry, 855, Article113611-(2019)
   
CEA
Qi J et al., The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device.
Biosensors and Bioelectronics, 142, Article111533-(2019)
   
CEA
Tavares APM et al., Self-powered and self-signalled autonomous electrochemical biosensor applied to cancinoembryonic antigen determination.
Biosensors and Bioelectronics, 140, Article111320-(2019)
   
CEA
Tavares APM et al., Photovoltaics, plasmonics, plastic antibodies and electrochromism combined for a novel generation of self-powered and self-signalled electrochemical biomimetic sensors.
Biosensors and Bioelectronics, 137, 72-81, (2019)
   
CEA
Truta LAAN et al., Carcinoembryonic antigen imprinting by electropolymerization on a common conductive glass support and its determination in serum samples.
Sensors and Actuators B: Chemical, 287, 53-63, (2019)
   
CEA
Wang CY et al., Molecularly imprinted photoelectrochemical sensor for carcinoembryonic antigen based on polymerized ionic liquid hydrogel and hollow gold nanoballs/MoSe2 nanosheets.
Analytica Chimica Acta, 1090, 64-71, (2019)
   
CEA
Zhou LL et al., Orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay: A double characteristic recognition strategy for specific detection of glycoproteins.
Biosensors and Bioelectronics, 145, Article111729-(2019)
   
CEA
Han S et al., Drug-loaded dual targeting graphene oxide-based molecularly imprinted composite and recognition of carcino-embryonic antigen.
RSC Advances, 10, (19), 10980-10988, (2020)
   
CEA
Tawfik SM et al., Dual emission nonionic molecular imprinting conjugated polythiophenes-based paper devices and their nanofibers for point-of-care biomarkers detection.
Biosensors and Bioelectronics, 160, Article112211-(2020)
   
CEA
Abdollahiyan P et al., Chemical binding of molecular-imprinted polymer to biotinilated antibody: Utilization of molecular imprinting polymer as intelligent synthetic biomaterials toward recognition of carcinoma embryonic antigen in human plasma sample.
Journal of Molecular Recognition, 34, (9), Article_e2897-(2021)
   
CED
Qin SL et al., Simultaneous determination of five sulfonamides in wastewater using group-selective molecularly imprinted solid-phase extraction coupled with HPLC-DAD.
Analytical Methods, 4, (12), 4278-4283, (2012)
   
CEF
Szultka M et al., Simultaneous determination of selected chemotherapeutics in human whole blood by molecularly imprinted polymers coated solid phase microextraction fibers and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography B, 940, 66-76, (2013)
   
CEF
Yang GM et al., Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor.
Biosensors and Bioelectronics, 53, 447-452, (2014)
   
CEF
Yola ML et al., Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma.
Biosensors and Bioelectronics, 60, 277-285, (2014)
   
CEF
Dehghani M et al., Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer.
Materials Science and Engineering: C, 96, 654-660, (2019)
   
cefaclor
Li L et al., The Adsorption Characteristic of Cefaclor-imprinted Polymer.
Journal of Hebei Normal University (Natural Science Edition), 29, (5), 494-498, (2005)
   
cefaclor
Peng J et al., Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water.
Analytical and Bioanalytical Chemistry, 409, (17), 4157-4166, (2017)
   
cefadroxil
Chen XW et al., A graphene oxide surface-molecularly imprinted polymer as a dispersive solid-phase extraction adsorbent for the determination of cefadroxil in water samples.
RSC Advances, 7, (54), 34077-34085, (2017)
   
cefalexin
Guo HS et al., Study on the binding characteristics of molecular imprinted polymer selective for cefalexin in aqueous media.
Chinese Journal of Analytical Chemistry, 28, (10), 1214-1219, (2000)
   
cefalexin
Jiang YX et al., Spectroscopy Study on the Selectively Distinguishing Cefalexin with the Molecular Imprinted Polymer.
Spectroscopy and Spectral Analysis, 31, (7), 1852-1856, (2011)
   
cefalexin
Li XX et al., Removal of cefalexin using yeast surface-imprinted polymer prepared by atom transfer radical polymerization.
Journal of Separation Science, 35, (20), 2787-2795, (2012)
   
cefalexin
Li XX et al., Surface molecular imprinting onto magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin.
Chemical Engineering Journal, 198-199, 503-511, (2012)
   
cefalexin
Wang XY et al., Detection of cephalosporins residue in chicken muscles by molecular imprinted solid phase extraction-high performance capillary electrophoresis (MISPE-HPCE).
Jiangsu Journal of Agricultural Sciences, 28, (1), 193-197, (2012)
   
cefalexin
Pan JM et al., Fabrication and evaluation of temperature responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP.
Applied Surface Science, 287, 211-217, (2013)
   
cefalexin
Peng J et al., Molecularly imprinted polymers based stir bar sorptive extraction for determination of cefaclor and cefalexin in environmental water.
Analytical and Bioanalytical Chemistry, 409, (17), 4157-4166, (2017)
   
cefalexin
Feier B et al., Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Cefalexin.
Biosensors, 9, (1), ArticleNo31-(2019)
   
cefathiamidine
Huang ZF et al., Synthesis and characterization of molecularly imprinted polymer of Cefathiamidine.
West China Journal of Pharmaceutical Sciences, 20, (4), 290-292, (2005)
   
cefathiamidine
Huang ZF et al., An investigation on clean-up of cephalosporins in biomedical sample by molecular imprinting technique.
Chinese Journal of Analytical Chemistry, 33, (10), 1424-1426, (2005)
   
cefathiamidine
Tang YW et al., The characteristic and application of molecularly imprinted polymer: Efficient sample preconcentration of antibiotic cefathiamidine from human plasma and serum by solid phase extraction.
Analytical Letters, 38, (2), 219-226, (2005)
   
cefatoxime
Szultka M et al., Simultaneous determination of selected chemotherapeutics in human whole blood by molecularly imprinted polymers coated solid phase microextraction fibers and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography B, 940, 66-76, (2013)
   
cefazdin
Wang XY et al., Detection of cephalosporins residue in chicken muscles by molecular imprinted solid phase extraction-high performance capillary electrophoresis (MISPE-HPCE).
Jiangsu Journal of Agricultural Sciences, 28, (1), 193-197, (2012)
   
cefazolin
Kulvelis YuV et al., Investigation of polymer hydrogels with memory effect for cefazolin immobilization by small-angle neutron scattering (Original Russian Text © Yu.V. Kulvelis, V.T. Lebedev, V.A. Trunov, S.S. Ivanchev, O.N. Primanchenko, S.Ya. Khaikin, 2012, published in Poverkhnost. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2012, No. 10, pp. 45 - 52. ).
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 6, (5), 825-832, (2012)
   
cefazolin
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
cefazolin
Nurrokhimah M et al., A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins.
Microchimica Acta, 186, (12), Article822-(2019)
   
cefepime
Baeza-Fonte AN et al., Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers.
Journal of Chromatographic Science, 56, (2), 187-193, (2018)
   
cefexime
Yola ML et al., Molecularly imprinted electrochemical biosensor based on Fe@Au nanoparticles involved in 2-aminoethanethiol functionalized multi-walled carbon nanotubes for sensitive determination of cefexime in human plasma.
Biosensors and Bioelectronics, 60, 277-285, (2014)
   
cefixime
Karimian N et al., Cefixime detection by a novel electrochemical sensor based on glassy carbon electrode modified with surface imprinted polymer/multiwall carbon nanotubes.
Journal of Electroanalytical Chemistry, 771, 64-72, (2016)
   
cefixime
Eskandari H et al., Molecularly imprinted polymers on CdS quantum dots for sensitive determination of cefixime after its preconcentration by magnetic graphene oxide.
New Journal of Chemistry, 41, (15), 7186-7194, (2017)
   
cefixime
Eskandari H et al., MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide.
Sensors and Actuators B: Chemical, 275, 145-154, (2018)
   
cefixime
Dehghani M et al., Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer.
Materials Science and Engineering: C, 96, 654-660, (2019)
   
cefoperazone
Wang XY et al., Detection of cephalosporins residue in chicken muscles by molecular imprinted solid phase extraction-high performance capillary electrophoresis (MISPE-HPCE).
Jiangsu Journal of Agricultural Sciences, 28, (1), 193-197, (2012)
   
cefoperazone
Nurrokhimah M et al., A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins.
Microchimica Acta, 186, (12), Article822-(2019)
   
cefoperazone
Chaitong N et al., A magnetic nanocomposite optosensing probe based on porous graphene, selective polymer and quantum dots for the detection of cefoperazone in milk.
Microchemical Journal, 171, Article106838-(2021)
   
cefotaxime
He DX et al., Preparation and Binding Characteristics of Molecularly Imprinted Polymers for Cefotaxime Sodium.
Chinese Journal of Veterinary Drug, 43, (5), 10-13, (2009)
   
cefotaxime
Chen DD et al., Determination of Cefotaxime Residue in Milk by Molecular Imprinted Solid Phase Extraction/Capillary Electrophoresis.
Journal of Instrumental Analysis, 31, (10), 1334-1338, (2012)
   
cefotaxime
Qin SL et al., Simultaneous determination of five sulfonamides in wastewater using group-selective molecularly imprinted solid-phase extraction coupled with HPLC-DAD.
Analytical Methods, 4, (12), 4278-4283, (2012)
   
cefotaxime
Yang GM et al., Electrochemical determination of cefotaxime based on a three-dimensional molecularly imprinted film sensor.
Biosensors and Bioelectronics, 53, 447-452, (2014)
   
cefotaxime
Karaseva NA et al., Development of Piezoelectric Sensors on the Basis of Electrosynthesized Molecularly Imprinted Polymers for β-lactam Antibiotics Detection.
Procedia Technology, 27, 185-186, (2017)
   
cefotaxime
Baeza-Fonte AN et al., Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers.
Journal of Chromatographic Science, 56, (2), 187-193, (2018)
   
cefquinome
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
cefquinome
Moro G et al., Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: The case of cefquinome.
Sensors and Actuators B: Chemical, 297, Article126786-(2019)
   
cefradine
Xing ZF et al., Preparation of Molecularly Imprinted Polymer with Racemic Cefradine as Template and Study on Its Chiral Resolution.
Liaoning Chemical Industry, 38, (1), 17-20, (2009)
   
Cefradine
Qin SL et al., Simultaneous determination of five sulfonamides in wastewater using group-selective molecularly imprinted solid-phase extraction coupled with HPLC-DAD.
Analytical Methods, 4, (12), 4278-4283, (2012)
   
cefradine
Wang XY et al., Detection of cephalosporins residue in chicken muscles by molecular imprinted solid phase extraction-high performance capillary electrophoresis (MISPE-HPCE).
Jiangsu Journal of Agricultural Sciences, 28, (1), 193-197, (2012)
   
ceftazidime
Torkashvand M et al., Construction of a new electrochemical sensor based on molecular imprinting recognition sites on multiwall carbon nanotube surface for analysis of ceftazidime in real samples.
Sensors and Actuators B: Chemical, 231, 759-767, (2016)
   
ceftazidime
Baeza-Fonte AN et al., Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers.
Journal of Chromatographic Science, 56, (2), 187-193, (2018)
   
cefthiofur
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
ceftiofur sodium
Cheng GH et al., A highly sensitive and selective method for the determination of ceftiofur sodium in milk and animal-origin food based on molecularly imprinted solid-phase extraction coupled with HPLC-UV.
Food Chemistry, 347, Article129013-(2021)
   
ceftizoxime
Beytur M et al., A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime.
Journal of Molecular Liquids, 251, 212-217, (2018)
   
ceftriaxone
Baeza-Fonte AN et al., Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers.
Journal of Chromatographic Science, 56, (2), 187-193, (2018)
   
ceftriaxone
Chullasat K et al., Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone.
Sensors and Actuators B: Chemical, 281, 689-697, (2019)
   
Cefuroxime Sodium
Proceeding, Hosseinifard ZS et al, Molecularly imprinted solid-phase extraction for the selective determination of Cefuroxime Sodium in human serum and urine with high performance liquid chromatography,
(2011)
   
cefuroxime sodium
Panahi HA et al., Synthesis and characterization of new molecular imprinting poly[1-(N,N-bis-carboxymethyl)amino-3-allylglycerol-co-dimethylacrylamide] for selective sorption and determination of cefuroxime sodium in biological and pharmaceutical samples.
Reactive and Functional Polymers, 73, (1), 132-140, (2013)
   
Ce(III)
Li XZ et al., Evaluation of ionic imprinted polymers by electrochemical recognition of rare earth ions.
Hydrometallurgy, 87, (1-2), 63-71, (2007)
   
Ce(III)
Li CX et al., An ion-imprinted polymer supported by attapulgite with a chitosan incorporated sol-gel process for selective separation of Ce(III).
Chinese Chemical Letters, 20, (8), 985-989, (2009)
   
Ce(III)
Li CX et al., A novel CeIII-imprinted polymer supported by attapulgite: synthesis, characterisation and adsorption behaviours towards CeIII in aqueous solution.
International Journal of Materials and Structural Integrity, 3, (4), 294-308, (2009)
   
Ce(III)
Pan JM et al., Synthesis and applications of Ce(III)-imprinted polymer based on attapulgite as the sacrificial support material for selective separation of cerium(III) ions.
Microchimica Acta, 171, (1), 151-160, (2010)
   
Ce(III)
Zhang XJ et al., A Ce3+-imprinted functionalized potassium tetratitanate whisker sorbent prepared by surface molecularly imprinting technique for selective separation and determination of Ce3+.
Microchimica Acta, 169, (3), 289-296, (2010)
   
Ce(III)
Hosseinnejad T et al., Computational study on the structure and properties of ternary complexes of Ln3+ (Ln = La, Ce, Nd AND Sm) with 5,7-dichloroquinoline-8-ol and 4-vinyl pyridine.
Journal of Structural Chemistry, 54, (2), 283-291, (2013)
   
Ce(III)
Liu Y et al., Synthesis, characterization, and adsorption properties of a Ce(III)-imprinted polymer supported by mesoporous SBA-15 matrix by a surface molecular imprinting technique.
Canadian Journal of Chemistry - Revue Canadienne de Chimie, 92, (3), 257-266, (2014)
   
Ce(III)
Meng MJ et al., An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition-fragmentation chain transfer polymerization for selective removal of Ce(III) from aqueous solution.
Journal of Hazardous Materials, 278, 134-143, (2014)
   
Ce(III)
Morgalyuk VP et al., Novel Template Sorbents for Separation of Americium(III) from Nitric Acid Solutions: Search of Optimal Ion-Imitator of AmIII.
Helvetica Chimica Acta, 97, (12), 1644-1651, (2014)
   
Ce(III)
Varshini JSC et al., Enhanced uptake of rare earth metals using surface molecular imprinted biosorbents of animal origin: Equilibrium, Kinetic and Thermodynamic studies.
International Journal of ChemTech Research, 7, (4), 1913-1919, (2015)
   
Ce(III)
Alizadeh T et al., Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes.
Microchimica Acta, 183, (3), 1123-1130, (2016)
   
Ce(III)
Liu Y et al., Selective Ce(III) ion-imprinted polymer grafted on Fe3O4 nanoparticles supported by SBA-15 mesopores microreactor via surface-initiated RAFT polymerization.
Microporous And Mesoporous Materials, 234, 176-185, (2016)
   
Ce(III)
Mustapa NRN et al., Ion imprinted polymers for selective recognition and separation of lanthanum and cerium ions from other lanthanide.
Separation Science and Technology, 51, (17), 2762-2771, (2016)
   
Ce(III)
Chen J et al., Trace detection of Ce3+ by adsorption strip voltammetry at a carbon paste electrode modified with ion imprinted polymers.
Journal of Rare Earths, 36, (10), 1121-1126, (2018)
   
Ce(III)
Chen J et al., Stripping voltammetric determination of cerium in food using an electropolymerized poly-catechol and ion-imprinted membrane modified electrode.
Journal of Electroanalytical Chemistry, 808, 41-49, (2018)
   
Ce(III)
Keçili R et al., Ion imprinted cryogel-based supermacroporous traps for selective separation of cerium(III) in real samples.
Journal of Rare Earths, 36, (8), 857-862, (2018)
   
Ce(III)
Rahman ML et al., Ion-Imprinted Polymer for Selective Separation of Cerium(III) Ions from Rare Earth Mixture.
Journal of Nanoscience and Nanotechnology, 19, (9), 5796-5802, (2019)
   
Ce(IV)
Prasad BB et al., Double-ion imprinted polymer@magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions.
Analytica Chimica Acta, 875, 83-91, (2015)
   
CEL
Arabi M et al., Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software.
Ultrasonics Sonochemistry, 33, 67-76, (2016)
   
Cel
Li F et al., A strategy of utilizing Cu2+-mediating interaction to prepare magnetic imprinted polymers for the selective detection of celastrol in traditional Chinese medicines.
Talanta, 231, Article122339-(2021)
   
celastrol
Li F et al., A strategy of utilizing Cu2+-mediating interaction to prepare magnetic imprinted polymers for the selective detection of celastrol in traditional Chinese medicines.
Talanta, 231, Article122339-(2021)
   
celecoxib
Arabi M et al., Synthesis and application of molecularly imprinted nanoparticles combined ultrasonic assisted for highly selective solid phase extraction trace amount of celecoxib from human plasma samples using design expert (DXB) software.
Ultrasonics Sonochemistry, 33, 67-76, (2016)
   
celecoxib
Ansari S, Application of hollow porous molecularly imprinted polymers using K2Ti4O9 coupled with SPE-HPLC for the determination of celecoxib in human urine samples: optimization by central composite design (CCD).
Analytical Methods, 9, (21), 3200-3212, (2017)
   
celecoxib
Nezhadali A et al., Experimental design-artificial neural network-genetic algorithm optimization and computer-assisted design of celecoxib molecularly imprinted polymer/carbon nanotube sensor.
Journal of Electroanalytical Chemistry, 795, 32-40, (2017)
   
celecoxib
Amjadi M et al., A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 191, 345-351, (2018)
   
celecoxib
Yazdanian N et al., Improving the determination of celecoxib in body fluids and pharmaceuticals using a new selective and thermosensitive molecularly imprinted poly(vinylidene fluoride) membrane.
Analytical Methods, 12, (16), 2185-2195, (2020)
   
cell-adhesive peptide ligand
Pan GQ et al., An Epitope-Imprinted Biointerface with Dynamic Bioactivity for Modulating Cell-Biomaterial Interactions.
Angewandte Chemie International Edition, 56, (50), 15959-15963, (2017)
   
cells
Takátsy A et al., Universal method for synthesis of artificial gel antibodies by the imprinting approach combined with a unique electrophoresis technique for detection of minute structural differences of proteins, viruses, and cells (bacteria): Ia. Gel antibodies against proteins (transferrins).
Journal of Separation Science, 29, (18), 2802-2809, (2006)
   
cells
Lieberzeit PA et al., Functional Materials for Biosensing-From Proteins to Cells and Pollen.
Sensor Letters, 6, (4), 641-645, (2008)
   
cells
DePorter SM et al., Programmed cell adhesion and growth on cell-imprinted polyacrylamide hydrogels.
Soft Matter, 8, (40), 10403-10408, (2012)
   
cells
Jeon HJ et al., Effects of a Cell-Imprinted Poly(dimethylsiloxane) Surface on the Cellular Activities of MG63 Osteoblast-like Cells: Preparation of a Patterned Surface, Surface Characterization, and Bone Mineralization.
Langmuir, 28, (37), 13423-13430, (2012)
   
cells
Ren KN et al., Sorting Inactivated Cells Using Cell-Imprinted Polymer Thin Films.
ACS Nano, 7, (7), 6031-6036, (2013)
   
cells
Hu YF et al., Isolation of Viable Type I and II Methanotrophs Using Cell-Imprinted Polyurethane Thin Films.
ACS Applied Materials & Interfaces, 6, (22), 20550-20556, (2014)
   
cells
Murray LM et al., Bioimprinted polymer platforms for cell culture using soft lithography.
Journal of Nanobiotechnology, 12, Article No 60-(2014)
   
cells
Eersels K et al., Heat-Transfer-Method-Based Cell Culture Quality Assay through Cell Detection by Surface Imprinted Polymers.
Langmuir, 31, (6), 2043-2050, (2015)
   
cells
Kunath S et al., Cell and Tissue Imaging with Molecularly Imprinted Polymers as Plastic Antibody Mimics.
Advanced Healthcare Materials, 4, (9), 1322-1326, (2015)
   
cells
Lee MH et al., Recognition of Rhodobacter sphaeroides by microcontact-imprinted poly(ethylene-co-vinyl alcohol).
Colloids and Surfaces B: Biointerfaces, 135, 394-399, (2015)
   
cells
Tan LH et al., The characteristics of Ishikawa endometrial cancer cells are modified by substrate topography with cell-like features and the polymer surface.
International Journal of Nanomedicine, 2015, (10), 4883-4895, (2015)
   
cells
Bonakdar S et al., Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.
ACS Applied Materials & Interfaces, 8, (22), 13777-13784, (2016)
   
cells
Panagiotopoulou M et al., Molecularly Imprinted Polymer Coated Quantum Dots for Multiplexed Cell Targeting and Imaging.
Angewandte Chemie International Edition, 55, (29), 8244-8248, (2016)
   
cells
Farvadi F et al., Cell shape affects nanoparticle uptake and toxicity: An overlooked factor at the nanobio interfaces.
Journal of Colloid and Interface Science, 531, 245-252, (2018)
   
cells
Gennaro A et al., Cell detection by surface imprinted polymers (SIPs) - A study of the sensor surface by optical and dielectric relaxation spectroscopy.
IEEE Transactions on Dielectrics and Electrical Insulation, 25, (3), 816-821, (2018)
   
cells
Das AAK et al., Bioimprint aided cell recognition and depletion of human leukemic HL60 cells from peripheral blood.
Journal of Materials Chemistry B, 7, (22), 3497-3504, (2019)
   
cells
Kavand H et al., Cell-Imprint Surface Modification by Contact Photolithography-Based Approaches: Direct-Cell Photolithography and Optical Soft Lithography Using PDMS Cell Imprints.
ACS Applied Materials & Interfaces, 11, (11), 10559-10566, (2019)
   
cells
Eftekhari BS et al., Conductive chitosan/polyaniline hydrogel with cell-imprinted topography as a potential substrate for neural priming of adipose derived stem cells.
RSC Advances, 11, (26), 15795-15807, (2021)
   
cells
Sarkhosh T et al., Development of cell-imprinted polymer surfaces for Cryptosporidium capture and detection.
Water Research, 205, Article117675-(2021)
   
cell surface epitopes
Piletsky SS et al., Snapshot imprinting: rapid identification of cancer cell surface proteins and epitopes using molecularly imprinted polymers.
Nano Today, 41, Article101304-(2021)
   
cellulase
Li Y et al., Molecular Imprinting and Immobilization of Cellulase Onto Magnetic Fe3O4@SiO2 Nanoparticles.
Journal of Nanoscience and Nanotechnology, 14, (4), 2931-2936, (2014)
   
cellulase
Lian Q et al., Properties of cellulase as template molecule on chitosan-ömethyl methacrylate membrane.
Russian Journal of Physical Chemistry A, 89, (12), 2294-2297, (2015)
   
cellulase
Tao QL et al., Application of Molecular Imprinted Magnetic Fe3O4@SiO2 Nanoparticles for Selective Immobilization of Cellulase.
Journal of Nanoscience and Nanotechnology, 16, (6), 6055-6060, (2016)
   
cellulases
Yuan B et al., A novel recycling system for nano-magnetic molecular imprinting immobilised cellulases: Synergistic recovery of anthocyanin from fruit and vegetable waste.
Bioresource Technology, 222, 14-23, (2016)
   
cephalexin
Beltran A et al., Selective solid-phase extraction of amoxicillin and cephalexin from urine samples using a molecularly imprinted polymer.
Journal of Separation Science, 31, (15), 2868-2874, (2008)
   
cephalexin
Beltran A et al., Molecularly imprinted solid-phase extraction of cephalexin from water-based matrices.
Journal of Separation Science, 32, (19), 3319-3326, (2009)
   
cephalexin
Jiang YX et al., Study on the preparation and characterization of cefalexin molecularly imprinted polymers.
Chemical Research and Application, 21, (9), 1286-1289, (2009)
   
cephalexin
Quesada-Molina C et al., Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer.
Food Chemistry, 135, (2), 775-779, (2012)
   
cephalexin
Lata K et al., Synthesis and application of cephalexin imprinted polymer for solid phase extraction in milk.
Food Chemistry, 184, 176-182, (2015)
   
cephalexin
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
cephalexin
Sunayama H et al., Fluorescence signaling molecularly imprinted polymers for antibiotics prepared via site-directed post-imprinting introduction of plural fluorescent reporters within the recognition cavity.
Journal of Materials Chemistry B, 4, (44), 7138-7145, (2016)
   
cephalexin
Baeza-Fonte AN et al., Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers.
Journal of Chromatographic Science, 56, (2), 187-193, (2018)
   
cephalexin
Chen SJ et al., Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples.
Journal of Chromatography A, 1602, 124-134, (2019)
   
cephalexin
Chen SJ et al., A phosphorescent probe for cephalexin consisting of mesoporous thioglycolic acid-modified Mn:ZnS quantum dots coated with a molecularly imprinted polymer.
Microchimica Acta, 187, (1), Article40-(2019)
   
cephalexin
Chullasat K et al., Nanocomposite optosensor of dual quantum dot fluorescence probes for simultaneous detection of cephalexin and ceftriaxone.
Sensors and Actuators B: Chemical, 281, 689-697, (2019)
   
cephalexin
Nurrokhimah M et al., A nanosorbent consisting of a magnetic molecularly imprinted polymer and graphene oxide for multi-residue analysis of cephalosporins.
Microchimica Acta, 186, (12), Article822-(2019)
   
cephalomannine
Fan JP et al., Preparation and characterization of molecular imprinted polymer functionalized with core/shell magnetic particles (Fe3O4@SiO2@MIP) for the simultaneous recognition and enrichment of four taxoids in Taxus x media.
Chemical Engineering Journal, 279, 567-577, (2015)
   
cephalonium
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
cephalosporin
Zhang L et al., Preparation of 7-ACA Molecularly Imprinted Polymer and Evaluation of Combined Performance.
Chinese Journal of Veterinary Drug, 44, (4), 34-36, (2010)
   
cephalosporin antibiotics
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
cephalosporin drugs
Wang XY et al., Detection of cephalosporins residue in chicken muscles by molecular imprinted solid phase extraction-high performance capillary electrophoresis (MISPE-HPCE).
Jiangsu Journal of Agricultural Sciences, 28, (1), 193-197, (2012)
   
cephalosporins
Huang ZF et al., An investigation on clean-up of cephalosporins in biomedical sample by molecular imprinting technique.
Chinese Journal of Analytical Chemistry, 33, (10), 1424-1426, (2005)
   
cephalosporins
Quesada-Molina C et al., Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer.
Food Chemistry, 135, (2), 775-779, (2012)
   
cephalosporins
Baeza-Fonte AN et al., Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers.
Journal of Chromatographic Science, 56, (2), 187-193, (2018)
   
cephapirin
Quesada-Molina C et al., Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer.
Food Chemistry, 135, (2), 775-779, (2012)
   
cephapirin
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
cephazolin
Baeza-Fonte AN et al., Determination of Cephalosporins by UHPLC-DAD Using Molecularly Imprinted Polymers.
Journal of Chromatographic Science, 56, (2), 187-193, (2018)
   
cephazoline
Pavlyuchenko VN et al., Polymer hydrogels with the memory effect for immobilization of drugs.
Polymer Science Series A, 53, (4), 323-335, (2011)
   
cephradine
Anwar A et al., Synthesis and Characterization of Molecular Imprinted Polymer for the Recognition and Removal of Cephradine.
Sensor Letters, 15, (1), 32-36, (2017)
   
cerebral dopamine neurotrophic factor
Kidakova A et al., Molecularly imprinted polymer-based SAW sensor for label-free detection of cerebral dopamine neurotrophic factor protein.
Sensors and Actuators B: Chemical, 308, Article127708-(2020)
   
Cerium ion
Li XZ et al., Evaluation of ionic imprinted polymers by electrochemical recognition of rare earth ions.
Hydrometallurgy, 87, (1-2), 63-71, (2007)
   
cerium ion
Li CX et al., A novel CeIII-imprinted polymer supported by attapulgite: synthesis, characterisation and adsorption behaviours towards CeIII in aqueous solution.
International Journal of Materials and Structural Integrity, 3, (4), 294-308, (2009)
   
cerium ion
Zhang XJ et al., A Ce3+-imprinted functionalized potassium tetratitanate whisker sorbent prepared by surface molecularly imprinting technique for selective separation and determination of Ce3+.
Microchimica Acta, 169, (3), 289-296, (2010)
   
cerium ion
Liu Y et al., Synthesis, characterization, and adsorption properties of a Ce(III)-imprinted polymer supported by mesoporous SBA-15 matrix by a surface molecular imprinting technique.
Canadian Journal of Chemistry - Revue Canadienne de Chimie, 92, (3), 257-266, (2014)
   
cerium ion
Meng MJ et al., An ion-imprinted functionalized SBA-15 adsorbent synthesized by surface imprinting technique via reversible addition-fragmentation chain transfer polymerization for selective removal of Ce(III) from aqueous solution.
Journal of Hazardous Materials, 278, 134-143, (2014)
   
cerium ion
Morgalyuk VP et al., Novel Template Sorbents for Separation of Americium(III) from Nitric Acid Solutions: Search of Optimal Ion-Imitator of AmIII.
Helvetica Chimica Acta, 97, (12), 1644-1651, (2014)
   
cerium ion
Prasad BB et al., Double-ion imprinted polymer@magnetic nanoparticles modified screen printed carbon electrode for simultaneous analysis of cerium and gadolinium ions.
Analytica Chimica Acta, 875, 83-91, (2015)
   
cerium ion
Varshini JSC et al., Enhanced uptake of rare earth metals using surface molecular imprinted biosorbents of animal origin: Equilibrium, Kinetic and Thermodynamic studies.
International Journal of ChemTech Research, 7, (4), 1913-1919, (2015)
   
cerium ion
Alizadeh T et al., Voltammetric determination of ultratrace levels of cerium(III) using a carbon paste electrode modified with nano-sized cerium-imprinted polymer and multiwalled carbon nanotubes.
Microchimica Acta, 183, (3), 1123-1130, (2016)
   
cerium ion
Liu Y et al., Selective Ce(III) ion-imprinted polymer grafted on Fe3O4 nanoparticles supported by SBA-15 mesopores microreactor via surface-initiated RAFT polymerization.
Microporous And Mesoporous Materials, 234, 176-185, (2016)
   
cerium ion
Mustapa NRN et al., Ion imprinted polymers for selective recognition and separation of lanthanum and cerium ions from other lanthanide.
Separation Science and Technology, 51, (17), 2762-2771, (2016)
   
cerium ion
Chen J et al., Trace detection of Ce3+ by adsorption strip voltammetry at a carbon paste electrode modified with ion imprinted polymers.
Journal of Rare Earths, 36, (10), 1121-1126, (2018)
   
cerium ion
Chen J et al., Stripping voltammetric determination of cerium in food using an electropolymerized poly-catechol and ion-imprinted membrane modified electrode.
Journal of Electroanalytical Chemistry, 808, 41-49, (2018)
   
cerium ion
Keçili R et al., Ion imprinted cryogel-based supermacroporous traps for selective separation of cerium(III) in real samples.
Journal of Rare Earths, 36, (8), 857-862, (2018)
   
cerium ion
Rahman ML et al., Ion-Imprinted Polymer for Selective Separation of Cerium(III) Ions from Rare Earth Mixture.
Journal of Nanoscience and Nanotechnology, 19, (9), 5796-5802, (2019)
   
cerium ions
Pan JM et al., Synthesis and applications of Ce(III)-imprinted polymer based on attapulgite as the sacrificial support material for selective separation of cerium(III) ions.
Microchimica Acta, 171, (1), 151-160, (2010)
   
cerous ion
Li CX et al., An ion-imprinted polymer supported by attapulgite with a chitosan incorporated sol-gel process for selective separation of Ce(III).
Chinese Chemical Letters, 20, (8), 985-989, (2009)
   
cerous ion
Liu Y et al., Synthesis, characterization, and adsorption properties of a Ce(III)-imprinted polymer supported by mesoporous SBA-15 matrix by a surface molecular imprinting technique.
Canadian Journal of Chemistry - Revue Canadienne de Chimie, 92, (3), 257-266, (2014)
   
cesium ion
Zhang ZL et al., Kinetic and thermodynamic analysis of selective adsorption of Cs(I) by a novel surface whisker-supported ion-imprinted polymer.
Desalination, 263, (1-3), 97-106, (2010)
   
cesium ion
Shamsipur M et al., Flame photometric determination of cesium ion after its preconcentration with nanoparticles imprinted with the cesium-dibenzo-24-crown-8 complex.
Microchimica Acta, 180, (3-4), 243-252, (2013)
   
cesium ion
Meng XG et al., Synthesis of novel ion-imprinted polymers by two different RAFT polymerization strategies for the removal of Cs(I) from aqueous solutions.
RSC Advances, 5, (17), 12517-12529, (2015)
   
cesium ion
Li SF et al., Study on the preparation and adsorption of the cesium ion imprinted polymer based on surface imprinting technique.
Journal of Functional Materials, 48, (7), 7062-7068, (2017)
   
cesium ion
Yang L et al., Selective adsorption and separation of Cs(I) from salt lake brine by a novel surface magnetic ion-imprinted polymer.
Journal of Dispersion Science and Technology, 38, (11), 1547-1555, (2017)
   
cesium ion
Yang L et al., Preparation of Cs(I) Magnetic Ion-Imprinted Polymer and its Adsorption Behavior.
Bulletin of the Chinese Ceramic Society, 36, (2), 1-8, (2017)
   
cesium ion
Wang ZM et al., Determination of cesium ions in environmental water samples with a magnetic multi-walled carbon nanotube imprinted potentiometric sensor.
RSC Advances, 11, (17), 10075-10082, (2021)
   
cesium ion
Zhou L et al., Dual Ion-Imprinted Mesoporous Silica for Selective Adsorption of U(VI) and Cs(I) through Multiple Interactions.
ACS Applied Materials & Interfaces, 13, (5), 6322-6330, (2021)
   
cetirizine
Javanbakht M et al., A Biomimetic Potentiometric Sensor Using Molecularly Imprinted Polymer for the Cetirizine Assay in Tablets and Biological Fluids.
Electroanalysis, 20, (18), 2023-2030, (2008)
   
cetirizine
Azimi A et al., Computational prediction and experimental selectivity coefficients for hydroxyzine and cetirizine molecularly imprinted polymer based potentiometric sensors.
Analytica Chimica Acta, 812, 184-190, (2014)
   
cetirizine
Wei ZH et al., Improving affinity of imprinted monolithic polymer prepared in deep eutectic solvent by metallic pivot.
Journal of Chromatography A, 1602, 48-55, (2019)
   
cetirizine
Cui YX et al., Development of silica molecularly imprinted polymer on carbon dots as a fluorescence probe for selective and sensitive determination of cetirizine in saliva and urine.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 264, Article120293-(2022)
   
cetirizine dihydrochloride
Javanbakht M et al., A Biomimetic Potentiometric Sensor Using Molecularly Imprinted Polymer for the Cetirizine Assay in Tablets and Biological Fluids.
Electroanalysis, 20, (18), 2023-2030, (2008)
   
cetyltrimethylammonium bromide
de Oliveira FM et al., Kinetic and Isotherm Studies of Ni2+ Adsorption on Poly(methacrylic acid) Synthesized through a Hierarchical Double-Imprinting Method Using a Ni2+ Ion and Cationic Surfactant as Templates.
Industrial & Engineering Chemistry Research, 52, (25), 8550-8557, (2013)
   
CF
Baeza AN et al., Multiresidue analysis of cephalosporin antibiotics in bovine milk based on molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1474, 121-129, (2016)
   
CFL
Jiang YX et al., Spectroscopy Study on the Selectively Distinguishing Cefalexin with the Molecular Imprinted Polymer.
Spectroscopy and Spectral Analysis, 31, (7), 1852-1856, (2011)
   
CFL
Quesada-Molina C et al., Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer.
Food Chemistry, 135, (2), 775-779, (2012)
   
CFO
Yuan YA et al., Ionic liquid-molecularly imprinted polymers for pipette tip solid-phase extraction of (Z)-3-(chloromethylene)-6-flourothiochroman-4-one in urine.
Journal of Chromatography A, 1408, 49-55, (2015)
   
C4F7O2-
Zhu GF et al., Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.
Journal of Chromatography A, 1532, 40-49, (2018)
   
CFP
Quesada-Molina C et al., Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer.
Food Chemistry, 135, (2), 775-779, (2012)
   
CFQ
Moro G et al., Conductive imprinted polymers for the direct electrochemical detection of β-lactam antibiotics: The case of cefquinome.
Sensors and Actuators B: Chemical, 297, Article126786-(2019)
   
C8F17SO3-
Feng H et al., Surface molecular imprinting on dye-(NH2)-SiO2 NPs for specific recognition and direct fluorescent quantification of perfluorooctane sulfonate.
Sensors and Actuators B: Chemical, 195, 266-273, (2014)
   
C4F9SO3-
Zhu GF et al., Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.
Journal of Chromatography A, 1532, 40-49, (2018)
   
CFX
Beltran A et al., Molecularly imprinted solid-phase extraction of cephalexin from water-based matrices.
Journal of Separation Science, 32, (19), 3319-3326, (2009)
   
CFX
Li XX et al., Removal of cefalexin using yeast surface-imprinted polymer prepared by atom transfer radical polymerization.
Journal of Separation Science, 35, (20), 2787-2795, (2012)
   
CFX
Li XX et al., Surface molecular imprinting onto magnetic yeast composites via atom transfer radical polymerization for selective recognition of cefalexin.
Chemical Engineering Journal, 198-199, 503-511, (2012)
   
CFX
Pan JM et al., Fabrication and evaluation of temperature responsive molecularly imprinted sorbents based on surface of yeast via surface-initiated AGET ATRP.
Applied Surface Science, 287, 211-217, (2013)
   
CFX
Kioomars S et al., Ciprofloxacin-imprinted hydrogels for drug sustained release in aqueous media.
Pharmaceutical Development and Technology, 22, (1), 122-129, (2017)
   
CFX
Beytur M et al., A highly selective and sensitive voltammetric sensor with molecularly imprinted polymer based silver@gold nanoparticles/ionic liquid modified glassy carbon electrode for determination of ceftizoxime.
Journal of Molecular Liquids, 251, 212-217, (2018)
   
CFX
Chen SJ et al., Preparation and application of magnetic molecular imprinted polymers for extraction of cephalexin from pork and milk samples.
Journal of Chromatography A, 1602, 124-134, (2019)
   
CFX
Feier B et al., Electrochemical Sensor Based on Molecularly Imprinted Polymer for the Detection of Cefalexin.
Biosensors, 9, (1), ArticleNo31-(2019)
   
C8G1
Joshi S et al., Interfacial molecular imprinting of Stöber particle surfaces: A simple approach to targeted saccharide adsorption.
Journal of Colloid and Interface Science, 428, 101-110, (2014)
   
C8G1
Joshi S et al., Imprinting of Stober particles for chirally-resolved adsorption of target monosaccharides and disaccharides.
New Journal of Chemistry, 41, (20), 11525-11532, (2017)
   
C12G2
Joshi S et al., Imprinting of Stober particles for chirally-resolved adsorption of target monosaccharides and disaccharides.
New Journal of Chemistry, 41, (20), 11525-11532, (2017)
   
CG
Chen HC et al., L-lysine-structure-directed MIL-88A and its application in electrochemical sensing of cholylglycine via molecular imprinting technique.
Microchemical Journal, 158, Article105249-(2020)
   
C3G
Zhao QY et al., Synthesis of magnetic covalent organic framework molecularly imprinted polymers at room temperature: A novel imprinted strategy for thermo-sensitive substance.
Talanta, 225, Article121958-(2021)
   
CGA
Wu L et al., Determination of Chlorogenic Acid in Tobacco by Molecularly Imprinted Polymer Piezoelectric Bio-mimetic Sensor.
Tobacco Science & Technology, (6), 6-19+28, (2004)
   
CGA
Wu L et al., Development of Molecularly Imprinted Polymer Piezoelectric Bio-mimetic Sensor for Chlorogenic Acid.
Journal of Wenzhou University (Natural Sciences), 25, (2), 19-24, (2004)
   
CGA
Gu XH et al., Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of Traditional Chinese Medicine.
Analytica Chimica Acta, 675, (1), 64-70, (2010)
   
CGA
Gu XH et al., Synthesis and Evaluation of Magnetic Molecularly Imprinted Polymer Microspheres of Chlorogenic Acid.
Journal of Changshu Institute of Technology, 24, (2), 56-59, (2010)
   
CGA
Santos WdJR et al., Novel electrochemical sensor for the selective recognition of chlorogenic acid.
Analytica Chimica Acta, 695, (1-2), 44-50, (2011)
   
CGA
Golsefidi MA et al., Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber - solid phase microextraction of chlorogenic acid in medicinal plants.
Journal of Chromatography A, 1229, (1), 24-29, (2012)
   
CGA
Li H et al., Surface imprinting on nano-TiO2 as sacrificial material for the preparation of hollow chlorogenic acid imprinted polymer and its recognition behavior.
Applied Surface Science, 264, 644-652, (2013)
   
CGA
Tan XZ et al., Preparation and adsorption behavior of chlorogenic acid imprinted polymer by using nano-TiO2 as sacrificial support material.
Chemical Industry and Engineering Progress, 32, (2), 388-393, (2013)
   
CGA
Niu YL et al., Synthesis of chlorogenic acid imprinted chromatographic packing by surface-initiated atom transfer radical polymerization and its application.
Chemical Research in Chinese Universities, 30, (5), 855-862, (2014)
   
CGA
Li LJ et al., Preparation and properties of electrochemical sensor for chlorogenic acid based on molecular imprinted polymers.
Chinese Journal of Analysis Laboratory, 34, (5), 503-506, (2015)
   
CGA
Miura C et al., Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves.
Journal of Pharmaceutical and Biomedical Analysis, 114, 139-144, (2015)
   
CGA
Koirala K et al., Biomimetic potentiometric sensor for chlorogenic acid based on electrosynthesized polypyrrole.
Sensors and Actuators B: Chemical, 222, 391-396, (2016)
   
CGA
Ribeiro CM et al., Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples.
Talanta, 156-157, 119-125, (2016)
   
CGA
Yan L et al., Synthesis and Application of Novel 3D Magnetic Chlorogenic Acid Imprinted Polymers Based on a Graphene-Carbon Nanotube Composite.
Journal of Agricultural and Food Chemistry, 64, (15), 3091-3100, (2016)
   
CGA
Peng MJ et al., Magnetic Porous Molecularly Imprinted Polymers Based on Surface Precipitation Polymerization and Mesoporous SiO2 Layer as Sacrificial Support for Efficient and Selective Extraction and Determination of Chlorogenic Acid in Duzhong Brick Tea.
Molecules, 23, (7), ArticleNo1554-(2018)
   
CGA
Sun YK et al., Cost-effective imprinting to minimize consumption of template in room-temperature ionic liquid for fast purification of chlorogenic acid from the extract of E. ulmoides leaves.
Analytical and Bioanalytical Chemistry, 411, (6), 1261-1271, (2019)
   
CGA
Li GF et al., Efficient synthesis of boronate affinity-based chlorogenic acid-imprinted magnetic nanomaterials for the selective recognition of chlorogenic acid in fruit juices.
New Journal of Chemistry, 44, (26), 11013-11021, (2020)
   
cGMP
Thanh NTK et al., Selective recognition of cyclic GMP using a fluorescence-based molecularly imprinted polymer.
Analytical Letters, 35, (15), 2499-2509, (2002)
   
cGMP
Cywinski P et al., Fluorescent, molecularly imprinted thin-layer films based on a common polymer.
Journal of Applied Polymer Science, 105, (1), 229-235, (2007)
   
cGMP
Sadowska M et al., Molecularly Imprinted Thin Polymeric Film as a Fluorescent Sensor for Nucleotides.
Molecular Crystals And Liquid Crystals, 486, (1), 203-212, (2008)
   
cGMP
Wandelt B et al., Polymeric Sensory Systems Based on Molecular Imprinting for Identification and Separation of Molecules and Bigger Biological Objects.
Molecular Crystals And Liquid Crystals, 486, (1), 257-270, (2008)
   
cGMP
Cywinski PJ et al., Thin-layer molecularly imprinted sensors studied by fluorescence microscopy.
e-Journal of Surface Science and Nanotechnology, 8, 293-297, (2010)
   
cGMP
Cywinski P, Fluorescent Molecularly Imprinted Polymers in Sensing of cAMP and cGMP.
Journal of Physical Chemistry and Biophysics, 3, (1), 111-(2013)
   
CH
Li JP et al., Molecularly imprinted electrochemical sensors based on the double-amplification from the electro-catalysis of poly-melamine and the enzymatic catalysis of HRP for chlortoluron determination.
Acta Chimica Sinica, 70, (17), 1853-1857, (2012)
   
CH
Qiao FX et al., Rapid screening of clenbuterol hydrochloride in chicken samples by molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography.
Journal of Chromatography B, 923 - 924, 136-140, (2013)
   
chalcones
Pawlaczyk M et al., Adsorption and selectivity studies of direct and magnetite-cored molecularly imprinted polymers (MIPs and magMIPs) towards chosen chalcones investigated with various analytical methods.
RSC Advances, 11, (41), 25334-25347, (2021)
   
CHAPS
Esmaeili MA et al., Molecularly imprinted poly β-cyclodextrin polymer: Application in protein refolding.
Biochimica et Biophysica Acta (BBA) - General Subjects, 1770, (6), 943-950, (2007)
   
chelerythrine
Zhong M et al., Preparation and application of magnetic molecularly imprinted polymers for the isolation of chelerythrine from Macleaya cordata.
Journal of Separation Science, 41, (16), 3318-3327, (2018)
   
chemical threat agent
Lin XH et al., Molecularly imprinted TiO2 inorganic film and PVDF/TiO2 composite film as sensors for the detection of chemical threat agents using quartz crystal microbalance.
Malaysian Journal of Analytical Sciences, 21, (6), 1307-1315, (2017)
   
chemical threat agents
Chen BS et al., Surface plasmon resonance sensor for detection of parathion methyl in water.
Malaysian Journal of Analytical Sciences, 21, (6), 1373-1379, (2017)
   
chemical vapors
Liang RN et al., Potentiometric detection of chemical vapors using molecularly imprinted polymers as receptors.
Scientific Reports, 5, ArticleNo12462-(2015)
   
chemical warfare agent
Boopathi M et al., Plastic antibody for the recognition of chemical warfare agent sulphur mustard.
Biosensors and Bioelectronics, 21, (12), 2339-2344, (2006)
   
chemical warfare agents
Book chapter, Jenkins ALet al., Molecularly Imprinted Polymers for the Detection of Chemical Agents in Water,
In: Defense Applications of Nanomaterials, Miziolek AW, Karna SP, Mauro JM, Vaia RA (Eds.) American Chemical Society: Washington, DC, 63-80, (2005)
   
chemical warfare agents
Jenkins AL et al., Molecularly imprinted polymers for chemical agent detection in multiple water matrices.
Analytica Chimica Acta, 542, (1), 32-37, (2005)
   
chemical warfare agents
Sharabi D et al., Preferential photodegradation of contaminants by molecular imprinting on titanium dioxide.
Applied Catalysis B: Environmental, 95, (1-2), 169-178, (2010)
   
chemical warfare agents
Pan Y et al., Selective Surface Acoustic Wave-Based Organophosphorus Sensor Employing a Host-Guest Self-Assembly Monolayer of β-Cyclodextrin Derivative.
Sensors, 15, (8), 17916-17925, (2015)
   
chemical warfare (CW) agents
Pavel D et al., Computationally designed monomers for molecular imprinting of chemical warfare agents - Part V.
Polymer, 47, (25), 8389-8399, (2006)
   
chenodeoxycholate
Shiigi H et al., Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film.
Journal of The Electrochemical Society, 152, (8), H129-H134, (2005)
   
chenodeoxycholic acid
Chen FQ et al., Preparation of molecularly imprinted polymer microspheres and their recognition for chenodeoxycholic acid.
Chemical Journal of Chinese Universities, 28, (11), 2195-2199, (2007)
   
chenodeoxycholic acid
Yu X et al., Computational design of a molecularly imprinted polymer compatible with an aqueous environment for solid phase extraction of chenodeoxycholic acid.
Journal of Chromatography A, 1609, Article460490-(2020)
   
CH3Hg+
Kamel AH, Preparation and Characterization of Innovative Selective Imprinted Polymers for the Removal of Hazardous Mercury Compounds From Aqueous Solution.
Life Science Journal-Acta Zhengzhou University Overseas Edition, 10, (4), 1657-1664, (2013)
   
chicken egg white
Yang C et al., Sample-Imprinted Polymer Potentially for Protein Depletion and Enrichment.
Analytical Chemistry Letters, 3, (1), 40-45, (2013)
   
chicken egg white
Yang C et al., Synthesis and Application of a Polymer Imprinted by Pending Templates of Protein Molecules.
Journal of Instrumental Analysis, 32, (2), 249-252, (2013)
   
chicken egg white
Yang C et al., Pending templates imprinted polymers - hypothesis, synthesis, adsorption, and chromatographic properties.
Electrophoresis, 34, (9-10), 1383-1389, (2013)
   
chicken egg white lysozyme
Bergmann NM et al., Configurational Biomimetic Imprinting for Protein Recognition: Structural Characteristics of Recognitive Hydrogels.
Industrial & Engineering Chemistry Research, 47, (23), 9099-9107, (2008)
   
chicken egg white proteins
Yang C et al., Depletion of Chicken Egg White Proteins by Pending Templates Imprinted Polymers.
Chinese Journal of Analytical Chemistry, 42, (11), 1651-1655, (2014)
   
chicoric acid
Saad EM et al., Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Chicorium intybus L. medicinal plant.
Analytica Chimica Acta, 877, 80-89, (2015)
   
chicoric acid
Sun YK et al., A strategy of utilizing Zn(II) as metallic pivot in room temperature ionic liquid to prepare molecularly imprinted polymers for compound with intramolecular hydrogen bonds.
Analytical and Bioanalytical Chemistry, 410, (2), 349-359, (2018)
   
Chikusetsu saponin IVa
Yang YY et al., Molecularly imprinted solid-phase extraction of Chikusetsu saponin IVa from Panacis majoris Rhizoma.
Journal of Separation Science, 44, (19), 3665-3676, (2021)
   
Chinese hamster ovarian cells
Bers K et al., Heat-Transfer Resistance Measurement Method (HTM)-Based Cell Detection at Trace Levels Using a Progressive Enrichment Approach with Highly Selective Cell-Binding Surface Imprints.
Langmuir, 30, (12), 3631-3639, (2014)
   
chiral amines
Kupai J et al., Role of Chirality and Macroring in Imprinted Polymers with Enantiodiscriminative Power.
ACS Applied Materials & Interfaces, 7, (18), 9516-9525, (2015)
   
chiral block copolymers
Paik P et al., Enantioselective Separation Using Chiral Mesoporous Spherical Silica Prepared by Templating of Chiral Block Copolymers.
ACS Applied Materials & Interfaces, 1, (8), 1834-1842, (2009)
   
chiral block copolymers
Paik P et al., Chiral separation abilities: Aspartic acid block copolymer-imprinted mesoporous silica.
Microporous And Mesoporous Materials, 129, (1-2), 82-89, (2010)
   
chiral block copolymers
Paik P et al., Chiral-mesoporous-polypyrrole nanoparticles: Its chiral recognition abilities and use in enantioselective separation.
Journal of Materials Chemistry, 20, (20), 4085-4093, (2010)
   
chiral copper(II) complex
Chen XH et al., Derivative chiral copper(II) complexes as template of an electrochemical molecular imprinting sol-gel sensor for enantiorecognition of aspartic acid.
Analytica Chimica Acta, 1072, 54-60, (2019)
   
chirality
Helmich F et al., Chiral Memory via Chiral Amplification and Selective Depolymerization of Porphyrin Aggregates.
Journal of the American Chemical Society, 132, (47), 16753-16755, (2010)
   
CHL
Kadirsoy S et al., Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation.
New Journal of Chemistry, 44, (16), 6524-6532, (2020)
   
CHL
Rossi E et al., Detection of chlorantraniliprole residues in tomato using field-deployable MIP photonic sensors.
Microchimica Acta, 188, (3), Article70-(2021)
   
Chlamydomonas reinhardtii
Lee MH et al., Microcontact Imprinting of Algae for Biofuel Systems: The Effects of the Polymer Concentration.
Langmuir, 30, (46), 14014-14020, (2014)
   
chloracetamide herbicides
Ji WH et al., Selective solid phase extraction of chloroacetamide herbicides from environmental water samples by amphiphilic magnetic molecularly imprinted polymers.
Talanta, 170, 111-118, (2017)
   
chlorambucil
Prasad BB et al., Synthesis of fullerene (C60-monoadduct)-based water-compatible imprinted micelles for electrochemical determination of chlorambucil.
Biosensors and Bioelectronics, 94, 115-123, (2017)
   
chlorambucil
Fatma S et al., A reduced graphene oxide ceramic electrode modified with one MoNomer doubly imprinted acryloylated tetraamine cobalt phthalocyanine polymer for the simultaneous analysis of anticancerous drugs.
Sensors and Actuators B: Chemical, 281, 139-149, (2019)
   
chloramphenicol
Suárez-Rodríguez JL et al., Fluorescent competitive flow-through assay for chloramphenicol using molecularly imprinted polymers.
Biosensors and Bioelectronics, 16, (9-12), 955-961, (2001)
   
chloramphenicol
Chen XX et al., Preparation of chloramphenicol molecularly imprinted solid-phase extraction cartridge and the optimization of extraction conditions.
Journal of South China University of Technology (Natural Science Edition), 32, (7), 51-55, (2004)
   
chloramphenicol
Yan LS et al., Preparation of Chloramphenicol- Imprinted Polymer.
Journal of Nanchang Institute of Aeronautical Technology (Natural Sciences), 19, (1), 1-5, (2005)
   
chloramphenicol
Schirmer C et al., Synthesis of a molecularly imprinted polymer for the selective solid-phase extraction of chloramphenicol from honey.
Journal of Chromatography A, 1132, (1-2), 325-328, (2006)
   
chloramphenicol
Song WW et al., Preparation of Molecularly Imprinted Film of Chloramphenicol and its Electrochemical Characteristics.
Journal of Shanghai Jiaotong University (Agricultural Science), 24, (6), 499-502, (2006)
   
chloramphenicol
Boyd B et al., Development of an improved method for trace analysis of chloramphenicol using molecularly imprinted polymers.
Journal of Chromatography A, 1174, (1-2), 63-71, (2007)
   
chloramphenicol
Corton E et al., Kinetics and binding properties of cloramphenicol imprinted polymers.
Journal of Non-Crystalline Solids, 353, (8-10), 974-980, (2007)
   
chloramphenicol
Mohamed R et al., Advantages of Molecularly Imprinted Polymers LC-ESI-MS/MS for the Selective Extraction and Quantification of Chloramphenicol in Milk-Based Matrixes. Comparison with a Classical Sample Preparation.
Analytical Chemistry, 79, (24), 9557-9565, (2007)
   
chloramphenicol
Shi XZ et al., Molecularly imprinted polymer microspheres for solid-phase extraction of chloramphenicol residues in foods.
Journal of Chromatography B, 850, (1-2), 24-30, (2007)
   
chloramphenicol
Shimelis O et al., The Selective Extraction of Chloramphenicol using Molecular Imprinted Polymer SPE. US Supelco Reporter,
25, (1), 9-11, (2007)
   
chloramphenicol
Shimelis O et al., Selective Extraction of Chloramphenicol Using SupelMIP SPE. The Reporter Europe,
26, 11-13, (2007)
   
chloramphenicol
Widstrand C et al., Highly selectve trace level extraction using molecularly imprinted polymer solid-phase extraction.
The Column, 3, (11), 28-34, (2007)
   
chloramphenicol
Anon, MIP Technologies And Supelco Launch A New SPE Application For The Selective Extraction Of Chloramphenicol From Shrimp. Medical News Today,
(2008)
   
chloramphenicol
Guo LY et al., Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination.
Analytical and Bioanalytical Chemistry, 392, (7-8), 1431-1438, (2008)
   
chloramphenicol
Schirmer C et al., Molecularly imprinted polymers for the selective solid-phase extraction of chloramphenicol.
Analytical and Bioanalytical Chemistry, 392, (1), 223-229, (2008)
   
chloramphenicol
Wang RY et al., New Progress and Application of Molecular Imprinting Technique.
Modern Scientific Instruments, (1), 11-16, (2008)
   
Chloramphenicol
Wang RY et al., Synthesis of chloramphenicol molecularly imprinted polymer and its analytical application.
Journal of Instrumental Analysis, 27, (9), 947-950, (2008)
   
chloramphenicol
Wang YX et al., Preparation of chloramphenicol molecularly imprinted polymers and its application in SPE.
Environmental Chemistry, 27, (3), 378-379, (2008)
   
chloramphenicol
Wihlborg A-K et al., The highly selective extraction of chloramphenicol from shrimp using molecularly imprinted polymer solid-phase extraction. American Laboratory,
40, (13), 6-7, (2008)
   
chloramphenicol
Rejtharová M et al., Determination of chloramphenicol in urine, feed water, milk and honey samples using molecular imprinted polymer clean-up.
Journal of Chromatography A, 1216, (46), 8246-8253, (2009)
   
Chloramphenicol
Schirmer C et al., Chromatographic evaluation of polymers imprinted with analogs of chloramphenicol and application to selective solid-phase extraction.
Analytical and Bioanalytical Chemistry, 394, (8), 2249-2255, (2009)
   
chloramphenicol
Wang RY et al., Study on the determination of trace chloramphenicol residue in milk by HPLC with matrix solid-phase dispersion using molecularly imprinted polymer as an adsorbent.
Chinese Journal of Analysis Laboratory, 28, (8), 26-28, (2009)
   
chloramphenicol
Kara M et al., Utilization of Surface Plasmon Resonance and Molecular Imprinting Techniques in Determination of Chloramphenicol for Food Safety Purpose.
Electronic Journal of Food Technologies, 5, (2), 35-47, (2010)
   
chloramphenicol
Liang B et al., Study on the preparation of chloramphenicol molecular imprinted polymers by precipitation polymerizationn water-containing medium and their adsorption characteristics.
Journal of Sichuan University (Engineering Science Edition), 42, (6), 172-175, (2010)
   
chloramphenicol
Rodziewicz L et al., Determination of chloramphenicol residues in milk powder using molecular imprinted polymers (MIP) by LC-MS/MS [Zastosowanie polimerów z odwzorowaniem czasteczkowym do oznaczania pozostalosci chloramfenikolu w mleku w proszku metoda LC-MS/MS.].
Roczniki Panstwowego Zakladu Higieny, 61, (3), 249-252, (2010)
   
chloramphenicol
Shi XZ et al., Preparation and Chromatographic Evaluation of Molecularly Imprinted Polymer Microspheres for Chloramphenicol.
Food Science, 31, (18), 95-98, (2010)
   
chloramphenicol
Shi XZ et al., Determination of Chloramphenicol Residues in Foods by ELISA and LC-MS/MS Coupled with Molecularly Imprinted Solid Phase Extraction.
Analytical Letters, 43, (17), 2798-2807, (2010)
   
chloramphenicol
Thongchai W et al., A microflow chemiluminescence system for determination of chloramphenicol in honey with preconcentration using a molecularly imprinted polymer.
Talanta, 82, (2), 560-566, (2010)
   
chloramphenicol
Kowalski D et al., Flow-Injection Preconcentration of Chloramphenicol Using Molecularly Imprinted Polymer for HPLC Determination in Environmental Samples.
Journal of Automated Methods and Management in Chemistry, 2011, Art. No. 143416-(2011)
   
chloramphenicol
Wang T et al., Fast and selective extraction of chloramphenicol from soil by matrix solid-phase dispersion using molecularly imprinted polymer as dispersant.
Journal of Separation Science, 34, (15), 1886-1892, (2011)
   
chloramphenicol
Zhang LJ et al., Fabrication and Application of CAP-MIP-OAP Film Electrode for Chloramphenical Detection.
Chinese Journal of Applied Chemistry, 28, (3), 338-342, (2011)
   
chloramphenicol
Zhang XZ, In Situ Synthesis and Performance Testing of Chloramphenicol Molecular Imprinted Polymer Membrane Induced by Light.
Journal of Anhui Agricultural Sciences, 39, (12), 7253-7254,7290, (2011)
   
chloramphenicol
Zuo HM et al., Comparison of preparation of molecularly imprinted polymer microspheres for chloramphenicol by one-step seed swelling and two-step seed swelling.
Chemical Industry and Engineering Progress, 30, (2), 381-385, (2011)
   
chloramphenicol
Zuo HM et al., Preparation of molecularly imprinted polymer microspheres for chloramphenicol by two-step seed swelling and its recognition performance.
Chemical Industry and Engineering Progress, 30, (3), 589-596, (2011)
   
chloramphenicol
Alizadeh T et al., Selective determination of chloramphenicol at trace level in milk samples by the electrode modified with molecularly imprinted polymer.
Food Chemistry, 130, (4), 1108-1114, (2012)
   
chloramphenicol
Ganjali MR et al., Chloramphenicol Biomimetic Molecular Imprinted Polymer Used as a Sensing Element in Nano-Composite Carbon Paste Potentiometric Sensor.
International Journal of Electrochemical Science, 7, (5), 4800-4810, (2012)
   
chloramphenicol
Hao TT et al., A highly sensitive electrochemiluminescence method for the determination of chloramphenicol in milk combined with molecularly imprinted solid phase extraction.
Chinese Journal of Analysis Laboratory, 31, (2), 105-108, (2012)
   
chloramphenicol
Kou X et al., Preparation of molecularly imprinted nanospheres by premix membrane emulsification technique.
Journal of Membrane Science, 417-418, 87-95, (2012)
   
chloramphenicol
Li MF et al., Preparation of chloramphenicol imprinted polymer membranes and its adsorption characteristics.
Journal of Tianjin Polytechnic University, 31, (2), 10-14, (2012)
   
chloramphenicol
Liu XY et al., Combinatorial synthesis and screening of uniform molecularly imprinted microspheres for chloramphenicol using microfluidic device.
Polymer Engineering & Science, 52, (10), 2099-2105, (2012)
   
chloramphenicol
Lv YK et al., Preparation of molecularly imprinted microspheres for solid-phase extraction coupled with HPLC for determination of the florfenicol residue in milk.
International Journal of Science Innovations and Discoveries, 2, (6), 610-616, (2012)
   
chloramphenicol
Sakamoto Y et al., Determination of Chloramphenicol in Honey and Royal Jelly by Sample Clean-up with Molecular Imprinted Polymer.
Bunseki Kagaku, 61, (5), 383-389, (2012)
   
chloramphenicol
Shi XZ et al., Characterisation and application of molecularly imprinted polymers for group-selective recognition of antibiotics in food samples.
Analyst, 137, (14), 3381-3389, (2012)
   
chloramphenicol
Zhao HM et al., Selectively Electrochemical Determination of Chloramphenicol in Aqueous Solution Using Molecularly Imprinted Polymer-Carbon Nanotubes-Gold Nanoparticles Modified Electrode.
Journal of The Electrochemical Society, 159, (6), J231-J236, (2012)
   
chloramphenicol
Zhao L et al., Fabrication of Chloramphenicol Molecular Imprinted Composite Film and Its Electrochemistry.
Chinese Journal of Applied Chemistry, 29, (10), 1212-1217, (2012)
   
chloramphenicol
Zhou CH et al., Molecularly imprinted photonic polymer as an optical sensor to detect chloramphenicol.
Analyst, 137, (19), 4469-4474, (2012)
   
chloramphenicol
Barreiro R et al., Development of a HPLC-MS/MS confirmatory method for the simultaneous determination of amphenicols in baby formulas using molecularly imprinted polymers.
Analytical Methods, 5, (16), 3970-3976, (2013)
   
chloramphenicol
Chen LG et al., Magnetic molecularly imprinted polymer extraction of chloramphenicol from honey.
Food Chemistry, 141, (1), 23-28, (2013)
   
chloramphenicol
Kara M et al., Combining molecular imprinted nanoparticles with surface plasmon resonance nanosensor for chloramphenicol detection in honey.
Journal of Applied Polymer Science, 129, (4), 2273-2279, (2013)
   
chloramphenicol
Proceeding, Shen HX et al, Preparation and Recognition Performance of Chloramphenicol Molecularly Imprinted Polymer,
In: Applied Mechanics and Materials, Sun MJ, Zhang YJ (Eds.), 192-196, (2013)
   
chloramphenicol
Zhang Y et al., Synthesis and Evaluation of Molecularly Imprinted Polymeric Microspheres for Chloramphenicol by Aqueous Suspension Polymerization as a High Performance Liquid Chromatography Stationary Phase.
Bulletin of the Korean Chemical Society, 34, (6), 1839-1844, (2013)
   
chloramphenicol
Du XJ et al., Substitution of antibody with molecularly imprinted 96-well plate in chemiluminescence enzyme immunoassay for the determination of chloramphenicol residues.
Food and Agricultural Immunology, 25, (3), 411-422, (2014)
   
chloramphenicol
Gao F et al., Detection and Quantification of Chloramphenicol in Milk and Honey Using Molecularly Imprinted Polymers: Canadian Penny-Based SERS Nano-Biosensor.
Journal of Food Science, 79, (12), N2542-N2549, (2014)
   
chloramphenicol
He GW et al., A Sensitive and Selective Amperometric Immunosensor for Chloramphenicol Detection Based on Magnetic Nanocomposites Modify Screen-Printed Carbon Electrode as a Disposable Platform.
International Journal of Electrochemical Science, 9, 6962-6974, (2014)
   
chloramphenicol
Li XQ et al., Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder.
Analytica Chimica Acta, 807, 75-83, (2014)
   
chloramphenicol
Liu J et al., Precipitate Preparation of Chloramphenicol Molecularly Imprinted Nanospheres By Electron Beam Radiation.
Polymer Materials Science and Engineering, 30, (7), 143-148, (2014)
   
chloramphenicol
Lu XN, Detection and quantification of chloramphenicol in milk and honey using molecularly imprinted polymers: Canadian penny based SERS nanobiosensor.
Abstracts of Papers of the American Chemical Society, 248, (AGFD), 73-(2014)
   
chloramphenicol
Wang YD et al., Synthesis of Chitosan-Based Molecularly Imprinted Polymers for Pre-Concentration and Clean-Up of Chloramphenicol.
Adsorption Science & Technology, 32, (4), 321-330, (2014)
   
chloramphenicol
Chen HY et al., Preparation of molecularly imprinted polymers by microwave-assisted polymerization for the extraction of chloramphenicol from honey.
Chemical Journal of Chinese Universities, 36, (1), 67-73, (2015)
   
chloramphenicol
Chen S et al., A portable and antibody-free sandwich assay for determination of chloramphenicol in food based on a personal glucose meter.
Analytical and Bioanalytical Chemistry, 407, (9), 2499-2507, (2015)
   
chloramphenicol
Ebarvia BS et al., Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer.
Talanta, 144, 1260-1265, (2015)
   
chloramphenicol
Lian WJ et al., Biomacromolecular Logic Devices Based on Simultaneous Electrocatalytic and Electrochemiluminescence Responses of Ru(bpy)32+ at Molecularly Imprinted Polymer Film Electrodes.
The Journal of Physical Chemistry C, 119, (34), 20003-20010, (2015)
   
chloramphenicol
Yang GM et al., Electrochemical sensor for chloramphenicol based on novel multiwalled carbon nanotubes@molecularly imprinted polymer.
Biosensors and Bioelectronics, 64, 416-422, (2015)
   
chloramphenicol
Amjadi M et al., A sensitive fluorescent nanosensor for chloramphenicol based on molecularly imprinted polymer-capped CdTe quantum dots.
Luminescence, 31, (3), 633-639, (2016)
   
chloramphenicol
Armenta S et al., Highly selective solid-phase extraction sorbents for chloramphenicol determination in food and urine by ion mobility spectrometry.
Analytical and Bioanalytical Chemistry, 408, (29), 8559-8567, (2016)
   
chloramphenicol
Dai JD et al., Novel pitaya-inspired well-defined core-shell nanospheres with ultrathin surface imprinted nanofilm from magnetic mesoporous nanosilica for highly efficient chloramphenicol removal.
Chemical Engineering Journal, 284, 812-822, (2016)
   
Chloramphenicol
Proceeding, Edańol YDG et al, Potentiometric determination of a regulated veterinary drug via MIP-modified electrode,
71-74, (2016)
   
chloramphenicol
Gaugain M et al., Comprehensive validation of a liquid chromatography-tandem mass spectrometry method for the confirmation of chloramphenicol in urine including stability of the glucuronide conjugate and efficiency of deconjugation.
Journal of Chromatography B, 1011, 145-150, (2016)
   
chloramphenicol
He JS et al., Magnetic organic-inorganic nanocomposite with ultrathin imprinted polymers via an in situ surface-initiated approach for specific separation of chloramphenicol.
RSC Advances, 6, (74), 70383-70393, (2016)
   
chloramphenicol
Sai N et al., A novel enrichment imprinted crystalline colloidal array for the ultratrace detection of chloramphenicol.
Talanta, 161, 1-7, (2016)
   
chloramphenicol
Samanidou V et al., Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk.
Analytica Chimica Acta, 914, 62-74, (2016)
   
chloramphenicol
Wang XY et al., Preparation and Application of the Core-Shell Carbon Nanotubes-Molecularly Imprinted Composite for Chloramphenicols.
Journal of Analytical Science, 32, (6), 758-762, (2016)
   
chloramphenicol
Wei SL et al., Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples.
Journal of Chromatography A, 1473, 19-27, (2016)
   
chloramphenicol
Xie AT et al., Hollow imprinted polymer nanorods with a tunable shell using halloysite nanotubes as a sacrificial template for selective recognition and separation of chloramphenicol.
RSC Advances, 6, (56), 51014-51023, (2016)
   
chloramphenicol
Ahmed MB et al., Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application.
Science of The Total Environment, 609, 885-895, (2017)
   
chloramphenicol
Wang XY et al., Preparation and Application of Molecularly Imprinted Polymers for Chloramphenicol Based on Ionic Liquids Assistance.
Journal of Instrumental Analysis, 36, (1), 18-24, (2017)
   
chloramphenicol
Xie YF et al., Selective detection of chloramphenicol in milk based on a molecularly imprinted polymer-surface-enhanced Raman spectroscopic nanosensor.
Journal of Raman Spectroscopy, 48, (2), 204-210, (2017)
   
chloramphenicol
You AM et al., Colorimetric Chemosensor for Chloramphenicol Based on Colloidal Magnetically Assembled Molecularly Imprinted Photonic Crystals.
Journal of the Chinese Chemical Society, 64, (10), 1235-1241, (2017)
   
chloramphenicol
Zhao FN et al., Selective Determination of Chloramphenicol in Milk Samples by the Solid-Phase Extraction Based on Dummy Molecularly Imprinted Polymer.
Food Analytical Methods, 10, (7), 2566-2575, (2017)
   
chloramphenicol
Zhao XJ et al., Highly Sensitive Molecularly Imprinted Sensor Based on Platinum Thin-film Microelectrode for Detection of Chloramphenicol in Food Samples.
Electroanalysis, 29, (8), 1918-1924, (2017)
   
chloramphenicol
Cardoso AR et al., In-situ generated molecularly imprinted material for chloramphenicol electrochemical sensing in waters down to the nanomolar level.
Sensors and Actuators B: Chemical, 256, 420-428, (2018)
   
chloramphenicol
Kunsa-Ngiem S et al., Magnetic molecularly imprinted polymer prepared by microwave heating for confirmatory determination of chloramphenicol in chicken feed using high-performance liquid chromatography-tandem mass spectrometry.
Journal of Environmental Science and Health, Part B, 53, (11), 738-745, (2018)
   
chloramphenicol
Li ZW et al., Preparation of magnetic molecularly imprinted polymers with double functional monomers for the extraction and detection of chloramphenicol in food.
Journal of Chromatography B, 1100-1101, 113-121, (2018)
   
chloramphenicol
Lian ZR et al., Selective detection of chloramphenicol based on molecularly imprinted solid-phase extraction in seawater from Jiaozhou Bay, China.
Marine Pollution Bulletin, 133, 750-755, (2018)
   
chloramphenicol
Munawar A et al., Investigating nanohybrid material based on 3D CNTs@Cu nanoparticle composite and imprinted polymer for highly selective detection of chloramphenicol.
Journal of Hazardous Materials, 342, 96-106, (2018)
   
chloramphenicol
Xie YF et al., Simultaneous Determination of Erythromycin, Tetracycline, and Chloramphenicol Residue in Raw Milk by Molecularly Imprinted Polymer Mixed with Solid-Phase Extraction.
Food Analytical Methods, 11, (2), 374-381, (2018)
   
chloramphenicol
Cardoso AR et al., Molecularly-imprinted chloramphenicol sensor with laser-induced graphene electrodes.
Biosensors and Bioelectronics, 124-125, 167-175, (2019)
   
chloramphenicol
Jia BJ et al., Detection of chloramphenicol in meat with a chemiluminescence resonance energy transfer platform based on molecularly imprinted graphene.
Analytica Chimica Acta, 1063, 136-143, (2019)
   
chloramphenicol
Liu JB et al., Theoretical and experimental research on self-assembly system of molecularly imprinted polymers formed via chloramphenicol and methacrylic acid.
Journal of Separation Science, 42, (3), 769-777, (2019)
   
chloramphenicol
Qin D et al., Fast extraction of chloramphenicol from marine sediments by using magnetic molecularly imprinted nanoparticles.
Microchimica Acta, 186, (7), Article428-(2019)
   
chloramphenicol
Roushani M et al., Impedimetric ultrasensitive detection of chloramphenicol based on aptamer MIP using a glassy carbon electrode modified by 3-ampy-RGO and silver nanoparticle.
Colloids and Surfaces B: Biointerfaces, 183, Article110451-(2019)
   
chloramphenicol
Sai N et al., A novel photonic sensor for the detection of chloramphenicol.
Arabian Journal of Chemistry, 12, (8), 4398-4406, (2019)
   
chloramphenicol
Vu VP et al., Possible detection of antibiotic residue using molecularly imprinted polyaniline-based sensor.
Vietnam Journal of Chemistry, 57, (3), 328-333, (2019)
   
chloramphenicol
Mohamed Idris Z et al., Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption.
Journal of Environmental Chemical Engineering, 8, (5), Article103981-(2020)
   
chloramphenicol
Zhang Z et al., Molecularly imprinted polymer functionalized flower-like BiOBr microspheres for photoelectrochemical sensing of chloramphenicol.
Electrochimica Acta, 344, Article136161-(2020)
   
chloramphenicol
Amiripour F et al., Design of turn-on luminescent sensor based on nanostructured molecularly imprinted polymer-coated zirconium metal-organic framework for selective detection of chloramphenicol residues in milk and honey.
Food Chemistry, 347, Article129034-(2021)
   
chloramphenicol
Li SH et al., Novel chloramphenicol sensor based on aggregation-induced electrochemiluminescence and nanozyme amplification.
Biosensors and Bioelectronics, 176, Article112944-(2021)
   
chloramphenicol-glucuronide
Gaugain M et al., Comprehensive validation of a liquid chromatography-tandem mass spectrometry method for the confirmation of chloramphenicol in urine including stability of the glucuronide conjugate and efficiency of deconjugation.
Journal of Chromatography B, 1011, 145-150, (2016)
   
chloramphenicol succinate
Zhang NW et al., Molecularly Imprinted Membrane-Based Sensor for the Detection of Chloramphenicol Succinate Residue in Milk.
Chinese Journal of Analytical Chemistry, 36, (10), 1380-1384, (2008)
   
chloramphenicol succinate
Zhang NW et al., Preparation of chloramphenicol succinate molecularly imprinted membrane and study of its absorption characteristic.
Acta Chimica Sinica, 66, (17), 1961-1966, (2008)
   
chloramphenicol succinate
Li F et al., A Conductometric Sensor for Determination of HS-CAP in Milk Based on Molecularly Imprinted Films.
Journal of Shanghai Jiaotong University (Agricultural Science), 27, (6), 566-571, (2009)
   
chloramphenicol succinate
Zhang NW et al., Preparation of Chloramphenicol Succinate Molecularly Imprinted Polysulfone Membrane and Preliminary Studies on Its Electrochemical and Absorption Ability.
Journal of Huazhong Agricultural University, 28, (5), 591-594, (2009)
   
chlorantraniliprole
Rossi E et al., Detection of chlorantraniliprole residues in tomato using field-deployable MIP photonic sensors.
Microchimica Acta, 188, (3), Article70-(2021)
   
chlordecone
Bosman P et al., Development and Application of Molecularly Imprinted Polymers for the Selective Extraction of Chlordecone from Bovine Serum.
Separations, 8, (12), ArticleNo237-(2021)
   
chlordiazepoxide
Ariffin MM et al., Molecularly Imprinted Solid-Phase Extraction of Diazepam and Its Metabolites from Hair Samples.
Analytical Chemistry, 79, (1), 256-262, (2007)
   
chlordiazepoxide
Figueiredo EC et al., Quantitation of drugs via molecularly imprinted polymer solid phase extraction and electrospray ionization mass spectrometry: benzodiazepines in human plasma.
Analyst, 136, (18), 3753-3757, (2011)
   
chlordiazepoxide
Motaharian A et al., Electrochemical sensor based on a carbon paste electrode modified by graphene nanosheets and molecularly imprinted polymer nanoparticles for determination of a chlordiazepoxide drug.
Analytical Methods, 8, (33), 6305-6312, (2016)
   
chlordiazepoxide
Khodadoust S et al., Preparation of a magnetic molecularly imprinted polymer for the selective adsorption of chlordiazepoxide and its determination by central composite design optimized HPLC.
New Journal of Chemistry, 42, (17), 14444-14452, (2018)
   
chlorfenvinphos
Azab HA et al., Luminescence recognition of different organophosphorus pesticides by the luminescent Eu(III)-pyridine-2,6-dicarboxylic acid probe.
Analytica Chimica Acta, 759, 81-91, (2013)
   
chloridazon
Ghorbani A et al., Detection of Chloridazon in Aqueous Matrices Using a Nano-Sized Chloridazon-Imprinted Polymer-Based Voltammetric Sensor.
International Journal of Electrochemical Science, 15, 2913-2922, (2020)
   
chloride
Zhu GF et al., Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.
Journal of Chromatography A, 1532, 40-49, (2018)
   
chloride ion
Shinohara H et al., Ion-sieving of electrosynthesized polypyrrole films.
Journal of the Chemical Society-Chemical Communications, (1), 87-88, (1986)
   
chloride ion
Kamata K et al., Size-dependent photochemical anion recognition by ion-templated polyviologen film.
Electrochemistry, 67, (12), 1189-1191, (1999)
   
chloride ion
Chen ZD et al., Application of "Ion Imprinted" Polyaniline Electrode Column Modulated by Potential in the Analysis of Anions.
Journal of Instrumental Analysis, 30, (9), 953-958, (2011)
   
chloride ion
Proceeding, Liu Y et al, The development of chloride ion selective polypyrrole thin film on a layer-by-layer carbon nanotube working electrode,
Wu HF (Ed.), Art. No. 798315, (2011)
   
chlorimuron-ethyl
Li XL et al., Optimization of molecularly imprinted poly (MAA-co-AM) composite membranes for evaluation of chlorimuron-ethyl herbicide.
Asian Journal of Chemistry, 25, (6), 3473-3478, (2013)
   
chlorimuron-ethyl
Liang T et al., Determination of Sulfonylurea Herbicides in Grain Samples by Matrix Solid-Phase Dispersion with Mesoporous Structured Molecularly Imprinted Polymer.
Food Analytical Methods, 12, (9), 1938-1948, (2019)
   
chlorinated phenols
Chang LM et al., Synthesis and properties of core-shell magnetic molecular imprinted polymers.
Applied Surface Science, 258, (17), 6660-6664, (2012)
   
chloroacetamide herbicides
Zhang L et al., Selective trace analysis of chloroacetamide herbicides in food samples using dummy molecularly imprinted solid phase extraction based on chemometrics and quantum chemistry.
Analytica Chimica Acta, 729, (1), 36-44, (2012)
   
chloroacetamide herbicides
Wang Y et al., Molecularly imprinted solid-phase extraction coupled with gas chromatography for the determination of four chloroacetamide herbicides in soil.
Analytical Methods, 7, (15), 6411-6418, (2015)
   
chloroacetanilide herbicides
Hu XG et al., Molecularly imprinted polymer coated on stainless steel fiber for solid-phase microextraction of chloroacetanilide herbicides in soybean and corn.
Journal of Chromatography A, 1217, (38), 5875-5882, (2010)
   
chloroacetanilide herbicides
Hu XG et al., Novel liquid-liquid-solid microextraction method with molecularly imprinted polymer-coated stainless steel fiber for aqueous sample pretreatment.
Journal of Chromatography A, 1218, (25), 3935-3939, (2011)
   
chloroacetic acids
Najafi M et al., Selective recognition of chloroacetic acids by imprinted polyaniline film.
Journal of Applied Polymer Science, 121, (1), 292-298, (2011)
   
5-Chlorobenzisoxazole
Bonomi P et al., Modulation of imprinting efficiency in nanogels with catalytic activity in the Kemp elimination.
Journal of Molecular Recognition, 25, (6), 352-360, (2012)
   
α-chloro-DDT
Wang H et al., Determination of dicofol in aquatic products using molecularly imprinted solid-phase extraction coupled with GC-ECD detection.
Talanta, 85, (4), 2100-2105, (2011)
   
α-chloro-DDT
Yan H et al., Ionic liquid-mediated molecularly imprinted solid-phase extraction coupled with gas chromatography-electron capture detector for rapid screening of dicofol in vegetables.
Journal of Chromatography A, 1307, 21-26, (2013)
   
α-chloro-DDT
Yan HY et al., Ionic liquid molecularly imprinted polymers for application in pipette-tip solid-phase extraction coupled with gas chromatography for rapid screening of dicofol in celery.
Journal of Chromatography A, 1361, 53-59, (2014)
   
α-chloro-dichlorodiphenyltrichloroethane
Yan HY et al., Ionic liquid molecularly imprinted polymers for application in pipette-tip solid-phase extraction coupled with gas chromatography for rapid screening of dicofol in celery.
Journal of Chromatography A, 1361, 53-59, (2014)
   
1-chloro-2,4-dinitrobenzene
Uzuriaga-Sánchez RJ et al., Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound.
Materials Science and Engineering: C, 74, 365-373, (2017)
   
1-chloro-2,4-dinitrobenzene
Ruiz-Córdova GA et al., Electrochemical sensing using magnetic molecularly imprinted polymer particles previously captured by a magneto-sensor.
Talanta, 181, 19-23, (2018)
   
5-chloro-2,4-dinitrotoluene
Goud KY et al., Development of highly selective electrochemical impedance sensor for detection of sub-micromolar concentrations of 5-Chloro-2,4-dinitrotoluene.
Journal of Chemical Sciences, 128, (5), 763-770, (2016)
   
chloroform
Tominaga Y et al., Development of molecularly imprinted porous polymers for selective adsorption of gaseous compounds.
Microporous And Mesoporous Materials, 156, (1), 161-165, (2012)
   
chlorogenic acid
Wu L et al., Determination of Chlorogenic Acid in Tobacco by Molecularly Imprinted Polymer Piezoelectric Bio-mimetic Sensor.
Tobacco Science & Technology, (6), 6-19+28, (2004)
   
chlorogenic acid
Wu L et al., Development of Molecularly Imprinted Polymer Piezoelectric Bio-mimetic Sensor for Chlorogenic Acid.
Journal of Wenzhou University (Natural Sciences), 25, (2), 19-24, (2004)
   
chlorogenic acid
Li H et al., Preparation and Behavior Test of Chlorogenic Acid Imprinted Polymer Microspheres by Precipitation Polymerization Technique.
Journal of Jishou University (Natural Science Edition), 29, (6), 88-91, (2008)
   
chlorogenic acid
Zhang HB et al., Preparation and Application of Chlorogenic Acid Imprinted Solid Phase Extraction Materials Based on Multiwalled Carbon Nanotubes.
Chinese Journal of Analytical Chemistry, 37, (7), 955-959, (2009)
   
chlorogenic acid
Gu XH et al., Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of Traditional Chinese Medicine.
Analytica Chimica Acta, 675, (1), 64-70, (2010)
   
chlorogenic acid
Gu XH et al., Synthesis and Evaluation of Magnetic Molecularly Imprinted Polymer Microspheres of Chlorogenic Acid.
Journal of Changshu Institute of Technology, 24, (2), 56-59, (2010)
   
chlorogenic acid
Li XF et al., Computer simulation and preparation of molecularly imprinted polymer membranes with chlorogenic acid as template.
Polymer International, 60, (4), 592-598, (2011)
   
chlorogenic acid
Li XF et al., Computer Simulation and Preparation of Molecularly Imprinted Composite Membranes with Chlorogenic Acid as Template.
Acta Chimica Sinica, 69, (6), 693-700, (2011)
   
chlorogenic acid
Santos WdJR et al., Novel electrochemical sensor for the selective recognition of chlorogenic acid.
Analytica Chimica Acta, 695, (1-2), 44-50, (2011)
   
chlorogenic acid
Golsefidi MA et al., Design, synthesis and evaluation of a molecularly imprinted polymer for hollow fiber - solid phase microextraction of chlorogenic acid in medicinal plants.
Journal of Chromatography A, 1229, (1), 24-29, (2012)
   
chlorogenic acid
Li H et al., Surface imprinting on nano-TiO2 as sacrificial material for the preparation of hollow chlorogenic acid imprinted polymer and its recognition behavior.
Applied Surface Science, 264, 644-652, (2013)
   
chlorogenic acid
Tan XZ et al., Preparation and adsorption behavior of chlorogenic acid imprinted polymer by using nano-TiO2 as sacrificial support material.
Chemical Industry and Engineering Progress, 32, (2), 388-393, (2013)
   
chlorogenic acid
Niu YL et al., Synthesis of chlorogenic acid imprinted chromatographic packing by surface-initiated atom transfer radical polymerization and its application.
Chemical Research in Chinese Universities, 30, (5), 855-862, (2014)
   
chlorogenic acid
Li LJ et al., Preparation and properties of electrochemical sensor for chlorogenic acid based on molecular imprinted polymers.
Chinese Journal of Analysis Laboratory, 34, (5), 503-506, (2015)
   
chlorogenic acid
Miura C et al., Molecularly imprinted polymer for chlorogenic acid by modified precipitation polymerization and its application to extraction of chlorogenic acid from Eucommia ulmodies leaves.
Journal of Pharmaceutical and Biomedical Analysis, 114, 139-144, (2015)
   
chlorogenic acid
Tang SP et al., Surface Sites Distribution on Chlorogenic Acid Imprinted Polymers Based on Langmuir-Freundlich Isotherm Model by Frontal Liquid Chromatography Technique.
Asian Journal of Chemistry, 27, (3), 1028-1034, (2015)
   
chlorogenic acid
Hao Y et al., Selective extraction and determination of chlorogenic acid in fruit juices using hydrophilic magnetic imprinted nanoparticles.
Food Chemistry, 200, 215-222, (2016)
   
chlorogenic acid
Koirala K et al., Biomimetic potentiometric sensor for chlorogenic acid based on electrosynthesized polypyrrole.
Sensors and Actuators B: Chemical, 222, 391-396, (2016)
   
chlorogenic acid
Li GZ et al., Deep Eutectic Solvents Modified Molecular Imprinted Polymers for Optimized Purification of Chlorogenic Acid from Honeysuckle.
Journal of Chromatographic Science, 54, (2), 271-279, (2016)
   
chlorogenic acid
Liu QQ et al., A novel chitosan base molecularly imprinted membrane for selective separation of chlorogenic acid.
Separation and Purification Technology, 164, 70-80, (2016)
   
chlorogenic acid
Ribeiro CM et al., Application of a nanostructured platform and imprinted sol-gel film for determination of chlorogenic acid in food samples.
Talanta, 156-157, 119-125, (2016)
   
chlorogenic acid
Tang WY et al., Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea.
Talanta, 152, 1-8, (2016)
   
chlorogenic acid
Yan L et al., Synthesis and Application of Novel 3D Magnetic Chlorogenic Acid Imprinted Polymers Based on a Graphene-Carbon Nanotube Composite.
Journal of Agricultural and Food Chemistry, 64, (15), 3091-3100, (2016)
   
chlorogenic acid
Ji WH et al., Selective extraction and determination of chlorogenic acids as combined quality markers in herbal medicines using molecularly imprinted polymers based on a mimic template.
Analytical and Bioanalytical Chemistry, 409, (30), 7087-7096, (2017)
   
chlorogenic acid
Peng MJ et al., Magnetic Porous Molecularly Imprinted Polymers Based on Surface Precipitation Polymerization and Mesoporous SiO2 Layer as Sacrificial Support for Efficient and Selective Extraction and Determination of Chlorogenic Acid in Duzhong Brick Tea.
Molecules, 23, (7), ArticleNo1554-(2018)
   
chlorogenic acid
Zhao YY et al., Surface imprinted polymers based on amino-hyperbranched magnetic nanoparticles for selective extraction and detection of chlorogenic acid in Honeysuckle tea.
Talanta, 181, 271-277, (2018)
   
chlorogenic acid
Peng C et al., Facile Synthesis of Boronate Affinity-Based Molecularly Imprinted Monolith with Reduced Capturing pH Towards Cis-Diol-Containing Compounds.
Chromatographia, 82, (7), 1029-1040, (2019)
   
chlorogenic acid
Peng S et al., Preparation of hydrophilic, magnetic molecularly imprinted resins of chlorogenic acid and evaluation of its solid-phase extraction performance.
Chinese Journal of Chromatography, 37, (3), 293-298, (2019)
   
chlorogenic acid
Sun YK et al., Cost-effective imprinting to minimize consumption of template in room-temperature ionic liquid for fast purification of chlorogenic acid from the extract of E. ulmoides leaves.
Analytical and Bioanalytical Chemistry, 411, (6), 1261-1271, (2019)
   
chlorogenic acid
Li GF et al., Efficient synthesis of boronate affinity-based chlorogenic acid-imprinted magnetic nanomaterials for the selective recognition of chlorogenic acid in fruit juices.
New Journal of Chemistry, 44, (26), 11013-11021, (2020)
   
chlorogenic acid
Gao Y et al., Fabrication of acid-resistant imprinted layer on magnetic nanomaterials for selective extraction of chlorogenic acid in Honeysuckle.
Analytica Chimica Acta, 1161, Article338475-(2021)
   
chloroguaiacol
Tarley CRT et al., Amperometric determination of chloroguaiacol at submicromolar levels after on-line preconcentration with molecularly imprinted polymers.
Talanta, 69, (1), 259-266, (2006)
   
2-chloromandelic acid
Li P et al., Preparation of molecularly imprinted polymer with racemic 2-chloromandelic acid and study on its chiral resolution.
Acta Chimica Sinica, 61, (11), 1885-1889, (2003)
   
2-chloromandelic acid
Li JY et al., One-pot synthesis of surface-functionalized molecularly imprinted polymer microspheres by iniferter-induced "living" radical precipitation polymerization.
Journal of Polymer Science Part A: Polymer Chemistry, 48, (15), 3217-3228, (2010)
   
4-chloro-2-methoxyphenol
Tarley CRT et al., Amperometric determination of chloroguaiacol at submicromolar levels after on-line preconcentration with molecularly imprinted polymers.
Talanta, 69, (1), 259-266, (2006)
   
1-chloro-3-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol
Guo XC et al., Molecularly imprinted solid phase extraction method for simultaneous determination of seven nitroimidazoles from honey by HPLC-MS/MS.
Talanta, 166, 101-108, (2017)
   
4-chloro-3-methylphenol
Abu-Alsoud GF et al., Assessment of cross-reactivity in a tailor-made molecularly imprinted polymer for phenolic compounds using four adsorption isotherm models.
Journal of Chromatography A, 1629, Article461463-(2020)
   
(4-chloro-2-methylphenoxy)acetic acid
Zhou XR et al., Computer simulation and synthesis of stimuli-responsive polymer by sol-gel for selective recognition of (4-chloro-2-methylphenoxy)acetic acid.
Polymer International, 61, (12), 1778-1785, (2012)
   
4-chloro-2-methylphenoxy acetic acid
Omidi F et al., Coupling of Molecular Imprinted Polymer Nanoparticles by High Performance Liquid Chromatography as an Efficient Technique for Sensitive and Selective Trace Determination of 4-Chloro-2-Methylphenoxy Acetic Acid in Complex Matrices.
Iranian Journal of Public Health, 43, (5), 645-657, (2014)
   
8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo[b,e]-[1,4]diazepine
Ganjali MR et al., Nano-Composite Clozapine Potentiometric Carbon Paste Sensor Based on Biomimetic Molecular Imprinted Polymer.
International Journal of Electrochemical Science, 7, (5), 4756-4765, (2012)
   
chloromycetin
Wu YQ, Investigation on the in-situ synthesis of molecular imprint polymer for on-line monintoring Chloromycetin by piezoelectricity sensor.
Piezoelectrics and Acoustooptics, 29, (6), 660-662, (2007)
   
chloromycetin
Wu YQ et al., Investigation on the in-situ synthesis of molecular imprint polymer for on-line monintoring chloromycetin by piezoelectricity sensor.
Piezoelectrics and Acoustooptics, 31, (4), 589-590,593, (2009)
   
chloromycetin
Li GZ et al., Deep eutectic solvents for the purification of chloromycetin and thiamphenicol from milk.
Journal of Separation Science, 40, (3), 625-634, (2017)
   
6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine
Fuchiwaki Y et al., Development of an electrochemical sensing system for 6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT) utilizing an amalgamated gold electrode and artificial sensor receptor.
Electrochemistry, 75, (9), 709-714, (2007)
   
6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine
Fuchiwaki Y et al., 6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine (CAT) sensor based on biomimetic recognition utilizing a molecularly imprinted artificial receptor.
Analytical Sciences, 23, (1), 49-53, (2007)
   
6-chloro-N,N-diethyl-1,3,5-triazine-2,4-diamine
Fuchiwaki Y et al., 6-Chloro-N,N-Diethyl-1,3,5-Triazine-2,4-Diamine (Simazine) Electrochemical Sensing Chip Based on Biomimetic Recognition Utilizing a Molecularly Imprinted Polymer Layer on a Gold Chip.
Analytical Letters, 41, (8), 1398-1407, (2008)
   
4-chlorophenol
Caro E et al., On-line solid-phase extraction with molecularly imprinted polymers to selectively extract substituted 4-chlorophenols and 4-nitrophenol from water.
Journal of Chromatography A, 995, (1-2), 233-238, (2003)
   
4-chlorophenol
Shen XT et al., Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity.
Chemical Communications, (11), 1163-1165, (2007)
   
2-chlorophenol
Shen XT et al., Synthesis of molecular imprinted polymer coated photocatalysts with high selectivity.
Chemical Communications, (11), 1163-1165, (2007)
   
2-chlorophenol
Wang Y et al., Preparation and Evaluation of 2-Chlorophenol Imprinted Polymers by Bulk Polymerization.
Journal of Analytical Science, 24, (5), 531-534, (2008)
   
2-chlorophenol
El-Sheikh AH et al., Derivatization of 2-chlorophenol with 4-amino-anti-pyrine: A novel method for improving the selectivity of molecularly imprinted solid phase extraction of 2-chlorophenol from water.
Talanta, 83, (2), 667-673, (2010)
   
4-chlorophenol
Qi PP et al., Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols.
Polymer, 51, (23), 5417-5423, (2010)
   
4-chlorophenol
Sergeyeva TA et al., Towards development of colorimetric test-systems for phenols detection based on computationally-designed molecularly imprinted polymer membranes.
Materials Science and Engineering: C, 30, (3), 431-436, (2010)
   
2-chlorophenol
Shiraishi Y et al., Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer.
New Journal of Chemistry, 34, (4), 714-717, (2010)
   
3-chlorophenol
Shiraishi Y et al., Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer.
New Journal of Chemistry, 34, (4), 714-717, (2010)
   
4-chlorophenol
Shiraishi Y et al., Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer.
New Journal of Chemistry, 34, (4), 714-717, (2010)
   
2-chlorophenol
Popov SA et al., Preconcentration of 2,4-dichlorophenoxyacetic acid on molecularly imprinted polymers and its subsequent determination by high performance liquid chromatography.
Journal of Analytical Chemistry, 66, (1), 6-10, (2011)
   
3-chlorophenol
Wang X et al., Selective Removal of 3-Chlorophenol from Aqueous Solution Using Surface Molecularly Imprinted Microspheres.
Journal of Chemical & Engineering Data, 56, (6), 2793-2801, (2011)
   
4-chlorophenol
Ye T et al., One-bath synthesis of hydrophilic molecularly imprinted quantum dots for selective recognition of chlorophenol.
Chinese Chemical Letters, 22, (10), 1253-1256, (2011)
   
4-chlorophenol
Chang LM et al., Synthesis and properties of core-shell magnetic molecular imprinted polymers.
Applied Surface Science, 258, (17), 6660-6664, (2012)
   
4-chlorophenol
Chikkakuntappa R et al., Microprobe investigation of molecularly imprinted polymers.
Plastics Research Online, (2013)
   
4-chlorophenol
Feng QZ et al., Molecularly Imprinted Micro-Solid-Phase Extraction for the Selective Determination of Phenolic Compounds in Environmental Water Samples with High Performance Liquid Chromatraphy.
Open Journal of Polymer Chemistry, 3, (3), 54-62, (2013)
   
4-chlorophenol
Pasang T et al., Preparation and Characterization of Molecularly Imprinted Polymer for Selective Adsorption of 4-Chlorophenol Molecules by Physical Selectivity Method.
Industrial & Engineering Chemistry Research, 52, (22), 7445-7452, (2013)
   
4-chlorophenol
Dong J et al., Sampling 4-chlorophenol in water by DGT technique with molecularly imprinted polymer as binding agent and nylon membrane as diffusive layer.
Analytica Chimica Acta, 822, 69-77, (2014)
   
4-chlorophenol
Pasang T et al., Synthesis and characterization of methacrylic acid-based molecular imprinted polymers by positron lifetime spectroscopy.
Polymer Engineering & Science, 54, (3), 667-674, (2014)
   
4-chlorophenol
Qi SD et al., Off-line hyphenation of molecularly imprinted magnetic nanoparticle-based extraction with large volume sample stacking capillary electrophoresis for high-sensitivity detection of trace chloro-phenols.
Analytical Methods, 6, (4), 1219-1226, (2014)
   
4-Chlorophenol
Pasang T et al., Physical Selectivity of Molecularly Imprinted polymers evaluated through free volume size distributions derived from Positron Lifetime Spectroscopy.
Journal of Physics: Conference Series, 618, (1), ArticleNo012033-(2015)
   
4-chlorophenol
Qiu XZ et al., Determination of Phenolic Compounds in Environmental Water by HPLC Combination with On-Line Solid-Phase Extraction Using Molecularly Imprinted Polymers.
Journal of Nanoscience and Nanotechnology, 15, (12), 9578-9584, (2015)
   
4-chlorophenol
Lu WH et al., Molecularly imprinted polymers for dispersive solid-phase extraction of phenolic compounds in aqueous samples coupled with capillary electrophoresis.
Electrophoresis, 37, (19), 2487-2495, (2016)
   
2-chlorophenol
Lu WH et al., Molecularly imprinted polymers for dispersive solid-phase extraction of phenolic compounds in aqueous samples coupled with capillary electrophoresis.
Electrophoresis, 37, (19), 2487-2495, (2016)
   
2-chlorophenol
Shen HY et al., Highly selective amino-functionalized magnetic molecularly imprinted polymers: absorbents for dispersive solid phase extraction and trace level analysis of chlorophenols in seawater.
RSC Advances, 6, (84), 81330-81340, (2016)
   
4-chlorophenol
Wang B et al., A highly selective electrochemical sensor for 4-chlorophenol determination based on molecularly imprinted polymer and PDDA-functionalized graphene.
Sensors and Actuators B: Chemical, 236, 294-303, (2016)
   
2-chlorophenol
Lu WH et al., Multi-template imprinted polymers for simultaneous selective solid-phase extraction of six phenolic compounds in water samples followed by determination using capillary electrophoresis.
Journal of Chromatography A, 1483, 30-39, (2017)
   
4-chlorophenol
Yin YL et al., Magnetic Molecularly Imprinted Polymer Preconcentration of 4-Chlorophenol with Determination by High-Performance Liquid Chromatography.
Analytical Letters, 50, (1), 117-134, (2017)
   
4-chlorophenol
AL-Ammari RH et al., Electrochemical molecularly imprinted polymer based on zinc oxide/graphene/poly(o-phenylenediamine) for 4-chlorophenol detection.
Synthetic Metals, 254, 141-152, (2019)
   
2-chlorophenol
Hashemi SH et al., Response Surface Methodology of Pre-Concentration of Chorophenols from Seawater Samples by Molecularly Imprinted Stir Bar Sorptive Extraction Combined with HPLC: Box-Behnken Design.
Journal of Chromatographic Science, 57, (3), 279-289, (2019)
   
2-chlorophenol
Abu-Alsoud GF et al., Assessment of cross-reactivity in a tailor-made molecularly imprinted polymer for phenolic compounds using four adsorption isotherm models.
Journal of Chromatography A, 1629, Article461463-(2020)
   
2-chlorophenol
Abu-Alsoud GF et al., Porous thin-film molecularly imprinted polymer device for simultaneous determination of phenol, alkylphenol and chlorophenol compounds in water.
Talanta, 223, Article121727-(2021)
   
2-chlorophenol-4-amino-antipyrine derivative
El-Sheikh AH et al., Derivatization of 2-chlorophenol with 4-amino-anti-pyrine: A novel method for improving the selectivity of molecularly imprinted solid phase extraction of 2-chlorophenol from water.
Talanta, 83, (2), 667-673, (2010)
   
chlorophenols
Shiraishi Y et al., Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer.
New Journal of Chemistry, 34, (4), 714-717, (2010)
   
chlorophenols
Huang CX et al., Molecularly imprinted photocatalyst with a structural analogue of template and its application.
Journal of Hazardous Materials, 248 - 249, 379-386, (2013)
   
chlorophenols
Wang XX et al., Analysis of Chlorophenols in Seawater Samples by Molecular Imprinted Magnetic Composite-based Dispersive Solid Phase Extraction Coupled with Liquid Chromatography.
Journal of Instrumental Analysis, 34, (11), 1213-1219, (2015)
   
chlorophenols
Shen HY et al., Highly selective amino-functionalized magnetic molecularly imprinted polymers: absorbents for dispersive solid phase extraction and trace level analysis of chlorophenols in seawater.
RSC Advances, 6, (84), 81330-81340, (2016)
   
chlorophenols
Ma W et al., Solid-phase extraction of chlorophenols in seawater using a magnetic ionic liquid molecularly imprinted polymer with incorporated silicon dioxide as a sorbent.
Journal of Chromatography A, 1559, 78-85, (2018)
   
chlorophenols
Li G et al., Deep eutectic solvents skeleton typed molecularly imprinted chitosan microsphere coated magnetic graphene oxide for solid-phase microextraction of chlorophenols from environmental water.
Journal of Separation Science, 43, (6), 1063-1070, (2020)
   
2-chlorophenothiazine
Song YP et al., Dummy template molecularly imprinted polymer for solid phase extraction of phenothiazines in meat based on computational simulation.
Food Chemistry, 233, 422-428, (2017)
   
4-chlorophenoxy acetic acid
Wang N et al., Preparation of 4- chlorophenoxy acetic acid molecularly imprinted polymers and study of its performance.
Chemical Sensors (China), 24, (1), 25-29, (2004)
   
4-chlorophenoxyacetic acid
Zhang HT et al., Retention behavior of phenoxyacetic herbicides on a molecularly imprinted polymer with phenoxyacetic acid as a dummy template molecule.
Bioorganic & Medicinal Chemistry, 15, (18), 6089-6095, (2007)
   
4-chlorophenoxyacetic acid
Zhang HT et al., Synthesis and characterization of molecularly imprinted polymers for phenoxyacetic acids.
International Journal of Molecular Sciences, 9, (1), 98-106, (2008)
   
4-chlorophenoxyacetic acid
Han YH et al., Ionic Liquid-Hybrid Molecularly Imprinted Material-Filter Solid-Phase Extraction Coupled with HPLC for Determination of 6-Benzyladenine and 4-Chlorophenoxyacetic Acid in Bean Sprouts.
Journal of Agricultural and Food Chemistry, 65, (8), 1750-1757, (2017)
   
4-chlorophenoxy acetic acid
Han YH et al., Newly designed molecularly imprinted 3-aminophenol-glyoxal-urea resin as hydrophilic solid-phase extraction sorbent for specific simultaneous determination of three plant growth regulators in green bell peppers.
Food Chemistry, 311, Article125999-(2020)
   
4-chlorophenyl (4-vinyl)phenyl carbonate
Qi PP et al., Molecularly imprinted polymers synthesized via semi-covalent imprinting with sacrificial spacer for imprinting phenols.
Polymer, 51, (23), 5417-5423, (2010)
   
chlorophyll
Yu CY et al., Photochemical Effect of Humic Acid Components Separated Using Molecular Imprinting Method Applying Porphyrin-like Substances as Templates in Aqueous Solution.
Environmental Science & Technology, 44, (15), 5812-5817, (2010)
   
chlorophyll
Batlokwa BS et al., Optimal Template Removal from Molecularly Imprinted Polymers by Pressurized Hot Water Extraction.
Chromatographia, 73, (5), 589-593, (2011)
   
chlorophyll
Batlokwa BS et al., A Novel Molecularly Imprinted Polymer for the Selective Removal of Chlorophyll from Heavily Pigmented Green Plant Extracts prior to Instrumental Analysis.
Journal of Chemistry, 2013, Article ID 540240-(2013)
   
chlorophyll
Mokgadi J et al., Pressurized hot water extraction coupled to molecularly imprinted polymers for simultaneous extraction and clean-up of pesticides residues in edible and medicinal plants of the Okavango Delta, Botswana.
Molecular Imprinting, 1, (1), 55-64, (2013)
   
3-chloro-1,2-propandiol
Li Y et al., Identification of 3-chloro-1,2-propandiol using molecularly imprinted composite solid-phase extraction materials.
Analytical and Bioanalytical Chemistry, 406, (25), 6319-6327, (2014)
   
3-chloro-1,2-propandiol
Sun XL et al., Development and Application of 3-Chloro-1,2-propandiol Electrochemical Sensor Based on a Polyaminothiophenol Modified Molecularly Imprinted Film.
Journal of Agricultural and Food Chemistry, 62, (20), 4552-4557, (2014)
   
3-Chloro-1,2-propandiol
Fang M et al., A molecularly imprinted polymers/carbon dots-grafted paper sensor for 3-monochloropropane-1,2-diol determination.
Food Chemistry, 274, 156-161, (2019)
   
3-chloro-1,2-propandiol
Yuan Y et al., A biosensor based on hemoglobin immobilized with magnetic molecularly imprinted nanoparticles and modified on a magnetic electrode for direct electrochemical determination of 3-chloro-1,2-propandiol.
Journal of Electroanalytical Chemistry, 834, 233-240, (2019)
   
3-chloro-1,2-propanediol
Qiu XZ et al., The molecularly imprinted polymer supported by anodic alumina oxide nanotubes membrane for efficient recognition of chloropropanols in vegetable oils.
Food Chemistry, 258, 295-300, (2018)
   
3-chloropropane-1,2-diol
Cheng WW et al., A facile electrochemical method for rapid determination of 3-chloropropane-1,2-diol in soy sauce based on nanoporous gold capped with molecularly imprinted polymer.
Food Control, 134, Article108750-(2022)
   
chloropropanol
Han S et al., Determination of chloropropanol with an imprinted electrochemical sensor based on multi-walled carbon nanotubes/metal-organic framework composites.
RSC Advances, 11, (30), 18468-18475, (2021)
   
[1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine]
Chen LG et al., Determination of imidacloprid in rice by molecularly imprinted-matrix solid-phase dispersion with liquid chromatography tandem mass spectrometry.
Journal of Chromatography B, 897, (1), 32-36, (2012)
   
chlorotoluron
Zhang LM et al., Molecularly imprinted magnetic nanoparticles for determination of the herbicide chlorotoluron by gate-controlled electro-catalytic oxidation of hydrazine.
Microchimica Acta, 182, (1-2), 249-255, (2015)
   
chlorotriazine herbicides
Boonjob W et al., Online Hyphenation of Multimodal Microsolid Phase Extraction Involving Renewable Molecularly Imprinted and Reversed-Phase Sorbents to Liquid Chromatography for Automatic Multiresidue Assays.
Analytical Chemistry, 82, (7), 3052-3060, (2010)
   
4-chlorowarfarin
Haginaka J et al., Retention and molecular-recognition mechanisms of molecularly imprinted polymers for warfarin derivatives and their application for the determination of warfarin in human serum.
Talanta, 232, Article122419-(2021)
   
4-chlorowarfarin
Kubo A et al., Enantioseparation of warfarin derivatives on molecularly imprinted polymers for (S)- and (R)-chlorowarfarin.
Journal of Chromatography A, 1641, Article461995-(2021)
   
chlorphenamine
Guo YS et al., Study on specific solid phase extraction of anticholinergic drugs by molecularly imprinted polymers with structural analogues as templates.
Chinese Journal of Analytical Chemistry, 34, (3), 347-350, (2006)
   
chlorphenamine
Riahi S et al., A computational approach to studying monomer selectivity towards the template in an imprinted polymer.
Journal of Molecular Modeling, 15, (7), 829-836, (2009)
   
chlorpheniramine
Walsh R et al., Synthesis of imprinted beads by aqueous suspension polymerisation for chiral recognition of antihistamines.
Journal of Chromatography B, 879, (30), 3523-3530, (2011)
   
chlorpromazine
Li YH et al., Sensitive determination of phenothiazines in pharmaceutical preparation and biological fluid by flow injection chemiluminescence method using luminol-KMnO4 system.
Talanta, 71, (3), 1124-1129, (2007)
   
chlorpromazine
Song SQ et al., Extraction of chlorpromazine with a new molecularly imprinted polymer from pig urine.
Process Biochemistry, 43, (11), 1209-1214, (2008)
   
chlorpromazine
Figueiredo EC et al., Molecularly imprinted polymers as analyte sequesters and selective surfaces for easy ambient sonic-spray ionization.
Analyst, 135, (4), 726-730, (2010)
   
chlorpromazine
Moreira FTC et al., Biomimetic sensors of molecularly-imprinted polymers for chlorpromazine determination.
Materials Science and Engineering: C, 31, (5), 1121-1128, (2011)
   
chlorpromazine
Liu R et al., Fabrication and Application of Chlorpromazine Molecular Imprinting Film Sensor.
Chinese Journal of Applied Chemistry, 30, (11), 1361-1365, (2013)
   
chlorpromazine
Moraes GdOI et al., A new restricted access molecularly imprinted polymer capped with albumin for direct extraction of drugs from biological matrices: the case of chlorpromazine in human plasma.
Analytical and Bioanalytical Chemistry, 405, (24), 7687-7696, (2013)
   
chlorpromazine
Song YP et al., Dummy template molecularly imprinted polymer for solid phase extraction of phenothiazines in meat based on computational simulation.
Food Chemistry, 233, 422-428, (2017)
   
chlorpromazine
Haginaka J et al., Retention and molecular-recognition mechanisms of molecularly imprinted polymers for promazine derivatives.
Talanta, 205, Article120149-(2019)
   
chlorpromazine
Motaharian A et al., Determination of psychotropic drug chlorpromazine using screen printed carbon electrodes modified with novel MIP-MWCNTs nano-composite prepared by suspension polymerization method.
Sensors and Actuators B: Chemical, 288, 356-362, (2019)
   
chlorpromazine
Nishimura K et al., Preparation and Evaluation of Molecularly Imprinted Polymers for Promazine and Chlorpromazine by Multi-step Swelling and Polymerization: the Application for the Determination of Promazine in Rat Serum by Column-switching LC.
Analytical Sciences, 35, (6), 659-664, (2019)
   
chlorpromazine
Liu YW et al., A novel ratiometric electrochemical sensor based on dual-monomer molecularly imprinted polymer and Pt/Co3O4 for sensitive detection of chlorpromazine hydrochloride.
Analytica Chimica Acta, 1190, Article339245-(2022)
   
chlorpromazine hydrochloride
Niu WF et al., Investigating the post-chemiluminescence behavior of phenothiazine medications in the luminol–potassium ferricyanide system: molecular imprinting–post-chemiluminescence method for the determination of chlorpromazine hydrochloride.
Analytical and Bioanalytical Chemistry, 385, (1), 153-160, (2006)
   
chlorpyrifos
Huai LF et al., Synthesis and Characterization of Molecularly Imprinted Polymer Microspheres for Recognition of Chlorpyrifos.
Chinese Journal of Applied Chemistry, 26, (10), 1144-1148, (2009)
   
chlorpyrifos
Liang RN et al., Potentiometric Sensing of Neutral Species Based on a Uniform-Sized Molecularly Imprinted Polymer as a Receptor.
Angewandte Chemie International Edition, 49, (14), 2556-2559, (2010)
   
chlorpyrifos
Proceeding, Liu J et al, Removal of chlorpyrifos from contaminated water using molecularly imprinted polymeric microspheres,
Art. No. 5514935, (2010)
   
chlorpyrifos
Proceeding, Liu J et al, Molecularly imprinted solid-phase extraction for chlorpyrifos determination in water samples,
In: Advanced Materials Research, Du ZY, Sun XB (Eds.), 947-951, (2010)
   
chlorpyrifos
Lu Q et al., Tuning of the vinyl groups spacing at surface of modified silica in preparation of high density imprinted layer-coated silica nanoparticles: A dispersive solid-phase extraction materials for chlorpyrifos.
Talanta, 81, (3), 959-966, (2010)
   
chlorpyrifos
Xie CG et al., Surface Molecular Self-Assembly for Organophosphate Pesticide Imprinting in Electropolymerized Poly(p-aminothiophenol) Membranes on a Gold Nanoparticle Modified Glassy Carbon Electrode.
Analytical Chemistry, 82, (1), 241-249, (2010)
   
chlorpyrifos
Sanagi MM et al., Determination of organophosphorus pesticides using molecularly imprinted polymer solid phase extraction.
The Malaysian Journal of Analytical Sciences, 15, (2), 175-183, (2011)
   
chlorpyrifos
Wu J et al., TiO2 nanoparticles-enhanced luminol chemiluminescence and its analytical applications in organophosphate pesticide imprinting.
Sensors and Actuators B: Chemical, 160, (1), 511-516, (2011)
   
chlorpyrifos
Xie CG et al., Surface molecular imprinting for chemiluminescence detection of the organophosphate pesticide chlorpyrifos.
Microchimica Acta, 174, (3), 311-320, (2011)
   
chlorpyrifos
Zheng H et al., Research on the Preparation and Performance of Chlorpyrifos Molecularly Imprinted Polymers.
Journal of Chongqing University, 28, (5), 73-76, (2011)
   
chlorpyrifos
Baldim IM et al., Application of the molecularly imprinted solid-phase extraction to the organophosphate residues determination in strawberries.
Analytical and Bioanalytical Chemistry, 404, (6), 1959-1966, (2012)
   
chlorpyrifos
Musavi SM et al., Prepration the Sensor of Imprinting Molecular Polymer Based on Polyaniline to Recognize Agricultural Toxin Chlorpyrifos and Diazinon.
Life Science Journal-Acta Zhengzhou University Overseas Edition, 9, (2), 1280-1285, (2012)
   
chlorpyrifos
Anirudhan TS et al., Synthesis and characterization of vinyl-functionalized multiwalled carbon nanotubes based molecular imprinted polymer for the separation of chlorpyrifos from aqueous solutions.
Journal of Chemical Technology & Biotechnology, 88, (10), 1847-1858, (2013)
   
chlorpyrifos
Sanagi MM et al., Molecularly imprinted polymer solid-phase extraction for the analysis of organophosphorus pesticides in fruit samples.
Journal of Food Composition and Analysis, 32, (2), 155-161, (2013)
   
chlorpyrifos
Uygun ZO et al., A novel impedimetric sensor based on molecularly imprinted polypyrrole modified pencil graphite electrode for trace level determination of chlorpyrifos.
Sensors and Actuators B: Chemical, 188, 78-84, (2013)
   
chlorpyrifos
Wang PP et al., Visible light photoelectrochemical sensor based on Au nanoparticles and molecularly imprinted poly(o-phenylenediamine)-modified TiO2 nanotubes for specific and sensitive detection chlorpyrifos.
Analyst, 138, (3), 939-945, (2013)
   
chlorpyrifos
Yao GH et al., Surface Plasmon Resonance Sensor Based on Magnetic Molecularly Imprinted Polymers Amplification for Pesticide Recognition.
Analytical Chemistry, 85, (24), 11944-11951, (2013)
   
chlorpyrifos
Zhang L et al., Study on the preparation of two kinds of chlorpyrifos imprinted polymers and its recognition properties.
Journal of Food Safety and Quality, 4, (1), 61-70, (2013)
   
chlorpyrifos
Proceeding, Lin GF et al, Construction and Application of Molecularly Imprinted Film Sensor on Determination of Chlorpyrifos in Water,
In: Advanced Materials Research, Mei Z (Ed.), 843-849, (2014)
   
chlorpyrifos
Ma GF et al., Determination of Chlorpyrifos in Rice Based on Magnetic Molecularly Imprinted Polymers Coupled with High-Performance Liquid Chromatography.
Food Analytical Methods, 7, (2), 377-388, (2014)
   
Chlorpyrifos
Wang XY et al., Research on the properties of molecular imprinting polymers synthesized by seed swelling and polymerization method.
Journal of Shenyang Pharmaceutical University, 31, (2), 87-93, (2014)
   
chlorpyrifos
Xu D et al., Molecularly Imprinted Photonic Polymers as Sensing Elements for the Creation of Cross-Reactive Sensor Arrays.
Chemistry - A European Journal, 20, (50), 16620-16625, (2014)
   
chlorpyrifos
Hashemi-Moghaddam H et al., Solid-phase microextraction of chlorpyrifos in fruit samples by synthesised monolithic molecularly imprinted polymer fibres.
International Journal of Environmental Analytical Chemistry, 95, (1), 33-44, (2015)
   
chlorpyrifos
Li SX et al., Potentiometric Detection of Trace-Level Chlorpyrifos in Seawater Using a Polymeric Membrane Electrode Coupled with on-line Molecularly Imprinted Solid-Phase Extraction.
International Journal of Electrochemical Science, 10, 1393-1403, (2015)
   
chlorpyrifos
Ren XH et al., Fluorescent detection of chlorpyrifos using Mn(II)-doped ZnS quantum dots coated with a molecularly imprinted polymer.
Microchimica Acta, 182, (1-2), 193-200, (2015)
   
chlorpyrifos
Tan XC et al., Electrochemical Sensor for Determination of Chlorpyrifos Based on Graphene Modified Electrode and Molecularly Imprinted Polymer.
Chinese Journal of Analytical Chemistry, 43, (3), 387-393, (2015)
   
chlorpyrifos
Zhou MC et al., Determination of Phosphorothioate Pesticides in Environmental Water by Molecularly Imprinted Matrix Solid-Phase Dispersion Coupled with Gas Chromatography and a Nitrogen Phosphorus Detector.
Instrumentation Science & Technology, 43, (6), 669-680, (2015)
   
chlorpyrifos
Zhou MC et al., Molecularly Imprinted Nanomicrospheres as Matrix Solid-Phase Dispersant Combined with Gas Chromatography for Determination of Four Phosphorothioate Pesticides in Carrot and Yacon.
Journal of Analytical Methods in Chemistry, 2015, ArticleID385167-(2015)
   
chlorpyrifos
Binsalom A et al., Development of Solid-Phase Extraction Using Molecularly Imprinted Polymer for the Analysis of Organophosphorus Pesticides-(Chlorpyrifos) in Aqueous Solution.
Journal of Chromatography & Separation Techniques, 7, (6), ArticleNo340-(2016)
   
chlorpyrifos
Masoumi A et al., Recognition and selective adsorption of pesticides by superparamagnetic molecularly imprinted polymer nanospheres.
RSC Advances, 6, (55), 49401-49410, (2016)
   
chlorpyrifos
Chen M et al., Preparation of Magnetic Molecularly Imprinted Polymer for Chlorpyrifos Adsorption and Enrichment.
IOP Conference Series: Materials Science and Engineering, 269, (1), ArticleNo012061-(2017)
   
chlorpyrifos
Feng SL et al., Development of molecularly imprinted polymers-surface-enhanced Raman spectroscopy/colorimetric dual sensor for determination of chlorpyrifos in apple juice.
Sensors and Actuators B: Chemical, 241, 750-757, (2017)
   
chlorpyrifos
Sun XL et al., Photoelectrochemical sensor based on molecularly imprinted film modified hierarchical branched titanium dioxide nanorods for chlorpyrifos detection.
Sensors and Actuators B: Chemical, 251, 1-8, (2017)
   
chlorpyrifos
Xu WZ et al., Construction of a novel electrochemical sensor based on molecularly imprinted polymers for the selective determination of chlorpyrifos in real samples.
Journal of Separation Science, 40, (24), 4839-4846, (2017)
   
chlorpyrifos
Al-Bayati YK, Estimation of some Organophosphorus Pesticides Using Carbon Paste Electrode Coupled with Molecularly Imprinted Polymers.
Baghdad Science Journal, 15, (3), 328-334, (2018)
   
chlorpyrifos
Capoferri D et al., Electrochromic Molecular Imprinting Sensor for Visual and Smartphone-Based Detections.
Analytical Chemistry, 90, (9), 5850-5856, (2018)
   
chlorpyrifos
Liu QR et al., Direct Competitive Biomimetic Immunoassay Based on Quantum Dot Label for Simultaneous Determination of Two Pesticide Residues in Fruit and Vegetable Samples.
Food Analytical Methods, 11, (11), 3015-3022, (2018)
   
chlorpyrifos
Ma JK et al., Preparation and application of chlorpyrifos molecularly imprinted solid-phase microextraction probes for the residual determination of organophosphorous pesticides in fresh and dry foods.
Journal of Separation Science, 41, (15), 3152-3162, (2018)
   
chlorpyrifos
Roushani M et al., An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods.
Microchimica Acta, 185, (12), Article551-(2018)
   
chlorpyrifos
Zhang H et al., A Novel Method for the Detection of Chlorpyrifos by Combining Quantum Dot-labeled Molecularly Imprinted Polymer with Flow Cytometry.
Analytical Letters, 51, (6), 921-934, (2018)
   
chlorpyrifos
Chattrairat K et al., Synthesis of kaolinite/magnetic molecularly imprinted polymers for solid phase extraction of chlorpyrifos.
Japanese Journal of Applied Physics, 58, (SD), Article_SDDG05-(2019)
   
chlorpyrifos
Kumar N et al., Ultrasonication assisted extraction of chlorpyrifos from honey and brinjal using magnetic molecularly imprinted polymers followed by GLC-ECD analysis.
Reactive and Functional Polymers, 135, 103-112, (2019)
   
chlorpyrifos
Mohammadi V et al., Direct molecular imprinting technique to synthesize coated electrospun nanofibers for selective solid-phase microextraction of chlorpyrifos.
Microchimica Acta, 186, (8), Article524-(2019)
   
chlorpyrifos
Arias PG et al., Selective solid-phase extraction of organophosphorus pesticides and their oxon-derivatives from water samples using molecularly imprinted polymer followed by high-performance liquid chromatography with UV detection.
Journal of Chromatography A, 1626, Article461346-(2020)
   
chlorpyrifos
Bakhshpour M et al., Detection of Pesticide via Nanoparticle Based Quartz Crystal Microbalance Sensor.
Hacettepe Journal of Biology and Chemistry, 48, (1), 75-82, (2020)
   
chlorpyrifos
Eskandari H et al., Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: application for chlorpyrifos.
Microchimica Acta, 187, (12), Article673-(2020)
   
chlorpyrifos
Huang WH et al., A sensitive electrochemical sensor modified with multi-walled carbon nanotubes doped molecularly imprinted silica nanospheres for detecting chlorpyrifos.
Journal of Separation Science, 43, (5), 954-961, (2020)
   
chlorpyrifos
Kadirsoy S et al., Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation.
New Journal of Chemistry, 44, (16), 6524-6532, (2020)
   
chlorpyrifos
Liu LX et al., Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides.
Microchimica Acta, 187, (9), Article503-(2020)
   
chlorpyrifos
Andrade Teixeira R et al., Efficient and selective extraction of azamethiphos and chlorpyrifos residues from mineral water and grape samples using magnetic mesoporous molecularly imprinted polymer.
Food Chemistry, 361, Article130116-(2021)
   
chlorpyrifos
Chen MJ et al., A hollow visible-light-responsive surface molecularly imprinted polymer for the detection of chlorpyrifos in vegetables and fruits.
Food Chemistry, 355, Article129656-(2021)
   
chlorpyrifos
Fan MX et al., Molecularly imprinted polymer coated Mn-doped ZnS quantum dots embedded in a metal-organic framework as a probe for selective room temperature phosphorescence detection of chlorpyrifos.
RSC Advances, 11, (45), 27845-27854, (2021)
   
chlorpyrifos-methyl
Yang T et al., Dual-template magnetic molecularly imprinted particles with multi-hollow structure for the detection of dicofol and chlorpyrifos-methyl.
Journal of Separation Science, 39, (12), 2388-2395, (2016)
   
chlorpyrifos-methyl
Ma JK et al., Preparation and application of chlorpyrifos molecularly imprinted solid-phase microextraction probes for the residual determination of organophosphorous pesticides in fresh and dry foods.
Journal of Separation Science, 41, (15), 3152-3162, (2018)
   
chlorpyrifos-methyl
Liu LX et al., Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides.
Microchimica Acta, 187, (9), Article503-(2020)
   
chlorpyrofos
Mustaghfiroh AM et al., Development of Chlorpyrifos Sensor Using Molecularly Imprinted Polymer (MIP) Polyvinyl Alcohol (PVA)-Fe3O4 as Receptor.
The Journal of Pure and Applied Chemistry Research, 8, (1), 31-39, (2019)
   
chlorsulfuron
She YX et al., Class-specific molecularly imprinted polymers for the selective extraction and determination of sulfonylurea herbicides in maize samples by high-performance liquid chromatography-tandem mass spectrometry.
Journal of Chromatography B, 878, (23), 2047-2053, (2010)
   
chlorsulfuron
Guo L et al., Preparation and evaluation of molecularly imprinted ionic liquids polymer as sorbent for on-line solid-phase extraction of chlorsulfuron in environmental water samples.
Journal of Chromatography A, 1218, (37), 6271-6277, (2011)
   
chlorsulfuron
Zhang LL et al., Recognition of Chlorsulfuron Based on SPR Sensors with the Molecular Imprinted Polymer.
Micronanoelectronic Technology, 48, (4), 254-257, (2011)
   
chlorsulfuron
Fu XW et al., Preparation and utilization of molecularly imprinted polymer for chlorsulfuron extraction from water, soil, and wheat plant.
Environmental Monitoring and Assessment, 184, (7), 4161-4170, (2012)
   
chlorsulfuron
Zheng YL et al., Determination of sulfonylurea herbicide residues in tobacco leaves by molecularly imprinted-solid phase extraction-high performance liquid chromatography.
Chinese Journal of Chromatography, 36, (7), 659-664, (2018)
   
chlorsulfuron
Liang T et al., Determination of Sulfonylurea Herbicides in Grain Samples by Matrix Solid-Phase Dispersion with Mesoporous Structured Molecularly Imprinted Polymer.
Food Analytical Methods, 12, (9), 1938-1948, (2019)
   
chlortetracycline
Jing T et al., Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography–tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction.
Analytical and Bioanalytical Chemistry, 393, (8), 2009-2018, (2009)
   
chlortetracycline
Qu GR et al., Metal ion mediated synthesis of molecularly imprinted polymers targeting tetracyclines in aqueous samples.
Journal of Chromatography B, 877, (27), 3187-3193, (2009)
   
chlortetracycline
Sun XL et al., Determination of tetracyclines in food samples by molecularly imprinted monolithic column coupling with high performance liquid chromatography.
Talanta, 79, (3), 926-934, (2009)
   
Chlortetracycline
Jing T et al., Preparation of mixed-templates molecularly imprinted polymers and investigation of the recognition ability for tetracycline antibiotics.
Biosensors and Bioelectronics, 25, (10), 2218-2224, (2010)
   
chlortetracycline
Proceeding, Gong GL et al, Preparation and Characterization of Molecular Imprinted Polymers of Tetracycline Antibiotics by Mixed-Templates,
In: Applied Mechanics and Materials, Hou ZX (Ed.), 407-410, (2011)
   
Chlortetracycline
Guerreiro JRL et al., New sensing materials of molecularly-imprinted polymers for the selective recognition of Chlortetracycline.
Microchemical Journal, 97, (2), 173-181, (2011)
   
chlortetracycline
Jing T et al., Online coupling of molecularly imprinted solid-phase extraction to HPLC for determination of trace tetracycline antibiotic residues in egg samples.
Journal of Separation Science, 34, (12), 1469-1476, (2011)
   
chlortetracycline
Kong JH et al., Preparation of magnetic mixed-templates molecularly imprinted polymer for the separation of tetracycline antibiotics from egg and honey samples.
Analytical Methods, 4, (4), 1005-1011, (2012)
   
chlortetracycline
Lian WJ et al., A molecularly imprinted sensor based on β-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline.
Food Control, 26, (2), 620-627, (2012)
   
chlortetracycline
Wang LQ et al., A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food.
Analyst, 137, (15), 3502-3509, (2012)
   
chlortetracycline
Liu Y et al., Fabrication of molecular imprinted polymer sensor for chlortetracycline based on controlled electrochemical reduction of graphene oxide.
Sensors and Actuators B: Chemical, 185, 438-444, (2013)
   
chlortetracycline
Abrăo LCC et al., Determination of Tetracyclines by Solid-Phase Extraction with a Molecularly Imprinted Polymer and High-Performance Liquid Chromatography.
Analytical Letters, 47, (13), 2183-2194, (2014)
   
chlortetracycline
Li N et al., Magnetic Dispersion Extraction of Tetracyclines Residues from Milk by Chlortetracycline-Imprinted Magnetic Composite Microspheres.
Asian Journal of Chemistry, 26, (12), 3535-3540, (2014)
   
chlortetracycline
Lv YK et al., Adsorption-controlled preparation of molecularly imprinted hybrid composites for selective extraction of tetracycline residues from honey and milk.
New Journal of Chemistry, 38, (2), 802-808, (2014)
   
chlortetracycline
Lv YK et al., Molecularly Imprinted Solid-Phase Extraction of Tetracyclines Residue from Milk Using Internal-Surface Reversed-Phase Hybrid Composite Packing Materials.
Asian Journal of Chemistry, 26, (12), 3541-3544, (2014)
   
chlortetracycline
Zhuang Y et al., Determination of Tetracyclines in Water and Milk by Solid-phase Microextraction Based on Tetracylines Molecularly Imprinted Polymers Coupled with HPLC.
Journal of Analytical Science, 30, (4), 451-456, (2014)
   
chlortetracycline
Gao Y et al., Preparation of an Electrochemical Sensor for Determination of Chlortetracycline Based on Molecularly Imprinted Film.
Chinese Journal of Analytical Chemistry, 43, (2), 212-217, (2015)
   
chlortetracycline
Feng MX et al., Molecularly imprinted polymer-high performance liquid chromatography for the determination of tetracycline drugs in animal derived foods.
Food Control, 69, 171-176, (2016)
   
chlortetracycline
Xu SN et al., A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica-graphitic carbon nitride composite.
Analytical and Bioanalytical Chemistry, 410, (27), 7103-7112, (2018)
   
chlortetracycline
Huang L et al., Chip-based multi-molecularly imprinted monolithic capillary array columns coated Fe3O4/GO for selective extraction and simultaneous determination of tetracycline, chlortetracycline and deoxytetracycline in eggs.
Microchemical Journal, 150, Article104097-(2019)
   
chlortetracycline
Akbulut Söylemez M et al., Surface modification of magnetic nanoparticles via admicellar polymerization for selective removal of tetracycline from real water samples.
New Journal of Chemistry, 45, (14), 6415-6423, (2021)
   
chlortetracycline hydrochloride
Yang CY et al., Molecularly Imprinted On-line Solid-phase Extraction Combined with Flow Injection Chemiluminescence for Determination of Chlortetracycline.
Chinese Journal of Applied Chemistry, 24, (3), 273-277, (2007)
   
chlortoluron
Wang JC et al., Preparation of molecularly imprinted polymer and its recognition property for phenylurea herbicides.
Chemical Journal of Chinese Universities, 27, (7), 1227-1231, (2006)
   
chlortoluron
Jiang FY et al., Preparing of a Molecularly Imprinted Sensor for Selective Determination of Chlortoluron.
Journal of Instrumental Analysis, 29, (5), 469-472,477, (2010)
   
chlortoluron
Li JP et al., A Chlortoluron Sensor based on Molecularly Imprinted Sensitive Membranes.
Chemistry Letters, 39, (5), 478-479, (2010)
   
chlortoluron
Li JP et al., Molecularly imprinted electrochemical sensors based on the double-amplification from the electro-catalysis of poly-melamine and the enzymatic catalysis of HRP for chlortoluron determination.
Acta Chimica Sinica, 70, (17), 1853-1857, (2012)
   
chlortoluron
Zhang LM et al., A Molecularly Imprinting Sensor Based on Gate Controlled Electro-catalyzation.
Chinese Journal of Analytical Chemistry, 40, (7), 1025-1030, (2012)
   
chlortoluron
Li X et al., Chlortoluron Molecularly Imprinted Sensor Based on the "Gate Controlled" Effect.
Journal of Instrumental Analysis, 32, (11), 1344-1348, (2013)
   
chlortoluron
Li X et al., A Sensitive and Renewable Chlortoluron Molecularly Imprinted Polymer Sensor Based on the Gate-Controlled Catalytic Electrooxidation of H2O2 on Magnetic Nano-NiO.
Electroanalysis, 25, (5), 1286-1293, (2013)
   
chlropheniramine maleate
Raad M et al., Synthesis, Characterization of Chlropheniramine maleate- Molecularly Imprinted Polymers and Their Application as Sensors for the Determination of the Drug in Some Pharmaceutical Preparations.
Ibn AL-Haitham Journal For Pure and Applied Science, 30, (3), 44-57, (2017)
   
CHO
Puoci F et al., Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products.
Food Chemistry, 106, (2), 836-842, (2008)
   
CHO
Guo YX et al., Synthesis of Molecularly Imprinted Polymer Microspheres for Cholesterol and Their Adsorption Property.
The Chinese Journal of Process Engineering, 11, (2), 318-323, (2011)
   
CHO
Ji J et al., Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol.
Biosensors and Bioelectronics, 66, 590-595, (2015)
   
CHO
Inanan T et al., Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS.
International Journal of Biological Macromolecules, 92, 451-460, (2016)
   
CHO
Borges MCM et al., Molecularly imprinted solid-phase extraction coupled with LC-APCI-MS-MS for the selective determination of serum cholesterol.
Electrophoresis, 38, (17), 2150-2159, (2017)
   
CHO
Nezhadali A et al., Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography.
Food Analytical Methods, 10, (5), 1397-1407, (2017)
   
CHO
Yang H et al., Molecularly imprinted electrochemical sensor based on bioinspired Au microflowers for ultra-trace cholesterol assay.
Biosensors and Bioelectronics, 92, 748-754, (2017)
   
Chol
Li XL et al., Fabrication of molecularly cholesterol-imprinted polymer particles based on chitin and their adsorption ability.
Monatshefte für Chemie - Chemical Monthly, 146, (3), 423-430, (2015)
   
3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate
Esmaeili MA et al., Molecularly imprinted poly β-cyclodextrin polymer: Application in protein refolding.
Biochimica et Biophysica Acta (BBA) - General Subjects, 1770, (6), 943-950, (2007)
   
cholamphenicol
Ma W et al., Core-shell molecularly imprinted polymers based on magnetic chitosan microspheres for chloramphenicol selective adsorption.
Monatshefte für Chemie - Chemical Monthly, 146, (3), 465-474, (2015)
   
cholate
Shiigi H et al., Molecular recognition for bile acids using a molecularly imprinted overoxidized polypyrrole film.
Journal of The Electrochemical Society, 152, (8), H129-H134, (2005)
   
CHO-ldlD
Bers K et al., Heat-Transfer Resistance Measurement Method (HTM)-Based Cell Detection at Trace Levels Using a Progressive Enrichment Approach with Highly Selective Cell-Binding Surface Imprints.
Langmuir, 30, (12), 3631-3639, (2014)
   
cholecalciferol
Kia S et al., Preparation of a novel molecularly imprinted polymer by the sol-gel process for solid phase extraction of vitamin D3.
RSC Advances, 6, (38), 31906-31914, (2016)
   
cholecystokinin
Papaioannou EH et al., Metal-ligand interaction in molecular imprinted polymers for C-terminal cholecystokinin pentapeptide.
FEBS Journal, 275, (Suppl. 1), 421-421, (2008)
   
cholecystokinin
Ji X et al., Preparation and application of a novel molecularly imprinted solid-phase microextraction monolith for selective enrichment of cholecystokinin neuropeptides in human cerebrospinal fluid.
Biomedical Chromatography, 29, (8), 1280-1289, (2015)
   
cholecystokinin
Li H et al., Preparation of Cholecystokinin Molecularly Imprinted Polymer Monolith and its Application in Solid Phase Microextraction and HPLC Analysis.
Chinese Journal of Analytical Chemistry, 43, (8), 1130-1135, (2015)
   
cholecystokinin C terminal pentapeptide
Papaioannou EH et al., Molecularly Imprinted Polymers for Cholecystokinin C-Terminal Pentapeptide Recognition.
Macromolecular Chemistry And Physics, 208, (24), 2621-2627, (2007)
   
cholest-5-ene-3-one
Villar P et al., Matrix effects on the selectivity of a cholesterol-imprinted polymer.
Polymer, 48, (6), 1483-1489, (2007)
   
cholesterol
Kugimiya A et al., Preparation of sterol-imprinted polymers with the use of 2-(methacryloyloxy)ethyl phosphate.
Journal of Chromatography A, 938, (1-2), 131-135, (2001)
   
cholesterol
Hishiya T et al., Molecularly imprinted cyclodextrin polymers as stationary phases of high performance liquid chromatography.
Polymer Journal, 35, (5), 440-445, (2003)
   
cholesterol
Sreenivasan K et al., Ferric iron-containing molecularly imprinted polymer as an adsorbent for cholesterol.
Adsorption Science & Technology, 21, (3), 261-268, (2003)
   
cholesterol
Fujiwara M et al., A sol-gel method using acetic anhydride in the presence of cholesterol in organic solution media: Preparation of silicas that recognize steroid hormones.
Analytical Chemistry, 76, (8), 2374-2381, (2004)
   
cholesterol
Shiigi H et al., Development of a Skin Cholesterol Sensing Method Using a Molecularly Imprinted Self-assembled Monolayer Electrode.
Transactions of Japanese Society for Medical and Biological Engineering, 42, (3), 181-186, (2004)
   
cholesterol
Proceeding, Boonpangrak S et al, Molecularly imprinted polymer microspheres prepared by precipitation polymerization using a sacrificial covalent bond,
Art. No. E0117, (2005)
   
cholesterol
Chou LCS et al., Development of a molecular imprinting thick film electrochemical sensor for cholesterol detection.
Sensors and Actuators B: Chemical, 110, (2), 204-208, (2005)
   
cholesterol
Egawa Y et al., Preparation of molecularly imprinted cyclodextrin microspheres.
International Journal of Pharmaceutics, 293, (1-2), 165-170, (2005)
   
cholesterol
Proceeding, Huang SC et al, A microfluidic chip integrated with molecular imprinting polymers for surface plasmon resonance detection,
1776-1779, (2005)
   
cholesterol
Isarankura-Na-Ayudhya C et al., Construction of Molecularly Imprinted Polymers for Cholesterol by Semi-covalent Imprinting Approach and Nitroxide Mediated Radical Polymerization.
Thammasat International Journal of Science and Technology, 10, (4), 1-6, (2005)
   
cholesterol
Proceeding, Lee GB et al, Microfluidic systems using localized molecular imprinting polymers for detection of nano-scale bio-molecules based on surface plasmon resonance,
841-844, (2005)
   
cholesterol
Lv B et al., Selective Solid-phase Extraction of Cholesterol from Different Biological Samples Using Different Molecular Imprinted Polymers.
Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, 34, (5), 639-641, (2005)
   
cholesterol
Proceeding, Piacham T et al, Molecularly imprinted polymer as a tool for nanobiosensors and enzyme mimics,
Art. No. E0119, (2005)
   
cholesterol
Spizzirri UG et al., Structural analysis and diffusional behavior of molecularly imprinted polymer networks for cholesterol recognition.
Chemistry of Materials, 17, (26), 6719-6727, (2005)
   
cholesterol
Wang SF et al., Cholesterol-imprinted polymer receptor prepared by a hybrid imprinting method.
Polymer International, 54, (9), 1268-1274, (2005)
   
cholesterol
Boonpangrak S et al., Preparation of molecularly imprinted polymers using nitroxide-mediated living radical polymerization.
Biosensors and Bioelectronics, 22, (3), 349-354, (2006)
   
cholesterol
Boonpangrak S et al., Molecularly imprinted polymer microspheres prepared by precipitation polymerization using a sacrificial covalent bond.
Journal of Applied Polymer Science, 99, (4), 1390-1398, (2006)
   
cholesterol
Proceeding, Ciardelli G et al, Molecular imprinted nanostructures in biomedical applications,
561-567, (2006)
   
cholesterol
Ciardelli G et al., Supported imprinted nanospheres for the selective recognition of cholesterol.
Biosensors and Bioelectronics, 21, (12), 2329-2338, (2006)
   
cholesterol
Huang SC et al., A microfluidic system with integrated molecular imprinting polymer films for surface plasmon resonance detection.
Journal of Micromechanics and Microengineering, 16, (7), 1251-1257, (2006)
   
cholesterol
Shi Y et al., Selective solid-phase extraction of cholesterol using molecularly imprinted polymers and its application in different biological samples.
Journal of Pharmaceutical and Biomedical Analysis, 42, (5), 549-555, (2006)
   
cholesterol
Shiigi H et al., Development of Molecularly Imprinted Sterol Sensor and Non-invasive Detection.
Chem Sens, 22, (Supplement A), 145-147, (2006)
   
cholesterol
Shiigi H et al., Development of the Skin Cholesterol Sensing Method Using a Molecularly Imprinted Electrode.
ECS Meeting Abstracts, MA2006-02, (47), 2084-2084, (2006)
   
cholesterol
Tokareva I et al., Ultrathin molecularly imprinted polymer sensors employing enhanced transmission surface plasmon resonance spectroscopy.
Chemical Communications, (31), 3343-3345, (2006)
   
cholesterol
Puoci F et al., Molecularly imprinted polymers for selective adsorption of cholesterol from aqueous environment.
E-Polymers, Art. No. 013-(2007)
   
cholesterol
Silvestri D et al., Composite membranes modified with recognition-able nanobeads as potential adsorbers for purification of biological fluids.
Journal of Applied Biomaterials & Biomechanics, 5, (3), 166-175, (2007)
   
cholesterol
Soares CMF et al., Molecular imprinting of β-cyclodextrin/cholesterol template into a silica polymer for cholesterol separation.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57, (1), 79-82, (2007)
   
cholesterol
Villar P et al., Matrix effects on the selectivity of a cholesterol-imprinted polymer.
Polymer, 48, (6), 1483-1489, (2007)
   
cholesterol
Yavuz H et al., Synthesis of cholesterol imprinted polymeric particles.
International Journal of Biological Macromolecules, 41, (1), 8-15, (2007)
   
cholesterol
Hsu CW et al., Enhancement of the imprinting effect in cholesterol-imprinted microporous silica.
Journal of Non-Crystalline Solids, 354, (34), 4037-4042, (2008)
   
cholesterol
Lee WC et al., Separation of cholesterol from other steroids using molecularly imprinted Polymer prepared by seeded suspension polymerization.
Chemical and Biochemical Engineering Quarterly, 22, (2), 151-156, (2008)
   
cholesterol
Puoci F et al., Molecularly imprinted solid-phase extraction for cholesterol determination in cheese products.
Food Chemistry, 106, (2), 836-842, (2008)
   
cholesterol
Wybranska K et al., Photochemical molecular imprinting of cholesterol.
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 61, (1), 147-151, (2008)
   
cholesterol
Zhang SZ et al., Cholesterol Imprinted Polymerized Organogel Formed by Polymerizable Gelator and Adsorption Ability.
Acta Polymerica Sinica, (3), 244-248, (2009)
   
cholesterol
Kitahara KI et al., Synthesis of monodispersed molecularly imprinted polymer particles for high-performance liquid chromatographic separation of cholesterol using templating polymerization in porous silica gel bound with cholesterol molecules on its surface.
Journal of Chromatography A, 1217, (46), 7249-7254, (2010)
   
cholesterol
Xue QN et al., Screen Printing Bio-chip Sensor for Cholesterol Detection Based on Molecular Imprinting Self-assembled Film.
Journal of Electronics & Information Technology, 32, (11), 2735-2739, (2010)
   
cholesterol
Caktu K et al., Cholesterol removal from intestinal mimicking solution by MIP technology.
Current Opinion in Biotechnology, 22, (Supplement 1), S109-S109, (2011)
   
cholesterol
Guo YX et al., Synthesis of Molecularly Imprinted Polymer Microspheres for Cholesterol and Their Adsorption Property.
The Chinese Journal of Process Engineering, 11, (2), 318-323, (2011)
   
cholesterol
Gupta R et al., Synthesis and characterization of sol-gel-derived molecular imprinted polymeric materials for cholesterol recognition.
Journal of Sol-Gel Science and Technology, 58, (1), 182-194, (2011)
   
cholesterol
Li JH et al., Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels.
Journal of Materials Chemistry, 21, (48), 19267-19274, (2011)
   
cholesterol
Shin MJ et al., Sensing capability of molecularly imprinted self-assembled monolayer.
Biochemical Engineering Journal, 54, (1), 57-61, (2011)
   
cholesterol
Tong YJ et al., Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol.
Carbohydrate Research, 346, (4), 495-500, (2011)
   
cholesterol
Zhang SZ et al., Preparation of cholesterol imprinted polymerized organogel and selectivity adsorption ability.
Acta Polymerica Sinica, (4), 390-394, (2011)
   
cholesterol
Proceeding, Li HX et al, Cholesterol Detection by Self-Assembled Dodecyl Thiol Layers Extracted Cholesterol on the Ce-Sb Codoped SnO2 Film Electrodes,
In: Advanced Materials Research, Cong HL (Ed.), 198-203, (2012)
   
cholesterol
Shin MJ et al., Sensing Capability of Molecularly Imprinted Self-Assembled Monolayer Using Terphenylpropanethiol.
Particulate Science and Technology, 30, (6), 543-552, (2012)
   
cholesterol
Proceeding, Guan HM et al, Cholesterol-Imprinted Receptor Using Chitosan Derivative as the Precursor,
In: Advanced Materials Research, Yun J, Zeng DH (Eds.), 712-717, (2013)
   
cholesterol
Tong YJ et al., Electrochemical cholesterol sensor based on carbon nanotube@molecularly imprinted polymer modified ceramic carbon electrode.
Biosensors and Bioelectronics, 47, 553-558, (2013)
   
cholesterol
Zengin A et al., Molecularly imprinted superparamagnetic iron oxide nanoparticles for rapid enrichment and separation of cholesterol.
Analyst, 138, (23), 7238-7245, (2013)
   
cholesterol
Cheng Y et al., An imprinted fluorescent chemosensor prepared using dansyl-modified β-cyclodextrin as the functional monomer for sensing of cholesterol with tailor-made selectivity.
Sensors and Actuators B: Chemical, 193, 838-843, (2014)
   
cholesterol
Clausen DN et al., Improved selective cholesterol adsorption by molecularly imprinted poly(methacrylic acid)/silica (PMAA-SiO2) hybrid material synthesized with different molar ratios.
Materials Science and Engineering: C, 44, 99-108, (2014)
   
cholesterol
Clausen DN et al., Development of molecularly imprinted poly(methacrylic acid)/silica for clean-up and selective extraction of cholesterol in milk prior to analysis by HPLC-UV.
Analyst, 139, (19), 5021-5027, (2014)
   
cholesterol
Çaktü K et al., Cholesterol removal from various samples by cholesterol-imprinted monosize microsphere-embedded cryogels.
Artificial Cells, Nanomedicine, and Biotechnology, 42, (6), 365-375, (2014)
   
cholesterol
Luo DH et al., On the structure of molecularly imprinted polymers by modifying charge on functional groups through molecular dynamics simulations.
Molecular Simulation, 40, (6), 431-438, (2014)
   
cholesterol
Shin MJ et al., Sensing capability of molecularly imprinted self-assembled monolayer fabricated using dithiol compound.
Journal of Industrial and Engineering Chemistry, 20, (1), 91-95, (2014)
   
cholesterol
Xu ZF et al., Preparation of 2D molecularly imprinted materials based on mesoporous silicas via click reaction.
Journal of Materials Chemistry B, 2, (47), 8418-8426, (2014)
   
cholesterol
Hosseini MRM et al., Fabrication of Molecularly Imprinted Polymer Coated Carbon Nanotubes Modified Gold Electrode for Determination of Cholesterol.
Analytical & Bioanalytical Electrochemistry, 7, (2), 129-148, (2015)
   
cholesterol
Ji J et al., Electrochemical sensor based on molecularly imprinted film at Au nanoparticles-carbon nanotubes modified electrode for determination of cholesterol.
Biosensors and Bioelectronics, 66, 590-595, (2015)
   
cholesterol
Li XL et al., Fabrication of molecularly cholesterol-imprinted polymer particles based on chitin and their adsorption ability.
Monatshefte für Chemie - Chemical Monthly, 146, (3), 423-430, (2015)
   
cholesterol
Nicoara SC et al., Development of sample clean up methods for the analysis of Mycobacterium tuberculosis methyl mycocerosate biomarkers in sputum extracts by gas chromatography-mass spectrometry.
Journal of Chromatography B, 986-987, 135-142, (2015)
   
cholesterol
Oliveira GR et al., Neural modelling in adsorption column of cholesterol-removal efficiency from milk.
LWT - Food Science and Technology, 64, (2), 632-638, (2015)
   
cholesterol
Polyakova IV et al., Polymer sorbent with the properties of an artificial cholesterol receptor.
Russian Journal of Physical Chemistry A, 89, (2), 288-290, (2015)
   
cholesterol
Hegazy EA et al., Radiation Synthesis and Characterization of Cholesterol Molecularly Imprinted Polymer of Crosslinked Hydroxyethyl Methacrylate.
International Journal of Science and Research (IJSR), 5, (1), ArticleID:NOV152733-(2016)
   
cholesterol
Inanan T et al., Selective cholesterol adsorption by molecular imprinted polymeric nanospheres and application to GIMS.
International Journal of Biological Macromolecules, 92, 451-460, (2016)
   
cholesterol
Polyakova I et al., Surface molecularly imprinted organic-inorganic polymers having affinity sites for cholesterol.
Reactive and Functional Polymers, 109, 88-98, (2016)
   
cholesterol
Polyakova IV et al., Synthesis and properties of polymeric and organo-inorganic amphiphilic sorbents molecularly imprinted with cholesterol.
Russian Journal of Applied Chemistry, 88, (10), 1617-1626, (2016)
   
cholesterol
Xu ZF et al., Construction of imprint sites in mesopores of SBA-15 via thiol-ene click reaction.
Journal of Materials Science, 51, (13), 6295-6308, (2016)
   
cholesterol
Alexander S et al., Modified graphene based molecular imprinted polymer for electrochemical non-enzymatic cholesterol biosensor.
European Polymer Journal, 86, 106-116, (2017)
   
cholesterol
Borges MCM et al., Molecularly imprinted solid-phase extraction coupled with LC-APCI-MS-MS for the selective determination of serum cholesterol.
Electrophoresis, 38, (17), 2150-2159, (2017)
   
cholesterol
Liu HL et al., Optical Determination of Cholesterol in Milk with Molecularly Imprinted Polymer-Coated Quantum Dots.
Analytical Letters, 50, (12), 1964-1976, (2017)
   
cholesterol
Nezhadali A et al., Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography.
Food Analytical Methods, 10, (5), 1397-1407, (2017)
   
cholesterol
Stepanova MA et al., Cholesterol-imprinted macroporous monoliths: Preparation and characterization.
Electrophoresis, 38, (22-23), 2965-2974, (2017)
   
cholesterol
Yang H et al., Molecularly imprinted electrochemical sensor based on bioinspired Au microflowers for ultra-trace cholesterol assay.
Biosensors and Bioelectronics, 92, 748-754, (2017)
   
cholesterol
Anirudhan TS et al., Electrochemical sensing of cholesterol by molecularly imprinted polymer of silylated graphene oxide and chemically modified nanocellulose polymer.
Materials Science and Engineering: C, 92, 942-956, (2018)
   
cholesterol
Inanan T, Cholesterol adsorption from artificial human plasma with molecular imprinted polymeric nanostructures.
Hacettepe Journal of Biology and Chemistry, 46, (2), 285-296, (2018)
   
cholesterol
Kardani F et al., Direct cholesterol and β-sitosterol analysis in food samples using monolithic molecularly-imprinted solid-phase microextraction fibers coupled with high performance liquid chromatography.
Journal of the Iranian Chemical Society, 15, (12), 2877-2888, (2018)
   
cholesterol
Kilulya KF, Preparation, characterisation and application of molecularly imprinted polymers for the selective removal of sterols from water.
Tanzania Journal of Science, 44, (2), 27-44, (2018)
   
cholesterol
Odabasi M et al., Cholesterol imprinted composite membranes for selective cholesterol recognition from intestinal mimicking solution.
Colloids and Surfaces B: Biointerfaces, 163, 266-274, (2018)
   
cholesterol
Shin MJ et al., Cholesterol recognition system by molecular imprinting on self-assembled monolayer.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 559, 365-371, (2018)
   
cholesterol
Mirzajani R et al., A nanocomposite consisting of graphene oxide, zeolite imidazolate framework 8, and a molecularly imprinted polymer for (multiple) fiber solid phase microextraction of sterol and steroid hormones prior to their quantitation by HPLC.
Microchimica Acta, 186, (3), Article129-(2019)
   
cholesterol
Shin MJ et al., Switchable cholesterol recognition system with Diels-Alder reaction using molecular imprinting technique on self-assembled monolayer.
Polymer International, 68, (10), 1722-1728, (2019)
   
cholesterol
Pesic MP et al., A novel method of molecular imprinting applied to the template cholesterol.
Talanta, 217, Article121075-(2020)
   
cholesterol
Sabrina N et al., Molecularly Imprinted Polymer (MIPs) Nanomaterials Modified as Absorbing Cholesterol.
Journal of Physics: Conference Series, 1788, (1), Article012001-(2021)
   
cholesterol
Wen YL et al., Bionic receptor for atherosclerosis therapy: Molecularly imprinted polymers mediate unique cholesterol efflux and inhibit inflammation.
Chemical Engineering Journal, 430, Article132870-(2022)
   
cholesterol derivatives
Muratsugu S et al., Chemoselective epoxidation of cholesterol derivatives on a surface-designed molecularly imprinted Ru-porphyrin catalyst.
Chemical Communications, 54, (40), 5114-5117, (2018)
   
cholesteryl acetate
Palaprat G et al., Enantioselective Absorption of Chirally Doped Liquid Crystalline Networks Studied by the Use of an Electronic Microbalance.
Journal of Physical Chemistry B, 111, (31), 9239-9243, (2007)
   
cholesteryl chitin carbonate
Tong YJ et al., Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol.
Carbohydrate Research, 346, (4), 495-500, (2011)
   
3-cholesteryloxycarbonylpropanoic acid
Zhang SZ et al., Preparation of cholesterol imprinted polymerized organogel and selectivity adsorption ability.
Acta Polymerica Sinica, (4), 390-394, (2011)
   
(cholesteryl propylcarbamate)triethoxysilane
Hsu CW et al., Enhancement of the imprinting effect in cholesterol-imprinted microporous silica.
Journal of Non-Crystalline Solids, 354, (34), 4037-4042, (2008)
   
cholesteryl (4-vinyl) phenyl carbonate
Proceeding, Boonpangrak S et al, Molecularly imprinted polymer microspheres prepared by precipitation polymerization using a sacrificial covalent bond,
Art. No. E0117, (2005)
   
cholesteryl (4-vinyl) phenyl carbonate
Isarankura-Na-Ayudhya C et al., Construction of Molecularly Imprinted Polymers for Cholesterol by Semi-covalent Imprinting Approach and Nitroxide Mediated Radical Polymerization.
Thammasat International Journal of Science and Technology, 10, (4), 1-6, (2005)
   
cholic acid
Idziak I et al., Polymer-catalyzed aminolysis of covalently imprinted cholic acid derivative.
Tetrahedron Letters, 40, (52), 9167-9170, (1999)
   
cholic acid
Belyakova LA et al., The influence of the structure of the surface of hydrophilic-hydrophobic silicas on the adsorption of cholic acid.
Russian Journal of Physical Chemistry, 81, (9), 1537-1541, (2007)
   
cholic acid
Kobayashi T et al., Bile acid imprinting polymers prepared by covalent-ester monomer-template technique: Synthesis, characterization and fluorescence application for BA recognition.
Journal of Chemical Engineering of Japan, 40, (6), 516-522, (2007)
   
cholic acid
Wang YJ et al., Specific binding of cholic acid by cross-linked polymers prepared by the hybrid imprinting method.
Polymer, 48, (19), 5565-5571, (2007)
   
cholic acid
Proceeding, Zhang RW et al, Selective recognition of bile acids by molecular imprints,
In: IEEE Sensors 2007 Proceedings, 1048-1051, (2007)
   
cholic acid
Wu Z et al., Direct and label-free detection of cholic acid based on molecularly imprinted photonic hydrogels.
Journal of Materials Chemistry, 18, (45), 5452-5458, (2008)
   
cholic acid
Gao BJ et al., Preparation and recognition performance of cholic acid-imprinted material prepared with novel surface-imprinting technique.
Polymer, 50, (14), 3275-3284, (2009)
   
cholic acid
Yańez F et al., Computational modeling and molecular imprinting for the development of acrylic polymers with high affinity for bile salts.
Analytica Chimica Acta, 659, (1-2), 178-185, (2010)
   
cholic acid
Shin MJ et al., Sensing capability of molecularly imprinted self-assembled monolayer.
Biochemical Engineering Journal, 54, (1), 57-61, (2011)
   
cholic acid
Xu ZF et al., Study on the preparation and binding properties in aqueous media of Cholic acid imprinted polymers.
Chemical Journal of Chinese Universities, 32, (8), 1727-1732, (2011)
   
cholic acid
Gültekin A et al., Gold-silver-nanoclusters having cholic acid imprinted nanoshell.
Talanta, 93, (1), 364-370, (2012)
   
cholic acid
Gültekin A et al., Preparation of new molecularly imprinted nanosensor for cholic acid determination.
Sensors and Actuators B: Chemical, 162, (1), 153-158, (2012)
   
cholic acid
Gültekin A et al., Development of a highly sensitive MIP based-QCM nanosensor for selective determination of cholic acid level in body fluids.
Materials Science and Engineering: C, 42, 436-442, (2014)
   
cholic acid
Xu ZF et al., Fluorescent molecularly imprinted polymers based on 1,8-naphthalimide derivatives for efficiently recognition of cholic acid.
Materials Science and Engineering: C, 58, 558-567, (2016)
   
cholic acid
Hepokur C et al., Synthesis of New Molecular Imprinted Polymer for Highly Recognition of Cholic Acid.
Acta Chemica Iasi, 26, (1), 123-152, (2018)
   
CholOAc
Palaprat G et al., Enantioselective Absorption of Chirally Doped Liquid Crystalline Networks Studied by the Use of an Electronic Microbalance.
Journal of Physical Chemistry B, 111, (31), 9239-9243, (2007)
   
cholylglycine
Chen HC et al., L-lysine-structure-directed MIL-88A and its application in electrochemical sensing of cholylglycine via molecular imprinting technique.
Microchemical Journal, 158, Article105249-(2020)
   
chondrocytes
Mahmoudi M et al., Cell-Imprinted Substrates Direct the Fate of Stem Cells.
ACS Nano, 7, (10), 8379-8384, (2013)
   
chondrocytes
Bonakdar S et al., Cell-Imprinted Substrates Modulate Differentiation, Redifferentiation, and Transdifferentiation.
ACS Applied Materials & Interfaces, 8, (22), 13777-13784, (2016)
   
chondroitin sulfate
Baydemir G, Molecularly imprinted cryogels for chondroitin sulfate recognition.
Artificial Cells, Nanomedicine, and Biotechnology, 44, (2), 610-617, (2016)
   
ChPZ
Song YP et al., Dummy template molecularly imprinted polymer for solid phase extraction of phenothiazines in meat based on computational simulation.
Food Chemistry, 233, 422-428, (2017)
   
CHR
Krupadam RJ et al., Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.
Analytical and Bioanalytical Chemistry, 397, (7), 3097-3106, (2010)
   
Chr
Krupadam RJ et al., Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer.
Water Research, 44, (3), 681-688, (2010)
   
CHR
Drabova L et al., Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry.
Talanta, 100, 207-216, (2012)
   
Chr
Song XL et al., Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry.
Talanta, 99, 75-82, (2012)
   
CHR
Drabova L et al., Application of solid phase extraction and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for fast analysis of polycyclic aromatic hydrocarbons in vegetable oils.
Food Control, 33, (2), 489-497, (2013)
   
CHR
Tuo SX et al., Reducing Polycyclic Aromatic Hydrocarbons in Cigarette Smoke by Pyrene Molecular Imprinted Polymers.
Chinese Journal of Applied Chemistry, 31, (1), 89-95, (2014)
   
CHR
Villar-Navarro M et al., Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs).
Journal of Chromatography B, 1044-1045, 63-69, (2017)
   
chromate
Manna J et al., Oxyanion-Binding in a Bioinspired Nanoparticle-Assembled Hybrid Microsphere Structure: Effective Removal of Arsenate/Chromate From Water.
ACS Applied Nano Materials, 2, (3), 1525-1532, (2019)
   
Chromate anion
Li YB et al., Studies on Preparation and Recognition Characteristic of Surface-Ion Imprinting Material IIP-PEI/SiO2 of Chromate Anion.
Separation Science and Technology, 46, (9), 1472-1481, (2011)
   
chromate anion
Gao BJ et al., Preparation of chromate anion surface-imprinted material IIP-PVI/SiO2 based on polyvinylimidazole-grafted particles PVI/SiO2 and its ionic recognition characteristic.
Materials Chemistry and Physics, 140, (2-3), 478-486, (2013)
   
chromate ion
Ansari R et al., A solid state Cr(VI) ion-selective electrode based on polypyrrole.
Microchimica Acta, 178, (1), 71-79, (2012)
   
chromate ion
Mitreva M et al., Chromate surface-imprinted silica gel sorbent for speciation of Cr in surface waters.
Turkish Journal of Chemistry, 40, (6), 921-932, (2016)
   
chromate ion
Qi X et al., Synthesis of surface Cr (VI)-imprinted magnetic nanoparticles for selective dispersive solid-phase extraction and determination of Cr (VI) in water samples.
Talanta, 162, 345-353, (2017)
   
chromic ion
Dey RK et al., Removal of Toxic/Heavy Metal Ions Using Ion-Imprinted Aminofunctionalized Silica Gel.
Separation Science and Technology, 44, (8), 1829-1850, (2009)
   
chromium
Velempini T et al., Epichlorohydrin crosslinked carboxymethyl cellulose-ethylenediamine imprinted polymer for the selective uptake of Cr(VI).
International Journal of Biological Macromolecules, 101, 837-844, (2017)
   
chromium
Li P et al., Synthesis and evaluation of ion-imprinted composite membranes of Cr(VI) based on β-diketone functional monomers.
RSC Advances, 11, (61), 38915-38924, (2021)
   
chromium
Lu ZY et al., Heterotopic reaction strategy for enhancing selective reduction and synergistic oxidation ability through trapping Cr (VI) into specific reaction site: A stable and self-cleaning ion imprinted CdS/HTNW photocatalytic membrane.
Applied Catalysis B: Environmental, 301, Article120787-(2022)
   
chromium
Yang HR et al., Site-imprinted hollow composites with integrated functions for ultra-efficient capture of hexavalent chromium from water.
Separation and Purification Technology, 284, Article120240-(2022)
   
chromium ion
Yang Q et al., Removal of Cr3+ by the surface molecularly imprinted adsorbent by penicillium chysogenum mycelium in wastewater.
Environmental Pollution and Control, 28, (1), 14-16,27, (2006)
   
chromium ion
Birlik E et al., Cr(III)-imprinted polymeric beads: Sorption and preconcentration studies.
Journal of Hazardous Materials, 140, (1-2), 110-116, (2007)
   
Chromium ion
He Q et al., Determination of chromium(III) and total chromium in natural waters using a surface ion-imprinted silica gel as selective adsorbent.
International Journal of Environmental Analytical Chemistry, 88, (6), 373-384, (2008)
   
chromium ion
An FQ et al., Adsorption characteristics of Cr(III) ionic imprinting polyamine on silica gel surface.
Desalination, 249, (3), 1390-1396, (2009)
   
chromium ion
Sun JD et al., Studies on the Characteristics of Adsorption of Cr(6+) by Rhizopus oryzae Mycelium Surface Imprinted Adsorbent.
Journal of Shenyang Agricultural University, 40, (1), 92-94, (2009)
   
chromium ion
Chen JH et al., Cr(III) ionic imprinted polyvinyl alcohol/sodium alginate (PVA/SA) porous composite membranes for selective adsorption of Cr(III) ions.
Chemical Engineering Journal, 165, (2), 465-473, (2010)
   
chromium ion
Zhan J et al., Adsorption of Cr(III) by a membrane molecularly imprinted with Penicillium mycelium.
Journal of Beijing University of Chemical Technology (Natural Science Edition), 37, (4), 94-97, (2010)
   
chromium ion
Zhang ZH et al., Microwave-assisted Heating Preparation of Core-shell Ion-imprinted Polymer and Extraction of Cr(III) from Urine.
Chemical Journal of Chinese Universities, 31, (9), 1734-1740, (2010)
   
chromium ion
Pakade V et al., Selective removal of chromium (VI) from sulphates and other metal anions using an ion-imprinted polymer.
Water SA, 37, (4), 529-537, (2011)
   
chromium ion
Lesniewska B et al., Separation and preconcentration of trace amounts of Cr(III) ions on ion imprinted polymer for atomic absorption determinations in surface water and sewage samples.
Microchemical Journal, 105, 88-93, (2012)
   
chromium ion
Yebra-Biurrun MC et al., Flow-Injection Flame Atomic Absorption Determination of Hexavalent Chromium with on-Line Preconcentration on an Anion Imprinted Polymer.
American Journal of Analytical Chemistry, 3, (11), 755-760, (2012)
   
chromium ion
Liu Y et al., Speciation, adsorption and determination of chromium(III) and chromium(VI) on a mesoporous surface imprinted polymer adsorbent by combining inductively coupled plasma atomic emission spectrometry and UV spectrophotometry.
Journal of Separation Science, 36, (24), 3949-3957, (2013)
   
chromium ion
Liu YQ et al., Adsorption of Cr(VI) by modified chitosan from heavy-metal polluted water of Xiangjiang River, China.
Transactions of Nonferrous Metals Society of China, 23, 3095-3103, (2013)
   
chromium ion
Tavengwa NT et al., Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium.
Talanta, 116, 670-677, (2013)
   
chromium ion
Uygun M et al., New generation ion-imprinted nanocarrier for removal of Cr(VI) from wastewater.
Journal of Nanoparticle Research, 15, (8), Art No 1833-(2013)
   
chromium ion
Xu ZG et al., Optimization of a PRB structure with modified chitosan restoring Cr(VI)-contaminated groundwater.
Environmental Earth Sciences, 68, (8), 2189-2197, (2013)
   
chromium ion
Kong DL et al., Fast Removal of Cr(VI) from Aqueous Solution Using Cr(VI)-Imprinted Polymer Particles.
Industrial & Engineering Chemistry Research, 53, (11), 4434-4441, (2014)
   
chromium ion
Ren ZQ et al., Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr(VI) ions from aqueous solutions.
Journal of Materials Chemistry A, 2, (42), 17952-17961, (2014)
   
chromium ion
Zhu LY et al., Synthesis of As(V)-Cr(III) Co-Imprinted Polymer and Its Adsorption Performance for Arsenate Species.
Separation Science and Technology, 49, (10), 1584-1591, (2014)
   
chromium ion
Jamshidi M et al., New ion-imprinted polymer-functionalized mesoporous SBA-15 for selective separation and preconcentration of Cr(III) ions: modeling and optimization.
RSC Advances, 5, (128), 105789-105799, (2015)
   
chromium ion
Lesniewska B et al., Multi-commutation flow system with on-line solid phase extraction exploiting the ion-imprinted polymer and FAAS detection for chromium speciation analysis in sewage samples.
Analytical Methods, 7, (4), 1517-1526, (2015)
   
chromium ion
Li H et al., Novel Cr(III) surface magnetic ion-imprinted materials based on graphene oxide for selective removal of Cr(III) in aqueous solution.
Desalination and Water Treatment, 56, (1), 204-215, (2015)
   
chromium ion
Wu YC et al., On-line Determination of Cr3+ in Wastewater by Imprinting Chitosan Resin Solid phase Extraction Combined with Flow Injection Chemiluminescence.
Journal of Instrumental Analysis, 34, (6), 686-690, (2015)
   
chromium ion
Fang T et al., Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid.
Journal of Hazardous Materials, 312, 106-113, (2016)
   
chromium ion
Lesniewska B et al., A novel ion-imprinted polymeric sorbent for separation and determination of chromium(III) species in wastewater.
Turkish Journal of Chemistry, 40, (6), 933-943, (2016)
   
chromium ion
Alizadeh T et al., A new electrochemical sensing platform for Cr(III) determination based on nano-structured Cr(III)-imprinted polymer-modified carbon composite electrode.
Electrochimica Acta, 247, 812-819, (2017)
   
chromium ion
Alizadeh T et al., All-solid-state Cr(III)-selective potentiometric sensor based on Cr(III)-imprinted polymer nanomaterial/MWCNTs/carbon nanocomposite electrode.
International Journal of Environmental Analytical Chemistry, 97, (13), 1283-1297, (2017)
   
chromium ion
Jia J et al., Novel imprinted polyethyleneimine nano-fluorescent probes with controllable selectivity for recognizing and adsorbing metal ions.
RSC Advances, 7, (57), 36048-36055, (2017)
   
chromium ion
Li ZH et al., Solid-phase extraction of chromium(III) with an ion-imprinted functionalized attapulgite sorbent prepared by a surface imprinting technique.
Analytical Methods, 9, (21), 3221-3229, (2017)
   
chromium ion
Liang QW et al., Fast and selective removal of Cr(VI) from aqueous solutions by a novel magnetic Cr(VI) ion-imprinted polymer.
Journal of Molecular Liquids, 248, 767-774, (2017)
   
chromium ion
Trzonkowska L et al., Studies on the effect of functional monomer and porogen on the properties of ion imprinted polymers based on Cr(III)-1,10-phenanthroline complex designed for selective removal of Cr(III) ions.
Reactive and Functional Polymers, 117, 131-139, (2017)
   
chromium ion
Aravind A et al., Electrochemical sensor based on nanostructured ion imprinted polymer for the sensing and extraction of Cr(III) ions from industrial wastewater.
Polymer International, 67, (12), 1595-1604, (2018)
   
chromium ion
Hassanpour S et al., Magnetic Cr(VI) Ion Imprinted Polymer for the Fast Selective Adsorption of Cr(VI) from Aqueous Solution.
Journal of Polymers and the Environment, 26, (1), 101-115, (2018)
   
chromium ion
Hassanzadeh M et al., An effective approach for fast selective separation of Cr(VI) from water by ion-imprinted polymer grafted on the electro-spun nanofibrous mat of functionalized polyacrylonitrile.
Reactive and Functional Polymers, 130, 70-80, (2018)
   
chromium ion
Huang RF et al., A novel ion-imprinted polymer based on graphene oxide-mesoporous silica nanosheet for fast and efficient removal of chromium (VI) from aqueous solution.
Journal of Colloid and Interface Science, 514, 544-553, (2018)
   
chromium ion
Neolaka YAB et al., Characterization, kinetic, and isotherm data for Cr(VI) removal from aqueous solution by Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure.
Data in Brief, 17, 969-979, (2018)
   
chromium ion
Neolaka YAB et al., Adsorption performance of Cr(VI)-imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution.
Journal of Environmental Chemical Engineering, 6, (2), 3436-3443, (2018)
   
chromium ion
Neolaka YAB et al., Characterization, isotherm, and thermodynamic data for selective adsorption of Cr(VI) from aqueous solution by Indonesia (Ende-Flores) natural zeolite Cr(VI)-imprinted-poly(4-VP-co-EGDMA)-ANZ (IIP-ANZ).
Data in Brief, 17, 1020-1029, (2018)
   
chromium ion
Roushani M et al., Application of ion-imprinted polymer synthesized by precipitation polymerization as an efficient and selective sorbent for separation and pre-concentration of chromium ions from some real samples.
Journal of the Iranian Chemical Society, 15, (10), 2241-2249, (2018)
   
chromium ion
Wu SP et al., Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr(VI).
Carbohydrate Polymers, 195, 199-206, (2018)
   
chromium ion
He F et al., Construction of ion imprinted layer modified ZnFe2O4 for selective Cr(VI) reduction with simultaneous organic pollutants degradation based on different reaction channels.
Applied Surface Science, 483, 453-462, (2019)
   
chromium ion
Lu HZ et al., One Pot Generation of Blue and Red Carbon Dots in One Binary Solvent System for Dual Channel Detection of Cr3+ and Pb2+ Based on Ion Imprinted Fluorescence Polymers.
ACS Sensors, 4, (7), 1917-1924, (2019)
   
chromium ion
Zhang MY et al., Selective fluorescence sensor based on ion-imprinted polymer-modified quantum dots for trace detection of Cr(VI) in aqueous solution.
Analytical and Bioanalytical Chemistry, 411, (27), 7165-7175, (2019)
   
chromium ion
Chen ZL et al., Artificial Cytochrome c Mimics: Graphene Oxide-Fe(III) Complex-Coated Molecularly Imprinted Colloidosomes for Selective Photoreduction of Highly Toxic Pollutants.
ACS Applied Materials & Interfaces, 12, (5), 6615-6626, (2020)
   
Chromium ion
Li JW et al., Ion-imprinted modified molecular sieves show the efficient selective adsorption of chromium(VI) from aqueous solutions.
RSC Advances, 10, (71), 43425-43431, (2020)
   
chromium ion
Luo ZW et al., Plasma polymerization mediated construction of surface ion-imprinted polypropylene fibers for the selective adsorption of Cr(VI).
Reactive and Functional Polymers, 150, Article104552-(2020)
   
chromium ion
Neolaka YAB et al., A Cr(VI)-imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater.
Reactive and Functional Polymers, 147, Article104451-(2020)
   
chromium ion
Xing JY et al., Fabrication of a photoelectric-sensitive imprinting polymer by PPy-cross-linked Gel/CS complex and its comprehensive treatment of Cr(VI).
Polymer Bulletin, 77, (2), 869-882, (2020)
   
chromium ion
Zhou ZY et al., Preparation of highly efficient ion-imprinted polymers with Fe3O4 nanoparticles as carrier for removal of Cr(VI) from aqueous solution.
Science of The Total Environment, 699, Article134334-(2020)
   
chromium ion
Bojdi MK et al., Material Design of a Chromium Imprinted Polymer and its Application as a Highly Selective Electrochemical Sensor for Determining Chromium Ion at Trace Levels.
ChemistrySelect, 6, (43), 11939-11947, (2021)
   
chromium ion
Guo ZP et al., Cr(VI)-imprinted polymer wrapped on urchin-like Bi2S3 for reduced photocorrosion and improved photoreduction of aqueous Cr(VI).
Journal of Hazardous Materials, 422, Article126946-(2022)
   
chromium ion
Zhang H et al., Study of ion-imprinted adsorbent materials on diatom-based Cr(VI) Surfaces.
Materials Letters, 308, Article131149-(2022)
   
chromium ions
Bayramoglu G et al., Synthesis of Cr(VI)-imprinted poly(4-vinyl pyridine-co-hydroxyethyl methacrylate) particles: Its adsorption propensity to Cr(VI).
Journal of Hazardous Materials, 187, (1-3), 213-221, (2011)
   
chromium ions
Li WF et al., Preparation and characterization of Cr(VI) anion imprinted fluorescence sensing microspheres.
Modern Chemical Industry, 36, (12), 51-55, (2016)
   
chromium ions
Cen SB et al., Preparation of an ion imprinted functionalized mesoporous silica for rapid and specific absorption Cr(III) ions in effluents.
RSC Advances, 7, (60), 37778-37786, (2017)
   
chromium ions
Etemadi M et al., Selective adsorption of Cr(VI) ions from aqueous solutions using Cr6+-imprinted Pebax/chitosan/GO/APTES nanofibrous adsorbent.
International Journal of Biological Macromolecules, 95, 725-733, (2017)
   
chromium ions
Taghizadeh M et al., Selective adsorption of Cr(VI) ions from aqueous solutions using a Cr(VI)-imprinted polymer supported by magnetic multiwall carbon nanotubes.
Polymer, 132, 1-11, (2017)
   
chromium ions
Lesaoana M et al., Crosslinker-less surface-imprinted Macadamia derived activated carbons for trace Cr(III) removal from aqueous solution.
Environmental Technology & Innovation, 14, Article100336-(2019)
   
chromium ions
Lu HZ et al., Dual channel ion imprinted fluorescent polymers for dual mode simultaneous chromium speciation analysis.
Analyst, 145, (7), 2661-2668, (2020)
   
chrysanthemate isomers
Yamamoto C et al., Preparation of HPLC chiral packing materials using cellulose tris(4-methylbenzoate) for the separation of chrysanthemate isomers.
Journal of Polymer Science Part A: Polymer Chemistry, 44, (17), 5087-5097, (2006)
   
chrysene
Lieberzeit PA et al., Polymers imprinted with PAH mixtures-comparing fluorescence and QCM sensors.
Analytical and Bioanalytical Chemistry, 392, (7-8), 1405-1410, (2008)
   
chrysene
Krupadam RJ et al., Fluorescence Spectrophotometer Analysis of Polycyclic Aromatic Hydrocarbons in Environmental Samples Based on Solid Phase Extraction Using Molecularly Imprinted Polymer.
Environmental Science & Technology, 43, (8), 2871-2877, (2009)
   
chrysene
Krupadam RJ et al., Highly sensitive determination of polycyclic aromatic hydrocarbons in ambient air dust by gas chromatography-mass spectrometry after molecularly imprinted polymer extraction.
Analytical and Bioanalytical Chemistry, 397, (7), 3097-3106, (2010)
   
Chrysene
Krupadam RJ et al., Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer.
Water Research, 44, (3), 681-688, (2010)
   
chrysene
Shimelis O et al., Extraction and Analysis of PAHs in Olive Oil using Molecularly Imprinted Polymer SPE and GC-MS.
The Reporter, 27, (5), 12-13, (2010)
   
chrysene
Drabova L et al., Rapid determination of polycyclic aromatic hydrocarbons (PAHs) in tea using two-dimensional gas chromatography coupled with time of flight mass spectrometry.
Talanta, 100, 207-216, (2012)
   
chrysene
Krupadam RJ, Nanoporous Polymeric Material for Remediation of PAHs Polluted Water.
Polycyclic Aromatic Compounds, 32, (2), 313-333, (2012)
   
chrysene
Song XL et al., Determination of 16 polycyclic aromatic hydrocarbons in seawater using molecularly imprinted solid-phase extraction coupled with gas chromatography-mass spectrometry.
Talanta, 99, 75-82, (2012)
   
chrysene
Drabova L et al., Application of solid phase extraction and two-dimensional gas chromatography coupled with time-of-flight mass spectrometry for fast analysis of polycyclic aromatic hydrocarbons in vegetable oils.
Food Control, 33, (2), 489-497, (2013)
   
chrysene
Ferey L et al., Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection.
Journal of Chromatography A, 1302, 181-190, (2013)
   
chrysene
Krupadam RJ et al., Highly selective detection of oil spill polycyclic aromatic hydrocarbons using molecularly imprinted polymers for marine ecosystems.
Journal of Hazardous Materials, 274, 1-7, (2014)
   
chrysene
Tuo SX et al., Reducing Polycyclic Aromatic Hydrocarbons in Cigarette Smoke by Pyrene Molecular Imprinted Polymers.
Chinese Journal of Applied Chemistry, 31, (1), 89-95, (2014)
   
chrysene
Villar-Navarro M et al., Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs).
Journal of Chromatography B, 1044-1045, 63-69, (2017)
   
chrysoeriol
Gao D et al., In Vivo Selective Capture and Rapid Identification of Luteolin and Its Metabolites in Rat Livers by Molecularly Imprinted Solid-Phase Microextraction.
Journal of Agricultural and Food Chemistry, 65, (6), 1158-1166, (2017)
   
chrysoidin
Long ZR et al., Selective recognition and discrimination of water-soluble azo dyes by a seven-channel molecularly imprinted polymer sensor array.
Journal of Separation Science, 37, (19), 2764-2770, (2014)
   
chrysoidine
Lu FG et al., Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted nanoparticles for determination of chrysoidine in food samples.
Sensors and Actuators B: Chemical, 173, 591-598, (2012)
   
chrysoidine
Fang GZ et al., Highly Selective Determination of Chrysoidine in Foods Through a Surface Molecularly Imprinted Sol-Gel Polymer Solid-Phase Extraction Coupled with HPLC.
Food Analytical Methods, 7, (2), 345-351, (2014)
   
chrysoidine
Wang XJ et al., Ultrasensitive molecularly imprinted electrochemical sensor based on magnetism graphene oxide/β-cyclodextrin/Au nanoparticles composites for chrysoidine analysis.
Electrochimica Acta, 130, 519-525, (2014)
   
chrysoidine
Duan HM et al., CdTe quantum dots@luminol as signal amplification system for chrysoidine with chemiluminescence-chitosan/graphene oxide-magnetite-molecularly imprinting sensor.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 153, 535-541, (2016)
   
chrysophanol
Wang SL et al., Synthesis and Evaluation of the Chrysophanol Molecularly Imprinted Polymers.
Chemical Industry Times, 23, (9), 16-19, (2009)
   
chrysophanol
Wang SL et al., Synthesis of the Chrysophanol Molecularly Imprinted Polymers by Quantum Chemical Calculation and Experimental Investigation.
Journal of Hebei Normal University (Natural Science Edition), 34, (5), 560-564, (2010)
   
chrysophanol
Liu YN et al., Preparation and Application of Rhein Magnetic Molecularly Imprinted Polymer.
Chemistry Bulletin, 75, (9), 842-847, (2012)
   
chrysophanol
Hong YS et al., Extraction of Anthraquinones from Rhubarb by a Molecularly Imprinted-Matrix Solid-Phase Dispersion Method with HPLC Detection.
Analytical Letters, 46, (14), 2235-2252, (2013)
   
C4-HSL
de Dieu Habimana J et al., A class-specific artificial receptor-based on molecularly imprinted polymer-coated quantum dot centers for the detection of signaling molecules, N-acyl-homoserine lactones present in gram-negative bacteria.
Analytica Chimica Acta, 1031, 134-144, (2018)
   
C6-HSL
de Dieu Habimana J et al., A class-specific artificial receptor-based on molecularly imprinted polymer-coated quantum dot centers for the detection of signaling molecules, N-acyl-homoserine lactones present in gram-negative bacteria.
Analytica Chimica Acta, 1031, 134-144, (2018)
   
C8-HSL
de Dieu Habimana J et al., A class-specific artificial receptor-based on molecularly imprinted polymer-coated quantum dot centers for the detection of signaling molecules, N-acyl-homoserine lactones present in gram-negative bacteria.
Analytica Chimica Acta, 1031, 134-144, (2018)
   
C4-HSL
Cui ZM et al., Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk.
Food Chemistry, 328, Article127063-(2020)
   
C6-HSL
Cui ZM et al., Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk.
Food Chemistry, 328, Article127063-(2020)
   
C8-HSL
Cui ZM et al., Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk.
Food Chemistry, 328, Article127063-(2020)
   
C10-HSL
Cui ZM et al., Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk.
Food Chemistry, 328, Article127063-(2020)
   
C12-HSL
Cui ZM et al., Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk.
Food Chemistry, 328, Article127063-(2020)
   
C14-HSL
Cui ZM et al., Novel magnetic fluorescence probe based on carbon quantum dots-doped molecularly imprinted polymer for AHLs signaling molecules sensing in fish juice and milk.
Food Chemistry, 328, Article127063-(2020)
   
CH3SO3-
Zhu GF et al., Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.
Journal of Chromatography A, 1532, 40-49, (2018)
   
ChT
Zheng C et al., A Selective Artificial Enzyme Inhibitor Based on Nanoparticle-Enzyme Interactions and Molecular Imprinting.
Advanced Materials, 25, (41), 5922-5927, (2013)
   
chymo
Rypar T et al., Paperfluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers.
Sensors and Actuators B: Chemical, 341, Article129999-(2021)
   
α-chymotrypsin
Zheng C et al., A Selective Artificial Enzyme Inhibitor Based on Nanoparticle-Enzyme Interactions and Molecular Imprinting.
Advanced Materials, 25, (41), 5922-5927, (2013)
   
chymotrypsinogen
Rypar T et al., Paperfluidic devices with a selective molecularly imprinted polymer surface for instrumentation-free distance-based detection of protein biomarkers.
Sensors and Actuators B: Chemical, 341, Article129999-(2021)
   
Cialis
Chen FF et al., Magnetic molecularly imprinted polymer for the selective extraction of sildenafil, vardenafil and their analogs from herbal medicines.
Talanta, 115, 482-489, (2013)
   
CIB
Lei RL et al., A Novel Electrochemical Sensor for β2-Agonists with High Sensitivity and Selectivity Based on Surface Molecularly Imprinted Sol-gel Doped with Antimony-Doped Tin Oxide.
Electroanalysis, 26, (5), 1004-1012, (2014)
   
Cibacron Black PSG
Okutucu B et al., Molecularly Imprinted Polymers for Some Reactive Dyes.
Preparative Biochemistry and Biotechnology, 40, (4), 366-376, (2010)
   
Cibacron Orange P-4R
Okutucu B et al., Molecularly Imprinted Polymers for Some Reactive Dyes.
Preparative Biochemistry and Biotechnology, 40, (4), 366-376, (2010)
   
Cibacron reactive red dye
Al-Degs YS et al., Preparation of highly selective solid-phase extractants for Cibacron reactive dyes using molecularly imprinted polymers.
Analytical and Bioanalytical Chemistry, 393, (3), 1055-1062, (2009)
   
Cibacron reactive red dye
Abu-Surrah AS et al., A molecularly imprinted polymer via a salicylaldiminato-based cobalt(III) complex: A highly selective solid-phase extractant for anionic reactive dyes.
Journal of Applied Polymer Science, 117, (4), 2316-2323, (2010)
   
Cibacron Red P-4B
Okutucu B et al., Molecularly Imprinted Polymers for Some Reactive Dyes.
Preparative Biochemistry and Biotechnology, 40, (4), 366-376, (2010)
   
cigarette smoke carcinogens
Obinna O et al., Chitosan molecularly imprinted polymers cross linked with (E)-3, 7-Dimethyl-2,6-octadienoic acid, With Binding Sites For Phenylalanine Amide.
International Journal of Applied Science and Technology, 9, (2), 55-66, (2019)
   
CIL
Jyoti et al., Molecularly imprinted polymer nanoparticles-based electrochemical chemosensors for selective determination of cilostazol and its pharmacologically active primary metabolite in human plasma.
Biosensors and Bioelectronics, 193, Article113542-(2021)
   
cilostazol
Jyoti et al., Molecularly imprinted polymer nanoparticles-based electrochemical chemosensors for selective determination of cilostazol and its pharmacologically active primary metabolite in human plasma.
Biosensors and Bioelectronics, 193, Article113542-(2021)
   
CIM
Wang LQ et al., Matrix Effects in Analysis of β-Agonists with LC-MS/MS: Influence of Analyte Concentration, Sample Source, and SPE Type.
Journal of Agricultural and Food Chemistry, 60, (25), 6359-6363, (2012)
   
CIM
Zhang LM et al., A Cimaterol Molecularly Imprinted Sensor Based on DNA-assisted Recognition.
Chinese Journal of Analytical Chemistry, 46, (11), 1770-1777, (2018)
   
cimaterol
Kootstra PR et al., The analysis of β-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening.
Analytica Chimica Acta, 529, (1-2), 75-81, (2005)
   
cimaterol
Wang LQ et al., Matrix Effects in Analysis of β-Agonists with LC-MS/MS: Influence of Analyte Concentration, Sample Source, and SPE Type.
Journal of Agricultural and Food Chemistry, 60, (25), 6359-6363, (2012)
   
cimaterol
Zhang LM et al., A Novel Molecularly Imprinted Fluorescence Test Strip for Detection of Cimaterol.
Chinese Journal of Analytical Chemistry, 44, (10), 1477-1481, (2016)
   
cimaterol
Zhang LM et al., A Cimaterol Molecularly Imprinted Sensor Based on DNA-assisted Recognition.
Chinese Journal of Analytical Chemistry, 46, (11), 1770-1777, (2018)
   
cimbuterol
Kootstra PR et al., The analysis of β-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening.
Analytica Chimica Acta, 529, (1-2), 75-81, (2005)
   
Cimbuterol
Xu W et al., Electrochemical sensor based on a carbon nanotube-modified imprinted sol-gel for selective and sensitive determination of β2-agonists.
Microchimica Acta, 180, (11-12), 1005-1011, (2013)
   
cimbuterol
Lei RL et al., A Novel Electrochemical Sensor for β2-Agonists with High Sensitivity and Selectivity Based on Surface Molecularly Imprinted Sol-gel Doped with Antimony-Doped Tin Oxide.
Electroanalysis, 26, (5), 1004-1012, (2014)
   
Cimbuterol
Liu HC et al., Magnetic molecularly imprinted polymers for the determination of β-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry.
Journal of Separation Science, 39, (18), 3594-3601, (2016)
   
cimetidine
Fu C et al., Molecularly imprinted submicrometer polymeric microspheres via emulsion polymerization.
Ion Exchange and Adsorption, 19, (5), 385-392, (2003)
   
cimetidine
Zhang LY et al., Molecule selecting property of cimetidine imprinted polymeric microspheres via suspension polymerization.
Chinese Journal of Analytical Chemistry, 31, (6), 655-658, (2003)
   
cimetidine
Ceolin G et al., Accelerated Development Procedure for Molecularly Imprinted Polymers Using Membrane Filterplates.
Journal of Combinatorial Chemistry, 11, (4), 645-652, (2009)
   
cimetidine
P SM et al., Histamine H2-receptor antagonist imprinted-poly (vinylimidazole) grafted multiwalled carbon nanotubes.
Journal of Chemical and Pharmaceutical Research, 6, (12), 394-402, (2014)
   
cimetidine
Sooraj MP et al., Structure-specific sorbent based on nanostructures for selective recognition of cimetidine from its structural analogues.
Journal of Applied Polymer Science, 131, (20), n/a-n/a, (2014)
   
cinchona alkaloids
Zhou Q et al., A novel hydroquinidine imprinted microsphere using a chirality-matching N-Acryloyl-l-phenylalanine monomer for recognition of cinchona alkaloids.
Journal of Chromatography A, 1238, (1), 60-67, (2012)
   
cinchona alkaloids
Jiang JB et al., Preparation and characterization of a pseudo-template imprinted polymer with a chirality-matching monomer for the separation of cinchona alkaloids by high-performance liquid chromatography.
Journal of Applied Polymer Science, 129, (6), 3425-3431, (2013)
   
cinchona alkaloids
Zhang C et al., Macromolecular crowding-assisted fabrication of liquid-crystalline imprinted polymers.
Analytical and Bioanalytical Chemistry, 407, (10), 2923-2931, (2015)
   
cinchona alkaloids
Zhang ZY et al., Preparation of ordered macroporous molecularly imprinted polymers and their applications in purifying cinchona alkaloids from cinchona extract.
Polymer International, 70, (9), 1344-1355, (2021)
   
cinchonan-9-R-ol
Meng ZH et al., Beaded molecule imprinted polymer for stereo isomer separation.
Chromatography, 21, (3), 217-219, (2000)
   
cinchonidine
Meng ZH et al., Beaded molecule imprinted polymer for stereo isomer separation.
Chinese Journal of Chromatography, 17, (4), 323-325, (1999)
   
cinchonidine
Meng ZH et al., Beaded molecule imprinted polymer for stereo isomer separation.
Chromatography, 21, (3), 217-219, (2000)
   
cinchonidine
Nishimura S et al., Selective measurement of optical isomer by using molecular imprinting and surface plasmon resonance sensor.
Analytical Sciences, 17, (Supplement (Proceedings of IUPAC International Congress on Analytical Sciences 2001 (ICAS 2001))), i1697-i1699, (2001)
   
cinchonidine
Takeuchi T et al., Molecularly imprinted polymer library on a microtiter plate. High-throughput synthesis and assessment of cinchona alkaloid-imprinted polymers.
Instrumentation Science & Technology, 29, (1), 1-9, (2001)
   
cinchonidine
Huang XD et al., Short columns with molecularly imprinted monolithic stationary phases for rapid separation of diastereomers and enantiomers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 13-18, (2004)
   
cinchonidine
Fish WP et al., Rational design of an imprinted polymer: Maximizing selectivity by optimizing the monomer-template ratio for a cinchonidine MIP, prior to polymerization, using microcalorimetry.
Journal of Liquid Chromatography & Related Technologies, 28, (1), 1-15, (2005)
   
cinchonidine
Kielczynski R et al., Molecularly imprinted membranes for cinchona alkaloids separation.
Separation and Purification Technology, 41, (3), 231-235, (2005)
   
cinchonidine
Ogawa T et al., Screening of bitterness-suppressing agents for quinine: The use of molecularly imprinted polymers.
Journal of Pharmaceutical Sciences, 94, (2), 353-362, (2005)
   
(-)-cinchonidine
Takeuchi T et al., Signaling molecularly imprinted polymers: Molecular recognition-based sensing materials.
Chemical Record, 5, (5), 263-275, (2005)
   
cinchonidine
Takeuchi T et al., Molecularly imprinted polymers with signaling function based on the UV-Vis spectral change by diastereoselective binding events.
Bulletin of the Chemical Society of Japan, 78, (2), 356-360, (2005)
   
cinchonidine
Matsui J et al., Photodimerization of anthryl moieties in a poly(methacrylic acid) derivative as reversible cross-linking step in molecular imprinting.
Chemistry Letters, 35, (1), 80-81, (2006)
   
cinchonidine
Matsui J et al., Molecularly-imprinted polymeric logic gates selective for predetermined chemical input species.
Chemical Communications, (30), 3217-3219, (2006)
   
cinchonidine
Liu YQ et al., Monodispersed, molecularly imprinted polymers for cinchonidine by precipitation polymerization.
Talanta, 80, (5), 1713-1718, (2010)
   
(-)-cinchonidine
Büttiker R et al., Membranes for Specific Adsorption: Immobilizing Molecularly Imprinted Polymer Microspheres using Electrospun Nanofibers.
Chimia, 65, (3), 182-186, (2011)
   
cinchonidine
Liu L et al., Development and Characterization of an Electrochemical Sensor for Cinchonidine Detection Based on Molecularly Imprinted Polymer with Modified Rosin as Cross-linker.
Chemical Research in Chinese Universities, 28, (3), 410-414, (2012)
   
cinchonidine
Zhou Q et al., A novel hydroquinidine imprinted microsphere using a chirality-matching N-Acryloyl-l-phenylalanine monomer for recognition of cinchona alkaloids.
Journal of Chromatography A, 1238, (1), 60-67, (2012)
   
cinchonidine
Yang HP et al., Entrapment of alkaloids within silver: from enantioselective hydrogenation to chiral recognition.
Chemical Communications, 50, (64), 8868-8870, (2014)
   
cinchonine
Meng ZH et al., Beaded molecule imprinted polymer for stereo isomer separation.
Chinese Journal of Chromatography, 17, (4), 323-325, (1999)
   
cinchonine
Huang XD et al., Preparation of Molecularly Imprinted Chiral Monolithic Column and Its Applications for Separation of Diastereomers.
Chinese Journal of Chromatography, 20, (5), 436-438, (2002)
   
cinchonine
Huang XD et al., Preparation of Molecularly Imprinted Monolithic Capillary Column for Separation of Diastereomers of Cinchona Alkaloids by Pressure-Assisted Capillary Electrochromatography.
Chinese Journal of Chromatography, 21, (3), 195-198, (2003)
   
cinchonine
Huang XD et al., Short columns with molecularly imprinted monolithic stationary phases for rapid separation of diastereomers and enantiomers.
Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 804, (1), 13-18, (2004)
   
cinchonine
Yin F et al., Construction and analytical application of a novel ion-selective capacitive sensor for determination of cinchonine.
Analytical Letters, 37, (15), 3129-3147, (2004)
   
cinchonine
Kielczynski R et al., Molecularly imprinted membranes for cinchona alkaloids separation.
Separation and Purification Technology, 41, (3), 231-235, (2005)
   
cinchonine
Liu ZH et al., Detection of cinchohine using molecularly imprinted electrosynthesized polymer as biomimetic receptor layers.
Chemical Journal of Chinese Universities, 26, (6), 1049-1051, (2005)
   
(+)-cinchonine
Rushton GT et al., A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs).
Analytica Chimica Acta, 528, (1), 107-113, (2005)
   
cinchonine
Zhong SA et al., Selective recognition in molecularly imprinted polymer and its chromatographic characterization for cinchonine.
Journal of Central South University of Technology (English Edition), 12, (1), 102-107, (2005)
   
cinchonine
Matsui J et al., Molecularly-imprinted polymeric logic gates selective for predetermined chemical input species.
Chemical Communications, (30), 3217-3219, (2006)
   
cinchonine
Zhou Q et al., A novel hydroquinidine imprinted microsphere using a chirality-matching N-Acryloyl-l-phenylalanine monomer for recognition of cinchona alkaloids.
Journal of Chromatography A, 1238, (1), 60-67, (2012)
   
cinchonine
Yang HP et al., Entrapment of alkaloids within silver: from enantioselective hydrogenation to chiral recognition.
Chemical Communications, 50, (64), 8868-8870, (2014)
   
cinchonine
Liu Q et al., Preparation of ordered macroporous cinchonine molecularly imprinted polymers and comparative study of their structure and binding properties with traditional bulk molecularly imprinted polymers.
Polymer International, 64, (11), 1594-1599, (2015)
   
cinchonine
Wei XP et al., Highly Sensitive Self-assembly Magnetic Molecularly Imprinted Electrochemiluminescence Sensor for Determination of Cinchonine.
Chinese Journal of Analytical Chemistry, 43, (3), 424-428, (2015)
   
cinchonine
Zhang YN et al., Preparation of cinchonine molecularly imprinted photonic crystal film and its specific recognition and optical responsive properties.
Journal of Applied Polymer Science, 133, (11), ArticleNo43191-(2016)
   
cinchonine
Yuan XY et al., Chiral determination of cinchonine using an electrochemiluminescent sensor with molecularly imprinted membrane on the surfaces of magnetic particles.
Luminescence, 32, (7), 1116-1122, (2017)
   
cinchonine
Tong PH et al., Molecularly imprinted electrochemical luminescence sensor based on core-shell magnetic particles with ZIF-8 imprinted material.
Sensors and Actuators B: Chemical, 330, Article129405-(2021)
   
cinchonine
Zhang ZY et al., Preparation of ordered macroporous molecularly imprinted polymers and their applications in purifying cinchona alkaloids from cinchona extract.
Polymer International, 70, (9), 1344-1355, (2021)
   
cinchonine-picrolonate
Yin F et al., Construction and analytical application of a novel ion-selective capacitive sensor for determination of cinchonine.
Analytical Letters, 37, (15), 3129-3147, (2004)
   
cinnamic acid
Chen H et al., To Construct "Ion Traps" for Enhancing the Permselectivity and Permeability of Polyelectrolyte Multilayer Films.
Macromolecules, 40, (3), 653-660, (2007)
   
cinnamic acid
Chow ALJ et al., Synthesis and Characterization of Molecular Imprinting Polymer Microspheres of Cinnamic: Extraction of Cinnamic Acid from Spiked Blood Plasma.
International Journal of Polymer Science, 2016, ArticleID2418915-(2016)
   
cinnamic acid
Yin YL et al., Polydopamine-coated magnetic molecularly imprinted polymer for the selective solid-phase extraction of cinnamic acid, ferulic acid and caffeic acid from radix scrophulariae sample.
Journal of Separation Science, 39, (8), 1480-1488, (2016)
   
cinnamic acid
Shi SY et al., Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices.
Food Chemistry, 237, 198-204, (2017)
   
cinnamic acid
Xiang HY et al., Hollow porous molecularly imprinted polymers for rapid and selective extraction of cinnamic acid from juices.
Journal of Chromatography B, 1049-1050, 1-7, (2017)
   
cinnamic acid
Wei MH et al., Preparation and Characterization of Dual-Template Molecularly Imprinted Membrane with High Flux Based on Blending the Inorganic Nanoparticles.
Journal of Inorganic and Organometallic Polymers and Materials, 28, (1), 295-307, (2018)
   
CIP
He DF et al., Application study of separation of fluoroquinolone drugs imprinted polymers.
Journal of Science of Teachers College and University, 28, (1), 65-68, (2008)
   
CIP
Liu PY et al., Synthesis and characterization of molecularly imprinted polymers for recognition of ciprofloxacin.
Chemistry Bulletin, 71, (2), 132-137, (2008)
   
CIP
Lu YK et al., Preparation and evaluation of molecularly imprinted monolithic column for liquid chromatographic determination of enrofloxacin in eggs.
Chemical Journal on Internet, 11, (5), Article No. 115026pe-(2009)
   
CIP
Qu SS et al., Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure.
Journal of Chromatography A, 1217, (52), 8205-8211, (2010)
   
CIP
Kamel AH et al., Biomimetic ciprofloxacin sensors made of molecularly imprinted network receptors for potential measurements.
Analytical Methods, 3, (4), 957-964, (2011)
   
CIP
Prieto A et al., Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water.
Analytica Chimica Acta, 685, (2), 146-152, (2011)
   
CIP
Huo PW et al., Preparation photocatalyst of selected photodegradation antibiotics by molecular imprinting technology onto TiO2/fly-ash cenospheres.
Chemical Engineering Journal, 189-190, (1), 75-83, (2012)
   
CIP
Zhang XJ et al., Selective adsorption of micro ciprofloxacin by molecularly imprinted functionalized polymers appended onto ZnS.
Environmental Technology, 33, (17), 2019-2025, (2012)
   
CIP
Liu JB et al., Theoretical Research on Self-assembly System of Molecular Imprinted Polymers Formed by Ciprofloxacin and Trifluoromethacrylic Acid.
Chemical Journal of Chinese Universities, 34, (11), 2566-2573, (2013)
   
CIP
Liu ST et al., Water-Compatible Molecularly Imprinted Microspheres in Pipette Tip Solid-Phase Extraction for Simultaneous Determination of Five Fluoroquinolones in Eggs.
Journal of Agricultural and Food Chemistry, 61, (49), 11974-11980, (2013)
   
CIP
Sun JN et al., Theoretical researches on the self-assembly system of ciprofloxacin imprinted polymers.
Chinese Journal of Structural Chemistry, 32, (8), 1204-1210, (2013)
   
CIP
Szultka M et al., Simultaneous determination of selected chemotherapeutics in human whole blood by molecularly imprinted polymers coated solid phase microextraction fibers and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography B, 940, 66-76, (2013)
   
CIP
Liu XL et al., Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 420-426, (2014)
   
CIP
Moreno-González D et al., Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples.
Journal of Chromatography A, 1360, 1-8, (2014)
   
CIP
Wang H et al., Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.
Journal of Chromatography B, 949-950, 24-29, (2014)
   
CIP
Wang J et al., Surface molecularly imprinted polymers based on yeast prepared by atom transfer radical emulsion polymerization for selective recognition of ciprofloxacin from aqueous medium.
Journal of Applied Polymer Science, 131, (11), Article No 40310-(2014)
   
CIP
Yang X et al., Synthesis of a novel molecularly imprinted organic-inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia.
Journal of Chromatography B, 945-946, 127-134, (2014)
   
CIP
Zheng HB et al., Facile synthesis of magnetic molecularly imprinted polymers and its application in magnetic solid phase extraction for fluoroquinolones in milk samples.
Journal of Chromatography A, 1329, 17-23, (2014)
   
CIP
An LJ et al., Synthesis of magnetic molecular imprinted silica spheres for recognition of ciprofloxacin by metal-coordinate interaction.
Journal of Sol-Gel Science and Technology, 76, (1), 36-42, (2015)
   
CIP
Zhou WC et al., Preparation and Performance of a Novel Magnetic Imprinted TiO2 Photocatalyst.
Nanoscience and Nanotechnology Letters, 7, (8), 678-684, (2015)
   
Cip
Lian ZR et al., Determination of ciprofloxacin in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection.
Marine Pollution Bulletin, 111, (1-2), 411-417, (2016)
   
CIP
Luo QH et al., Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array.
Talanta, 161, 797-803, (2016)
   
CIP
Mao YL et al., Selective Recognition of Ciprofloxacin from Aqueous Solution by Molecularly Imprinted Polymers Based on Magnetic Illite.
Chinese Journal of Analytical Chemistry, 44, (6), 915-922, (2016)
   
CIP
Guan XJ et al., Preparation of polysulfone materials on nickel foam for solid-phase microextraction of floxacin in water and biological samples.
Analytical and Bioanalytical Chemistry, 409, (12), 3127-3133, (2017)
   
CIP
Liu XL et al., Enhanced and Selective Degradation of Ciprofloxacin Performance with Surface Molecular Imprinted Cds Photocatalyst by Microwave-Assisted Method.
Fresenius Environmental Bulletin, 26, (1A), 1033-1040, (2017)
   
CIP
Lu ZY et al., Construction of stable core-shell imprinted Ag-(poly-o-phenylenediamine)/CoFe2O4 photocatalyst endowed with the specific recognition capability for selective photodegradation of ciprofloxacin.
RSC Advances, 7, (77), 48894-48903, (2017)
   
CIP
Mao YL et al., Selective Adsorption and Separation of Ciprofloxacin by Molecularly Imprinted Polymers Based on Magnetic Kaolinite Composites.
Chinese Journal of Inorganic Chemistry, 33, (1), 81-88, (2017)
   
CIP
Wang YF et al., Surface-Imprinted Magnetic Carboxylated Cellulose Nanocrystals for the Highly Selective Extraction of Six Fluoroquinolones from Egg Samples.
ACS Applied Materials & Interfaces, 9, (2), 1759-1769, (2017)
   
CIP
Yang K et al., Preparation of dual-template molecularly imprinted polymer coated stir bar based on computational simulation for detection of fluoroquinolones in meat.
Journal of Chromatography B, 1046, 65-72, (2017)
   
CIP
Prutthiwanasan B et al., Improved resolution of fluoroquinolones using cetyltrimethyl ammonium bromide-micellar electrokinetic chromatography and its application to residue analysis in surface water.
Journal of Chromatography B, 1092, 306-312, (2018)
   
CIP
Liu XQ et al., Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin.
Sensors and Actuators B: Chemical, 289, 242-251, (2019)
   
CIP
Mirzajani R et al., The core-shell nanosized magnetic molecularly imprinted polymers for selective preconcentration and determination of ciprofloxacin in human fluid samples using a vortex-assisted dispersive micro-solid-phase extraction and high-performance liquid chromatography.
Journal of the Iranian Chemical Society, 16, (11), 2291-2306, (2019)
   
CIP
Peng JY et al., Enhanced selectivity for photodegrading ciprofloxacin by a magnetic photocatalyst modified with a POPD-CdS heterojunction embedded imprinted layer.
New Journal of Chemistry, 43, (6), 2610-2623, (2019)
   
CIP
Surya SG et al., A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor.
RSC Advances, 10, (22), 12823-12832, (2020)
   
CIP
Bazi M et al., Investigation of Isotherm, Kinetics and Thermodynamics of Ciprofloxacin Adsorption by Molecularly Imprinted Polymer from Aqueous Solutions.
International Journal of Pharmaceutical Investigation, 11, (3), 269-273, (2021)
   
CIP
Huang QD et al., A novel fluorescent optical fiber sensor for highly selective detection of antibiotic ciprofloxacin based on replaceable molecularly imprinted nanoparticles composite hydrogel detector.
Sensors and Actuators B: Chemical, 328, Article129000-(2021)
   
CIP
Yuan Y et al., Dummy molecularly imprinted membranes based on an eco-friendly synthesis approach for recognition and extraction of enrofloxacin and ciprofloxacin in egg samples.
Journal of Chromatography A, 1653, Article462411-(2021)
   
CIPRO
Caro E et al., Direct determination of ciprofloxacin by mass spectrometry after a two-step solid-phase extraction using a molecularly imprinted polymer.
Journal of Separation Science, 29, (9), 1230-1236, (2006)
   
CIPRO
Lombardo-Agüí M et al., Comparison of different sample treatments for the analysis of quinolones in milk by capillary-liquid chromatography with laser induced fluorescence detection.
Journal of Chromatography A, 1218, (30), 4966-4971, (2011)
   
CIPRO
Rodriguez E et al., Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography.
Food Chemistry, 127, (3), 1354-1360, (2011)
   
CIPRO
Rodríguez E et al., Multiresidue Determination of Ultratrace Levels of Fluoroquinolone Antimicrobials in Drinking and Aquaculture Water Samples by Automated Online Molecularly Imprinted Solid Phase Extraction and Liquid Chromatography.
Analytical Chemistry, 83, (6), 2046-2055, (2011)
   
CIPRO
de Oliveira HL et al., Molecularly imprinted pipette-tip solid phase extraction for selective determination of fluoroquinolones in human urine using HPLC-DAD.
Journal of Chromatography B, 1033-1034, 27-39, (2016)
   
CIPRO
Silva LM et al., Use of two functional monomers for a new approach to the synthesis of a magnetic molecularly imprinted polymer for ciprofloxacin.
Journal of Materials Research and Technology, 15, 511-523, (2021)
   
ciprofloxacin
Caro E et al., Direct determination of ciprofloxacin by mass spectrometry after a two-step solid-phase extraction using a molecularly imprinted polymer.
Journal of Separation Science, 29, (9), 1230-1236, (2006)
   
ciprofloxacin
Caro E et al., Novel enrofloxacin imprinted polymer applied to the solid-phase extraction of fluorinated quinolones from urine and tissue samples.
Analytica Chimica Acta, 562, (2), 145-151, (2006)
   
ciprofloxacin
Cao XM et al., Preparation and recognition properties of molecularly imprinted polymer for ciprofloxacin.
Chemical Research and Application, 19, (12), 1327-1330, (2007)
   
ciprofloxacin
Gao JG et al., Preparation of MAA/TRIM molecularly imprinted polymers and binding selectivity for ciprofloxacin.
Chemical Journal on Internet, 9, (2), 6-(2007)
   
ciprofloxacin
Liu ZL et al., Synthesis of Molecularly Imprinted Polymeric Microspheres with Ciprofloxacin as Template and the Study of Their Binding Characteristics.
Journal of Hebei University (Natural Science Edition), 27, (4), 368-372,381, (2007)
   
ciprofloxacin
Yan H et al., Molecularly Imprinted-Matrix Solid-Phase Dispersion for Selective Extraction of Five Fluoroquinolones in Eggs and Tissue.
Analytical Chemistry, 79, (21), 8242-8248, (2007)
   
ciprofloxacin
Benito-Peńa E et al., Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer.
Journal of Chromatography A, 1208, (1-2), 62-70, (2008)
   
ciprofloxacin
He DF et al., Application study of separation of fluoroquinolone drugs imprinted polymers.
Journal of Science of Teachers College and University, 28, (1), 65-68, (2008)
   
ciprofloxacin
Liu PY et al., Synthesis and characterization of molecularly imprinted polymers for recognition of ciprofloxacin.
Chemistry Bulletin, 71, (2), 132-137, (2008)
   
ciprofloxacin
Liu PY et al., Synthesis and characterization of molecularly imprinted polymers for recognition of ciprofloxacin.
Frontiers of Chemistry in China, 3, (4), 378-383, (2008)
   
ciprofloxacin
Sun HW et al., Simultaneous isolation of six fluoroquinolones in serum samples by selective molecularly imprinted matrix solid-phase dispersion.
Analytica Chimica Acta, 625, (2), 154-159, (2008)
   
ciprofloxacin
Yan H et al., Determination of enrofloxacin and ciprofloxacin in milk using molecularly imprinted solid-phase extraction.
Journal of Separation Science, 31, (16-17), 3015-3020, (2008)
   
ciprofloxacin
Yan H et al., Molecularly imprinted solid-phase extraction for determination of enrofloxacin and ciprofloxacin in chicken muscle.
Bulletin of the Korean Chemical Society, 29, (6), 1173-1178, (2008)
   
ciprofloxacin
Benito-Peńa E et al., Water-compatible molecularly imprinted polymer for the selective recognition of fluoroquinolone antibiotics in biological samples.
Analytical and Bioanalytical Chemistry, 393, (1), 235-245, (2009)
   
ciprofloxacin
Díaz-Alvarez M et al., Selective sample preparation for the analysis of (fluoro)quinolones in baby food: molecularly imprinted polymers versus anion-exchange resins.
Analytical and Bioanalytical Chemistry, 393, (3), 899-905, (2009)
   
ciprofloxacin
Lu YK et al., Preparation and evaluation of molecularly imprinted monolithic column for liquid chromatographic determination of enrofloxacin in eggs.
Chemical Journal on Internet, 11, (5), Article No. 115026pe-(2009)
   
ciprofloxacin
Sun HW et al., Water-compatible Molecularly Imprinted Solid Phase Extraction-HPLC for Determination of Fluorouinolones Residues in Chicken.
Food Science, 30, (8), 151-154, (2009)
   
ciprofloxacin
Yan H et al., Molecularly Imprinted Monolithic Column for Selective On-Line Extraction of Enrofloxacin and Ciprofloxacin from Urine.
Chromatographia, 70, (7), 1087-1093, (2009)
   
ciprofloxacin
Chen LG et al., Determination of fluoroquinolone antibiotics in environmental water samples based on magnetic molecularly imprinted polymer extraction followed by liquid chromatography-tandem mass spectrometry.
Analytica Chimica Acta, 662, (1), 31-38, (2010)
   
ciprofloxacin
Li ZM et al., The preparation and separation evaluation of molecularly imprinted monolithic columns of ciprofloxacin.
Chinese Journal of Analysis Laboratory, 29, (6), 46-48, (2010)
   
ciprofloxacin
Liu PY et al., Determination of Fluoroquinolones in Milk by High-Performance Liquid Chromatography Using Mixed-Templates Imprinted Polymer Extraction.
Asian Journal of Chemistry, 22, (8), 6275-6288, (2010)
   
ciprofloxacin
Lombardo-Agüí M et al., Laser induced fluorescence coupled to capillary electrophoresis for the determination of fluoroquinolones in foods of animal origin using molecularly imprinted polymers.
Journal of Chromatography A, 1217, (15), 2237-2242, (2010)
   
ciprofloxacin
Qiao FX et al., Simultaneous extraction of enrofloxacin and ciprofloxacin from chicken tissue by molecularly imprinted matrix solid-phase dispersion.
Journal of Pharmaceutical and Biomedical Analysis, 53, (3), 795-798, (2010)
   
ciprofloxacin
Qu SS et al., Metal ion mediated molecularly imprinted polymer for selective capturing antibiotics containing beta-diketone structure.
Journal of Chromatography A, 1217, (52), 8205-8211, (2010)
   
ciprofloxacin
Sun XL et al., Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples.
Journal of Separation Science, 33, (23-24), 3786-3793, (2010)
   
ciprofloxacin
Wihlborg A-K et al., Molecularly Imprinted Polymer SPE for the Highly Selective Extraction of Fluoroquinolones from Bovine Kidney.
The Reporter, 27, (1), 18-20, (2010)
   
ciprofloxacin
Zheng MM et al., Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples.
Journal of Chromatography A, 1217, (14), 2075-2081, (2010)
   
ciprofloxacin
Huo PW et al., Enhanced photodegradation of antibiotics solution under visible light with Fe2+/Fe3+ immobilized on TiO2/fly-ash cenospheres by using ions imprinting technology.
Chemical Engineering Journal, 172, (2-3), 615-622, (2011)
   
ciprofloxacin
Lombardo-Agüí M et al., Comparison of different sample treatments for the analysis of quinolones in milk by capillary-liquid chromatography with laser induced fluorescence detection.
Journal of Chromatography A, 1218, (30), 4966-4971, (2011)
   
ciprofloxacin
Oliveira HMV et al., Ciprofloxacin-imprinted polymeric receptors as ionophores for potentiometric transduction.
Electrochimica Acta, 56, (5), 2017-2023, (2011)
   
ciprofloxacin
Prieto A et al., Synthesis of a molecularly imprinted polymer and its application for microextraction by packed sorbent for the determination of fluoroquinolone related compounds in water.
Analytica Chimica Acta, 685, (2), 146-152, (2011)
   
ciprofloxacin
Qiao FX et al., Simultaneous analysis of fluoroquinolones and xanthine derivatives in serum by molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography.
Journal of Chromatography B, 879, (30), 3551-3555, (2011)
   
ciprofloxacin
Rodriguez E et al., Multiresidue determination of fluoroquinolone antimicrobials in baby foods by liquid chromatography.
Food Chemistry, 127, (3), 1354-1360, (2011)
   
ciprofloxacin
Rodríguez E et al., Multiresidue Determination of Ultratrace Levels of Fluoroquinolone Antimicrobials in Drinking and Aquaculture Water Samples by Automated Online Molecularly Imprinted Solid Phase Extraction and Liquid Chromatography.
Analytical Chemistry, 83, (6), 2046-2055, (2011)
   
ciprofloxacin
Blasco C et al., Development of an Improved Method for Trace Analysis of Quinolones in Eggs of Laying Hens and Wildlife Species Using Molecularly Imprinted Polymers.
Journal of Agricultural and Food Chemistry, 60, (44), 11005-11014, (2012)
   
ciprofloxacin
Hui A et al., Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery.
Materials, 5, (1), 85-107, (2012)
   
ciprofloxacin
Huo PW et al., Preparation photocatalyst of selected photodegradation antibiotics by molecular imprinting technology onto TiO2/fly-ash cenospheres.
Chemical Engineering Journal, 189-190, (1), 75-83, (2012)
   
ciprofloxacin
Lv YK et al., On-Line Solid-Phase Extraction of Fluoroquinolone Residues from Milk with Enrofloxacin-Imprinted Monolithic Column.
Asian Journal of Chemistry, 24, (9), 3913-3916, (2012)
   
ciprofloxacin
Lv YK et al., Grafting of norfloxacin imprinted polymeric membranes on silica surface for the selective solid-phase extraction of fluoroquinolones in fish samples.
Talanta, 89, (1), 270-275, (2012)
   
ciprofloxacin
Zhang XJ et al., Selective adsorption of micro ciprofloxacin by molecularly imprinted functionalized polymers appended onto ZnS.
Environmental Technology, 33, (17), 2019-2025, (2012)
   
ciprofloxacin
Lee S et al., Development of isotope dilution-liquid chromatography tandem mass spectrometry for the accurate determination of fluoroquinolones in animal meat products: Optimization of chromatographic separation for eliminating matrix effects on isotope ratio measurements.
Journal of Chromatography A, 1277, 35-41, (2013)
   
ciprofloxacin
Liu JB et al., Theoretical Research on Self-assembly System of Molecular Imprinted Polymers Formed by Ciprofloxacin and Trifluoromethacrylic Acid.
Chemical Journal of Chinese Universities, 34, (11), 2566-2573, (2013)
   
ciprofloxacin
Liu ST et al., Water-Compatible Molecularly Imprinted Microspheres in Pipette Tip Solid-Phase Extraction for Simultaneous Determination of Five Fluoroquinolones in Eggs.
Journal of Agricultural and Food Chemistry, 61, (49), 11974-11980, (2013)
   
ciprofloxacin
Sun JN et al., Theoretical researches on the self-assembly system of ciprofloxacin imprinted polymers.
Chinese Journal of Structural Chemistry, 32, (8), 1204-1210, (2013)
   
ciprofloxacin
Szultka M et al., Simultaneous determination of selected chemotherapeutics in human whole blood by molecularly imprinted polymers coated solid phase microextraction fibers and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography B, 940, 66-76, (2013)
   
ciprofloxacin
Xiao DL et al., Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples.
Analyst, 138, (11), 3287-3296, (2013)
   
ciprofloxacin
Gao B et al., Computational simulation and preparation of fluorescent magnetic molecularly imprinted silica nanospheres for ciprofloxacin or norfloxacin sensing.
Journal of Separation Science, 37, (24), 3753-3759, (2014)
   
ciprofloxacin
Guo ZN et al., Magnetic imprinted surface enhanced Raman scattering (MI-SERS) based ultrasensitive detection of ciprofloxacin from a mixed sample.
Analytical Methods, 6, (6), 1627-1632, (2014)
   
ciprofloxacin
Hui A et al., In Vitro and In Vivo Evaluation of Novel Ciprofloxacin-Releasing Silicone Hydrogel Contact Lenses.
Investigative Ophthalmology & Visual Science, 55, (8), 4896-4904, (2014)
   
ciprofloxacin
Liu XL et al., Selective degradation of ciprofloxacin with modified NaCl/TiO2 photocatalyst by surface molecular imprinted technology.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 420-426, (2014)
   
ciprofloxacin
Moreno-González D et al., Molecularly imprinted polymer as in-line concentrator in capillary electrophoresis coupled with mass spectrometry for the determination of quinolones in bovine milk samples.
Journal of Chromatography A, 1360, 1-8, (2014)
   
ciprofloxacin
Sturini M et al., Environmental photochemistry of fluoroquinolones in soil and in aqueous soil suspensions under solar light.
Environmental Science and Pollution Research, 21, (23), 13215-13221, (2014)
   
ciprofloxacin
Sun XL et al., Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples.
Journal of Chromatography A, 1359, 1-7, (2014)
   
ciprofloxacin
Urraca JL et al., Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography.
Journal of Chromatography A, 1343, 1-9, (2014)
   
ciprofloxacin
Wang H et al., Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.
Journal of Chromatography B, 949-950, 24-29, (2014)
   
ciprofloxacin
Wang J et al., Surface molecularly imprinted polymers based on yeast prepared by atom transfer radical emulsion polymerization for selective recognition of ciprofloxacin from aqueous medium.
Journal of Applied Polymer Science, 131, (11), Article No 40310-(2014)
   
ciprofloxacin
Yang X et al., Synthesis of a novel molecularly imprinted organic-inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia.
Journal of Chromatography B, 945-946, 127-134, (2014)
   
ciprofloxacin
An LJ et al., Synthesis of magnetic molecular imprinted silica spheres for recognition of ciprofloxacin by metal-coordinate interaction.
Journal of Sol-Gel Science and Technology, 76, (1), 36-42, (2015)
   
ciprofloxacin
Chen XH et al., Ethylenediamine-functionalized superparamagnetic carbon nanotubes for magnetic molecularly imprinted polymer matrix solid-phase dispersion extraction of 12 fluoroquinolones in river water.
Analytical Methods, 7, (14), 5838-5846, (2015)
   
ciprofloxacin
Hui A et al., Material properties and antimicrobial efficacy of novel antibacterial silicone hydrogel contact lenses.
Contact Lens and Anterior Eye, 38, (Supplement 1), e18-e18, (2015)
   
ciprofloxacin
Wu X et al., Molecularly imprinted polymers for the solid-phase extraction of four fluoroquilones from milk and lake water samples.
Journal of Separation Science, 38, (20), 3615-3621, (2015)
   
ciprofloxacin
Zhou WC et al., Preparation and Performance of a Novel Magnetic Imprinted TiO2 Photocatalyst.
Nanoscience and Nanotechnology Letters, 7, (8), 678-684, (2015)
   
ciprofloxacin
Bagheri H et al., Fabrication of an electrochemical sensor based on magnetic multi-walled carbon nanotubes for the determination of ciprofloxacin.
Analytical Methods, 8, (16), 3383-3390, (2016)
   
ciprofloxacin
de Oliveira HL et al., Molecularly imprinted pipette-tip solid phase extraction for selective determination of fluoroquinolones in human urine using HPLC-DAD.
Journal of Chromatography B, 1033-1034, 27-39, (2016)
   
ciprofloxacin
Gomez-Pineda LE et al., A Computational Approach to Studying Ciprofloxacin and Methacrylic Acid in Pre-Polymerization Phase.
Revista Mexicana de Ingenieria Quimica, 15, (2), 667-674, (2016)
   
ciprofloxacin
Gómez-Pineda LE et al., A Computational Approach to Studying Ciprofloxacin and Methacrylic Acid in Pre-polymerization Phase.
Revista Mexicana de Ingeniería Química, 15, (2), 667-674, (2016)
   
ciprofloxacin
Lian ZR et al., Determination of ciprofloxacin in Jiaozhou Bay using molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography with fluorescence detection.
Marine Pollution Bulletin, 111, (1-2), 411-417, (2016)
   
ciprofloxacin
Lu ZY et al., Specific oriented recognition of a new stable ICTX@Mfa with retrievability for selective photocatalytic degrading of ciprofloxacin.
Catalysis Science & Technology, 6, (5), 1367-1377, (2016)
   
ciprofloxacin
Luo QH et al., Surface plasmon resonance sensor for antibiotics detection based on photo-initiated polymerization molecularly imprinted array.
Talanta, 161, 797-803, (2016)
   
ciprofloxacin
Mao YL et al., Selective Recognition of Ciprofloxacin from Aqueous Solution by Molecularly Imprinted Polymers Based on Magnetic Illite.
Chinese Journal of Analytical Chemistry, 44, (6), 915-922, (2016)
   
ciprofloxacin
Marestoni LD et al., Semi-Empirical Quantum Chemistry Method for Pre-Polymerization Rational Design of Ciprofloxacin Imprinted Polymer and Adsorption Studies.
Journal of the Brazilian Chemical Society, 27, (1), 109-118, (2016)
   
ciprofloxacin
Mirzajani R et al., Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection.
Journal of Pharmaceutical and Biomedical Analysis, 122, 98-109, (2016)
   
ciprofloxacin
Prutthiwanasan B et al., Fluorescent labelling of ciprofloxacin and norfloxacin and its application for residues analysis in surface water.
Talanta, 159, 74-79, (2016)
   
ciprofloxacin
Vlakh EG et al., Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties.
Journal of Chromatography B, 1029-1030, 198-204, (2016)
   
ciprofloxacin
Wang GN et al., Molecularly imprinted polymer-based solid phase extraction combined high performance liquid chromatography for determination of fluoroquinolones in milk.
Analytical Methods, 8, (27), 5511-5518, (2016)
   
ciprofloxacin
Wang YS et al., Enhanced selective photocatalytic properties of a novel magnetic retrievable imprinted ZnFe2O4/PPy composite with specific recognition ability.
RSC Advances, 6, (57), 51877-51887, (2016)
   
ciprofloxacin
Yan CL et al., Selective Recognition of Ciprofloxacin Hydrochloride Based on Molecular Imprinted Sensor via Electrochemical Copolymerization of Pyrrole and o-phenylenediamine.
International Journal of Electrochemical Science, 11, 6466-6476-(2016)
   
ciprofloxacin
Guan XJ et al., Preparation of polysulfone materials on nickel foam for solid-phase microextraction of floxacin in water and biological samples.
Analytical and Bioanalytical Chemistry, 409, (12), 3127-3133, (2017)
   
ciprofloxacin
Kioomars S et al., Ciprofloxacin-imprinted hydrogels for drug sustained release in aqueous media.
Pharmaceutical Development and Technology, 22, (1), 122-129, (2017)
   
ciprofloxacin
Li TY et al., Molecularly Imprinted Membrane Electrospray Ionization for Direct Sample Analyses.
Analytical Chemistry, 89, (3), 1453-1458, (2017)
   
ciprofloxacin
Liu XL et al., Enhanced and Selective Degradation of Ciprofloxacin Performance with Surface Molecular Imprinted Cds Photocatalyst by Microwave-Assisted Method.
Fresenius Environmental Bulletin, 26, (1A), 1033-1040, (2017)
   
ciprofloxacin
Lu ZY et al., Construction of stable core-shell imprinted Ag-(poly-o-phenylenediamine)/CoFe2O4 photocatalyst endowed with the specific recognition capability for selective photodegradation of ciprofloxacin.
RSC Advances, 7, (77), 48894-48903, (2017)
   
ciprofloxacin
Mao YL et al., Selective Adsorption and Separation of Ciprofloxacin by Molecularly Imprinted Polymers Based on Magnetic Kaolinite Composites.
Chinese Journal of Inorganic Chemistry, 33, (1), 81-88, (2017)
   
ciprofloxacin
Okan M et al., Molecularly imprinted polymer based micromechanical cantilever sensor system for the selective determination of ciprofloxacin.
Biosensors and Bioelectronics, 88, 258-264, (2017)
   
ciprofloxacin
Tong YK et al., Preparation of a novel magnetic molecularly imprinted polymer and its application for the determination of fluoroquinolone antibiotics.
Chinese Journal of Chromatography, 35, (3), 291-301, (2017)
   
ciprofloxacin
Wang YF et al., Surface-Imprinted Magnetic Carboxylated Cellulose Nanocrystals for the Highly Selective Extraction of Six Fluoroquinolones from Egg Samples.
ACS Applied Materials & Interfaces, 9, (2), 1759-1769, (2017)
   
ciprofloxacin
Wu YL et al., Bioinspired synthesis of pDA/SiO2-based porous ciprofloxacin-imprinted nanocomposite membrane by a polydopamine-assisted organic-inorganic method.
Chemical Engineering Journal, 309, 263-271, (2017)
   
ciprofloxacin
Wu YL et al., Facile bio-functionalized design of thermally responsive molecularly imprinted composite membrane for temperature-dependent recognition and separation applications.
Chemical Engineering Journal, 309, 98-107, (2017)
   
ciprofloxacin
Yang K et al., Preparation of dual-template molecularly imprinted polymer coated stir bar based on computational simulation for detection of fluoroquinolones in meat.
Journal of Chromatography B, 1046, 65-72, (2017)
   
ciprofloxacin
Zengin A, Preparation of Surface Imprinted Magnetic Nanoparticles for Selective Detection of Ciprofloxacin in Milk.
Gazi University Journal of Science, 30, (4), 72-85, (2017)
   
ciprofloxacin
Ziarrusta H et al., Determination of fluoroquinolones in fish tissues, biological fluids, and environmental waters by liquid chromatography tandem mass spectrometry.
Analytical and Bioanalytical Chemistry, 409, (27), 6359-6370, (2017)
   
ciprofloxacin
Li YN et al., Molecularly imprinted polymer based diffusive gradients in thin-films for in situ selective sampling and determination of ciprofloxacin.
Journal of Separation Science, 41, (20), 3946-3952, (2018)
   
ciprofloxacin
Prutthiwanasan B et al., Improved resolution of fluoroquinolones using cetyltrimethyl ammonium bromide-micellar electrokinetic chromatography and its application to residue analysis in surface water.
Journal of Chromatography B, 1092, 306-312, (2018)
   
ciprofloxacin
Sari E et al., Detection of ciprofloxacin through surface plasmon resonance nanosensor with specific recognition sites.
Journal of Biomaterials Science-Polymer Edition, 29, (11), 1302-1318, (2018)
   
ciprofloxacin
Tang YW et al., Upconversion particle@Fe3O4@molecularly imprinted polymer with controllable shell thickness as high-performance fluorescent probe for sensing quinolones.
Talanta, 181, 95-103, (2018)
   
ciprofloxacin
Wang L et al., Determination of ciprofloxacin in milk by new magnetic molecular imprinting- high performance liquid chromatography.
Journal of Food Safety and Quality, 9, (15), 3999-4005, (2018)
   
ciprofloxacin
Wu CX et al., Fluorescent molecularly imprinted nanoparticles for selective and rapid detection of ciprofloxacin in aquaculture water.
Journal of Separation Science, 41, (19), 3782-3790, (2018)
   
ciprofloxacin
Wu YL et al., Bioinspired synthesis of multiple-functional nanocomposite platform showing optically and thermally responsive affinity: Application to environmentally responsive separation membrane.
Journal of Colloid and Interface Science, 531, 1-10, (2018)
   
ciprofloxacin
Yuphintharakun N et al., A nanocomposite optosensor containing carboxylic functionalized multiwall carbon nanotubes and quantum dots incorporated into a molecularly imprinted polymer for highly selective and sensitive detection of ciprofloxacin.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 201, 382-391, (2018)
   
ciprofloxacin
Proceeding, Zhang B et al, High-peformance bimetallic SPR sensor for ciprofloxacin based on molecularly imprinted polymer,
ArticleNo107280N, (2018)
   
ciprofloxacin
Zhang LX et al., Preparation of dummy template molecularly imprinted polymers on multi-walled carbon nanotubes as a solid-phase extraction for determination of three fluoroquinolones in milk samples.
Chinese Journal of Analysis Laboratory, 37, (5), 574-578, (2018)
   
ciprofloxacin
Barahona F et al., Molecularly imprinted polymer-hollow fiber microextraction of hydrophilic fluoroquinolone antibiotics in environmental waters and urine samples.
Journal of Chromatography A, 1587, 42-49, (2019)
   
ciprofloxacin
Li ZY et al., Fluorometric determination of ciprofloxacin using molecularly imprinted polymer and polystyrene microparticles doped with europium(III)(DBM)3phen.
Microchimica Acta, 186, (6), Article334-(2019)
   
ciprofloxacin
Liu XQ et al., Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin.
Sensors and Actuators B: Chemical, 289, 242-251, (2019)
   
ciprofloxacin
Ma WW et al., Simultaneous determination of levofloxacin and ciprofloxacin in human urine by ionic-liquid-based, dual-template molecularly imprinted coated graphene oxide monolithic solid-phase extraction.
Journal of Separation Science, 42, (3), 642-649, (2019)
   
ciprofloxacin
Mirzajani R et al., The core-shell nanosized magnetic molecularly imprinted polymers for selective preconcentration and determination of ciprofloxacin in human fluid samples using a vortex-assisted dispersive micro-solid-phase extraction and high-performance liquid chromatography.
Journal of the Iranian Chemical Society, 16, (11), 2291-2306, (2019)
   
ciprofloxacin
Peng JY et al., Enhanced selectivity for photodegrading ciprofloxacin by a magnetic photocatalyst modified with a POPD-CdS heterojunction embedded imprinted layer.
New Journal of Chemistry, 43, (6), 2610-2623, (2019)
   
ciprofloxacin
Tang WY et al., Fabrication of Water-Compatible Molecularly Imprinted Resin in a Hydrophilic Deep Eutectic Solvent for the Determination and Purification of Quinolones in Wastewaters.
Polymers, 11, (5), ArticleNo871-(2019)
   
ciprofloxacin
Zhu GF et al., Water compatible imprinted polymer prepared in water for selective solid phase extraction and determination of ciprofloxacin in real samples.
Talanta, 200, 307-315, (2019)
   
ciprofloxacin
Hashemi SH et al., Separation and determination of ciprofloxacin in seawater, human blood plasma and tablet samples using molecularly imprinted polymer pipette-tip solid phase extraction and its optimization by response surface methodology.
Journal of Separation Science, 43, (2), 505-513, (2020)
   
ciprofloxacin
Surya SG et al., A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor.
RSC Advances, 10, (22), 12823-12832, (2020)
   
ciprofloxacin
Bazi M et al., Investigation of Isotherm, Kinetics and Thermodynamics of Ciprofloxacin Adsorption by Molecularly Imprinted Polymer from Aqueous Solutions.
International Journal of Pharmaceutical Investigation, 11, (3), 269-273, (2021)
   
ciprofloxacin
Cavalera S et al., Effect of experimental conditions on the binding abilities of ciprofloxacin-imprinted nanoparticles prepared by solid-phase synthesis.
Reactive and Functional Polymers, 163, Article104893-(2021)
   
ciprofloxacin
Chiarello M et al., Effect of Polymerization Time on the Binding Properties of Ciprofloxacin-Imprinted nanoMIPs Prepared by Solid-Phase Synthesis.
Polymers, 13, (16), ArticleNo2656-(2021)
   
ciprofloxacin
Chiarello M et al., NanoMIP-Based Solid Phase Extraction of Fluoroquinolones from Human Urine: A Proof-of-Concept Study.
Separations, 8, (11), ArticleNo226-(2021)
   
ciprofloxacin
Huang QD et al., A novel fluorescent optical fiber sensor for highly selective detection of antibiotic ciprofloxacin based on replaceable molecularly imprinted nanoparticles composite hydrogel detector.
Sensors and Actuators B: Chemical, 328, Article129000-(2021)
   
ciprofloxacin
Lu ZY et al., Pollutant template method synthesis of oxygen vacancy and template cavity riched TB-TiO2@MFA towards selective photodegradation of ciprofloxacin.
Applied Surface Science, 569, Article151027-(2021)
   
ciprofloxacin
Nguyen HT et al., Co-precipitation polymerization of dual functional monomers and polystyrene-co-divinylbenzene for ciprofloxacin imprinted polymer preparation.
RSC Advances, 11, (54), 34281-34290, (2021)
   
ciprofloxacin
Silva LM et al., Use of two functional monomers for a new approach to the synthesis of a magnetic molecularly imprinted polymer for ciprofloxacin.
Journal of Materials Research and Technology, 15, 511-523, (2021)
   
ciprofloxacin
Tegegne B et al., Molecularly imprinted polymer for adsorption of venlafaxine, albendazole, ciprofloxacin and norfloxacin in aqueous environment.
Separation Science and Technology, 56, (13), 2217-2231, (2021)
   
ciprofloxacin
Yuan Y et al., Dummy molecularly imprinted membranes based on an eco-friendly synthesis approach for recognition and extraction of enrofloxacin and ciprofloxacin in egg samples.
Journal of Chromatography A, 1653, Article462411-(2021)
   
ciprofloxacin hydrochloride
Liu YM et al., A molecular imprinting-chemiluminescence method for deternination of ciprofloxacin hydrochloride.
Chinese Journal of Analysis Laboratory, 28, (3), 47-50, (2009)
   
ciprofloxacin hydrochloride
Zheng HB et al., Facile synthesis of magnetic molecularly imprinted polymers and its application in magnetic solid phase extraction for fluoroquinolones in milk samples.
Journal of Chromatography A, 1329, 17-23, (2014)
   
cirofloxacin
Kamel AH et al., Biomimetic ciprofloxacin sensors made of molecularly imprinted network receptors for potential measurements.
Analytical Methods, 3, (4), 957-964, (2011)
   
cis dimyristoylindigo
Kim JH et al., Molecular recognition in monolayers and species detection by surface-enhanced resonance Raman-spectroscopy.
Thin Solid Films, 160, (1-2), 389-397, (1988)
   
cis-diols
Peng C et al., Facile Synthesis of Boronate Affinity-Based Molecularly Imprinted Monolith with Reduced Capturing pH Towards Cis-Diol-Containing Compounds.
Chromatographia, 82, (7), 1029-1040, (2019)
   
cis-diols
Süngü ÇZ et al., Molecularly imprinted polymeric shell coated monodisperse-porous silica microspheres as a stationary phase for microfluidic boronate affinity chromatography.
Journal of Separation Science, 42, (11), 1962-1971, (2019)
   
cis-jasmone
Shang L et al., Plant Biomarker Recognition by Molecular Imprinting Based Localized Surface Plasmon Resonance Sensor Array: Performance Improvement by Enhanced Hotspot of Au Nanostructure.
ACS Sensors, 3, (8), 1531-1538, (2018)
   
cis-jasmone
Shang L et al., Development of molecular imprinted sol-gel based LSPR sensor for detection of volatile cis-jasmone in plant.
Sensors and Actuators B: Chemical, 260, 617-626, (2018)
   
cis-lindenin
Proceeding, Xie YH et al, Preparation of mixed molecularly imprinted polymer magnetic nanoparticles and its application in separation of Chinese traditional medicine,
In: AIP Conference Proceedings, ArticleNo020209, (2017)
   
cisplatin
Singh B et al., Design of Molecular Imprinted Hydrogels for Controlled Release of Cisplatin: Evaluation of Network Density of Hydrogels.
Industrial & Engineering Chemistry Research, 50, (24), 13742-13751, (2011)
   
cis-stilbenes
Tsvelikhovsky D et al., Forcing a cis-Product by Matrix Imprinting: Heck Reaction Catalyzed by Palladium Acetate Entrapped within cis-Imprinted Sol-Gel Derived Silicates.
Advanced Synthesis & Catalysis, 350, (18), 2856-2858, (2008)
   
Cit
Guo BY et al., Citrinin selective molecularly imprinted polymers for SPE.
Journal of Separation Science, 33, (8), 1156-1160, (2010)
   
CIT
Atar N et al., A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice.
Food Chemistry, 184, 7-11, (2015)
   
CIT
Atar N et al., Sensitive determination of citrinin based on molecular imprinted electrochemical sensor.
Applied Surface Science, 362, 315-322, (2016)
   
CIT
Fang GZ et al., Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin.
Sensors and Actuators B: Chemical, 230, 272-280, (2016)
   
CIT
Urraca JL et al., Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection.
Analytical and Bioanalytical Chemistry, 408, (11), 3033-3042, (2016)
   
CIT
Akyildirim O et al., Palladium nanoparticles functionalized graphene quantum dots with molecularly imprinted polymer for electrochemical analysis of citrinin.
Journal of Molecular Liquids, 243, 677-681, (2017)
   
CIT
Meydan I et al., Selective Extraction and Determination of Citrinin in Rye Samples by a Molecularly Imprinted Polymer (MIP) Using Reversible Addition Fragmentation Chain Transfer Precipitation Polymerization (RAFTPP) with High-Performance Liquid Chromatography (HPLC) Detection.
Analytical Letters, 54, (10), 1697-1708, (2021)
   
citalolpram
Abdouss M et al., Development and characterization of molecularly imprinted polymers for controlled release of citalopram.
Journal of Materials Science: Materials in Medicine, 22, (10), 2273-2281, (2011)
   
citalopram
Demeestere K et al., Trace analysis of antidepressants in environmental waters by molecularly imprinted polymer-based solid-phase extraction followed by ultra-performance liquid chromatography coupled to triple quadrupole mass spectrometry.
Analytical and Bioanalytical Chemistry, 396, (2), 825-837, (2010)
   
citalopram
Abdouss M et al., Synthesis of molecularly imprinted polymer as a sorbent for solid phase extraction of citalopram from human serum and urine.
Journal of Materials Science: Materials in Medicine, 23, (6), 1543-1552, (2012)
   
citalopram
Unceta N et al., Enantioselective extraction of (+)-(S)-citalopram and its main metabolites using a tailor-made stir bar chiral imprinted polymer for their LC-ESI-MS/MS quantitation in urine samples.
Talanta, 116, 448-453, (2013)
   
citalopram
da Silva KKMS et al., On-Line Restricted Access Molecularly Imprinted Solid-Phase Extraction of Selective Serotonin Reuptake Inhibitors Directly from Untreated Human Plasma Samples Followed by HPLC-UV Analysis.
Journal of Analytical Toxicology, 40, (2), 108-116, (2016)
   
citalopram
Gutiérrez-Climente R et al., A new potentiometric sensor based on chiral imprinted nanoparticles for the discrimination of the enantiomers of the antidepressant citalopram.
Electrochimica Acta, 196, 496-504, (2016)
   
citalopram
Gutiérrez-Climente R et al., Iniferter-mediated grafting of molecularly imprinted polymers on porous silica beads for the enantiomeric resolution of drugs.
Journal of Molecular Recognition, 29, (3), 106-114, (2016)
   
citral
Hardoyono F et al., Identification of Bioactive Compounds in Ginger Based on Molecularly Imprinted Polymer Quartz Crystal Microbalance Gas Sensor.
IOP Conference Series: Materials Science and Engineering, 546, (3), Article032012-(2019)
   
citric acid
Tan J et al., Discrimination of fresh fruit juices by a fluorescent sensor array for carboxylic acids based on molecularly imprinted titania.
Food Chemistry, 165, 35-41, (2014)
   
citric acid
He XP et al., Multipoint recognition of domoic acid from seawater by dummy template molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography.
Journal of Chromatography A, 1500, 61-68, (2017)
   
citric acid-cadmium complex
Liang P et al., Biosorption of citric acid-cadmium complex by imprinted chitosan polymer.
Desalination and Water Treatment, 51, (19-21), 3754-3761, (2013)
   
citrinin
Guo BY et al., Citrinin selective molecularly imprinted polymers for SPE.
Journal of Separation Science, 33, (8), 1156-1160, (2010)
   
citrinin
Appell M et al., Determination of Citrinin Using Molecularly Imprinted Solid Phase Extraction Purification, HPLC Separation, and Fluorescence Detection.
Journal of Liquid Chromatography & Related Technologies, 38, (20), 1815-1819, (2015)
   
citrinin
Atar N et al., A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice.
Food Chemistry, 184, 7-11, (2015)
   
citrinin
Ton XA et al., A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe.
Biosensors and Bioelectronics, 64, 359-366, (2015)
   
citrinin
Atar N et al., Sensitive determination of citrinin based on molecular imprinted electrochemical sensor.
Applied Surface Science, 362, 315-322, (2016)
   
citrinin
Fang GZ et al., Quartz crystal microbalance sensor based on molecularly imprinted polymer membrane and three-dimensional Au nanoparticles@mesoporous carbon CMK-3 functional composite for ultrasensitive and specific determination of citrinin.
Sensors and Actuators B: Chemical, 230, 272-280, (2016)
   
citrinin
Urraca JL et al., Development of magnetic molecularly imprinted polymers for selective extraction: determination of citrinin in rice samples by liquid chromatography with UV diode array detection.
Analytical and Bioanalytical Chemistry, 408, (11), 3033-3042, (2016)
   
citrinin
Akyildirim O et al., Palladium nanoparticles functionalized graphene quantum dots with molecularly imprinted polymer for electrochemical analysis of citrinin.
Journal of Molecular Liquids, 243, 677-681, (2017)
   
citrinin
Lhotská I et al., Preparation of citrinin-selective molecularly imprinted polymer and its use for on-line solid-phase extraction coupled to liquid chromatography.
Analytical and Bioanalytical Chemistry, 411, (11), 2395-2404, (2019)
   
citrinin
Derz W et al., Guiding Molecularly Imprinted Polymer Design by Pharmacophore Modeling.
Molecules, 26, (16), ArticleNo5101-(2021)
   
citrinin
Hu XP et al., A novel ratiometric electrochemical sensor for the selective detection of citrinin based on molecularly imprinted poly(thionine) on ionic liquid decorated boron and nitrogen co-doped hierarchical porous carbon.
Food Chemistry, 363, Article130385-(2021)
   
citrinin
Meydan I et al., Selective Extraction and Determination of Citrinin in Rye Samples by a Molecularly Imprinted Polymer (MIP) Using Reversible Addition Fragmentation Chain Transfer Precipitation Polymerization (RAFTPP) with High-Performance Liquid Chromatography (HPLC) Detection.
Analytical Letters, 54, (10), 1697-1708, (2021)
   
CJ
Shang L et al., Development of molecular imprinted sol-gel based LSPR sensor for detection of volatile cis-jasmone in plant.
Sensors and Actuators B: Chemical, 260, 617-626, (2018)
   
CK
Chen YW et al., A systematic approach to forming micro-contact imprints of creatine kinase.
Organic & Biomolecular Chemistry, 7, (3), 488-494, (2009)
   
CK-MM
Wang CY et al., Molecularly imprinted polymers for the recognition of sodium dodecyl sulfate denatured creatine kinase.
Journal of the Taiwan Institute of Chemical Engineers, 43, (2), 188-194, (2012)
   
Cl-
Shinohara H et al., Ion-sieving of electrosynthesized polypyrrole films.
Journal of the Chemical Society-Chemical Communications, (1), 87-88, (1986)
   
Cl-
Chen ZD et al., Application of "Ion Imprinted" Polyaniline Electrode Column Modulated by Potential in the Analysis of Anions.
Journal of Instrumental Analysis, 30, (9), 953-958, (2011)
   
CL-20
Wang J et al., Application of molecularly imprinted polymers for the solid-phase extraction of hexanitrohexaazaisowurtzitane (CL-20) from soil samples.
Analytical Methods, 8, (22), 4413-4420, (2016)
   
CL-20
Wang J et al., Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples.
New Journal of Chemistry, 41, (3), 1129-1136, (2017)
   
Cl-
Zhu GF et al., Influence of hydrogen bond accepting ability of anions on the adsorption performance of ionic liquid surface molecularly imprinted polymers.
Journal of Chromatography A, 1532, 40-49, (2018)
   
CL-20
Fan J et al., Colorimetric screening of nitramine explosives by molecularly imprinted photonic crystal array.
Microchemical Journal, 158, Article105143-(2020)
   
CLA
Song XQ et al., Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry.
Food Chemistry, 208, 169-176, (2016)
   
CLA
Song XQ et al., Determination of Ten Macrolide Drugs in Environmental Water Using Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry.
Molecules, 23, (5), ArticleNo1172-(2018)
   
CLA
Song XQ et al., Preparation and Application of Molecularly Imprinted Monolithic Extraction Column for the Selective Microextraction of Multiple Macrolide Antibiotics from Animal Muscles.
Polymers, 11, (7), ArticleNo1109-(2019)
   
clarithromycin
Song XQ et al., Molecularly imprinted solid-phase extraction for the determination of ten macrolide drugs residues in animal muscles by liquid chromatography-tandem mass spectrometry.
Food Chemistry, 208, 169-176, (2016)
   
clarithromycin
Ji SL et al., A hollow porous molecularly imprinted polymer as a sorbent for the extraction of 7 macrolide antibiotics prior to their determination by HPLC-MS/MS.
Microchimica Acta, 185, (3), ArticleNo203-(2018)
   
clarithromycin
Song XQ et al., Determination of Ten Macrolide Drugs in Environmental Water Using Molecularly Imprinted Solid-Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry.
Molecules, 23, (5), ArticleNo1172-(2018)
   
clarithromycin
Song XQ et al., Preparation and Application of Molecularly Imprinted Monolithic Extraction Column for the Selective Microextraction of Multiple Macrolide Antibiotics from Animal Muscles.
Polymers, 11, (7), ArticleNo1109-(2019)
   
CLB
Zheng SL et al., Newly Combined Method of Molecularly Imprinted Solid-Phase Extraction with ELISA for Rapid Detection of Clenbuterol in Animal-Tissue Samples.
Analytical Letters, 42, (3), 600-614, (2009)
   
CLB
Luo YF et al., Preparation of Monolithic Imprinted Stationary Phase for Clenbuterol by In Situ Polymerization and Application in Biological Samples Pretreatment.
Chromatographia, 74, (9), 693-701, (2011)
   
CLB
Zhao C et al., Preparation of molecular imprinted film based on chitosan/nafion/nano-silver/poly quercetin for clenbuterol sensing.
Food Chemistry, 129, (2), 595-600, (2011)
   
CLB
Wang LQ et al., Matrix Effects in Analysis of β-Agonists with LC-MS/MS: Influence of Analyte Concentration, Sample Source, and SPE Type.
Journal of Agricultural and Food Chemistry, 60, (25), 6359-6363, (2012)
   
CLB
Yan HY et al., Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine.
Journal of Chromatography A, 1294, 10-16, (2013)
   
CLB
Du W et al., Determination of clenbuterol from pork samples using surface molecularly imprinted polymers as the selective sorbents for microextraction in packed syringe.
Journal of Pharmaceutical and Biomedical Analysis, 91, 160-168, (2014)
   
CLB
Lei RL et al., A Novel Electrochemical Sensor for β2-Agonists with High Sensitivity and Selectivity Based on Surface Molecularly Imprinted Sol-gel Doped with Antimony-Doped Tin Oxide.
Electroanalysis, 26, (5), 1004-1012, (2014)
   
CLB
Tang YW et al., Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol.
Biosensors and Bioelectronics, 71, 44-50, (2015)
   
CLB
Qiao FX et al., Preparation of selective magnetic dispersive solid-phase sorbent and its application for recognition clenbuterol from bovine urine.
Journal of Chromatography B, 1017-1018, 18-27, (2016)
   
CLB
Tang YW et al., Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method.
Food Chemistry, 190, 952-959, (2016)
   
CLB
Feng F et al., A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites.
Talanta, 167, 94-102, (2017)
   
CLB
Tang YW et al., Visual flow-through column biomimetic immunoassay using molecularly imprinted polymer as artificial antibody for rapid detection of clenbuterol in water sample.
Food and Agricultural Immunology, 28, (6), 949-957, (2017)
   
CLB
Jin XC et al., A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol.
Biosensors and Bioelectronics, 102, 357-364, (2018)
   
CLB
Zhang BC et al., Computer-Aided Design of Molecularly Imprinted Polymers for Simultaneous Detection of Clenbuterol and Its Metabolites.
Polymers, 11, (1), ArticleNo17-(2019)
   
CLB
Tian L et al., A molecularly imprinted electrochemiluminescence nanoprobe based on complexes consisting of CdTe and multiwall carbon nanotube for sensitive determination of clenbuterol.
Microchimica Acta, 187, (6), Article358-(2020)
   
CLB
Li X et al., A high sensitivity electrochemical sensor based on a dual-template molecularly imprinted polymer for simultaneous determination of clenbuterol hydrochloride and ractopamine.
Analyst, 146, (20), 6323-6332, (2021)
   
CLB
Zhao YJ et al., A novel molecularly imprinted polymer electrochemiluminescence sensor based on Fe2O3@Ru(bpy)32+ for determination of clenbuterol.
Sensors and Actuators B: Chemical, 350, Article130822-(2022)
   
Cl4-BPA
Sambe H et al., Simultaneous determination of bisphenol A and its halogenated derivatives in river water by combination of isotope imprinting and liquid chromatography-mass spectrometry.
Journal of Chromatography A, 1134, (1-2), 16-23, (2006)
   
CLD
Khodadoust S et al., Preparation of a magnetic molecularly imprinted polymer for the selective adsorption of chlordiazepoxide and its determination by central composite design optimized HPLC.
New Journal of Chemistry, 42, (17), 14444-14452, (2018)
   
CLD
Bosman P et al., Development and Application of Molecularly Imprinted Polymers for the Selective Extraction of Chlordecone from Bovine Serum.
Separations, 8, (12), ArticleNo237-(2021)
   
CLE
Li XB et al., Preparation of clenbuterol imprinted monolithic polymer with hydrophilic outer layers by reversible addition-fragmentation chain transfer radical polymerization and its application in the clenbuterol determination from human serum by on-line solid-phase extraction/HPLC analysis.
Analyst, 138, (10), 3066-3074, (2013)
   
CLE
Li TY et al., Molecularly Imprinted Membrane Electrospray Ionization for Direct Sample Analyses.
Analytical Chemistry, 89, (3), 1453-1458, (2017)
   
Clen
Fiori M et al., Evaluation of two different clean-up steps, to minimise ion suppression phenomena in ion trap liquid chromatography-tandem mass spectrometry for the multi-residue analysis of β-agonists in calves urine.
Analytica Chimica Acta, 529, (1-2), 207-210, (2005)
   
CLEN
Wang PL et al., Determination of β2-Agonists in Porcine Urine by Molecularly Imprinted Solid Phase Extraction Followed Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Detection.
Analytical Letters, 46, (5), 734-744, (2013)
   
CLEN
Lay S et al., Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination.
Journal of Zhejiang University SCIENCE B, 17, (6), 465-475, (2016)
   
clenbuterol
Berggren C et al., Use of molecularly imprinted solid-phase extraction for the selective clean-up of clenbuterol from calf urine.
Journal of Chromatography A, 889, (1-2), 105-110, (2000)
   
clenbuterol
Crescenzi C et al., Determination of clenbuterol in bovine liver by combining matrix solid phase dispersion and molecularly imprinted solid phase extraction followed by liquid chromatography/electrospray ion trap multiple stage mass spectrometry.
Analytical Chemistry, 73, (10), 2171-2177, (2001)
   
clenbuterol
Ellwanger A et al., Evaluation of methods aimed at complete removal of template from molecularly imprinted polymers.
Analyst, 126, (6), 784-792, (2001)
   
clenbuterol
Pizzariello A et al., A solid binding matrix/molecularly imprinted polymer-based sensor system for the determination of clenbuterol in bovine liver using differential-pulse voltammetry.
Sensors and Actuators B: Chemical, 76, (1-3), 286-294, (2001)
   
clenbuterol
Blomgren A et al., Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection.
Journal of Chromatography A, 975, (1), 157-164, (2002)
   
clenbuterol
Kootstra PR et al., The analysis of β-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening.
Analytica Chimica Acta, 529, (1-2), 75-81, (2005)
   
clenbuterol
Li GS et al., Study on Adsorption Character of Clenbuterol Molecularly Imprinted Polymer.
Chemistry & Bioengineering, 22, (6), 28-30, (2005)
   
clenbuterol
Shimelis O et al., The selective extraction of clenbuterol using molecularly imprinted polymer SPE.
Lc Gc North America, 25, (6 SUPPL.), 19-(2007)
   
clenbuterol
Shimelis O et al., Molecular imprinted polymer SPE increases sensitivity for the extraction and analysis of clenbuterol from urine. US Supelco Reporter,
25, (2), 10-12, (2007)
   
Clenbuterol
Shimelis O et al., Molecularly Imprinted Polymer SPE Increases Sensitivity for the Extraction and Analysis of Clenbuterol from Urine. The Reporter Europe,
27, 10-12, (2007)
   
clenbuterol
Wang PL et al., Molecularly imprinted polymer solid phase extraction coupled with gas chromatography-mass spectrometry for the determination of trace clenbuterol hydrochloric in animal urine.
Chinese Journal of Analytical Chemistry, 35, (9), 1319-1322, (2007)
   
clenbuterol
Widstrand C, Extraction of the beta-agonist clenbuterol from urine using clenbuterol SupelMIP. The Reporter Europe,
25, 6-8, (2007)
   
clenbuterol
Turson M et al., Evaluation of the clenbuterol imprinted monolithic column prepared by reversible addition-fragmentation chain transfer polymerization.
Chinese Chemical Letters, 20, (9), 1136-1140, (2009)
   
clenbuterol
Zheng SL et al., Newly Combined Method of Molecularly Imprinted Solid-Phase Extraction with ELISA for Rapid Detection of Clenbuterol in Animal-Tissue Samples.
Analytical Letters, 42, (3), 600-614, (2009)
   
clenbuterol
Hu YL et al., Investigation of ractopamine-imprinted polymer for dispersive solid-phase extraction of trace β-agonists in pig tissues.
Journal of Separation Science, 33, (13), 2017-2025, (2010)
   
clenbuterol
Xu ZG et al., Investigation of ractopamine molecularly imprinted stir bar sorptive extraction and its application for trace analysis of β2-agonists in complex samples.
Journal of Chromatography A, 1217, (22), 3612-3618, (2010)
   
clenbuterol
Luo YF et al., Preparation of Monolithic Imprinted Stationary Phase for Clenbuterol by In Situ Polymerization and Application in Biological Samples Pretreatment.
Chromatographia, 74, (9), 693-701, (2011)
   
clenbuterol
Zhao C et al., Preparation of molecular imprinted film based on chitosan/nafion/nano-silver/poly quercetin for clenbuterol sensing.
Food Chemistry, 129, (2), 595-600, (2011)
   
clenbuterol
Bao H et al., Surface Plasmon Resonance Sensor for Supersensitive Detection of Clenbuterol Using Molecularly Imprinted Film.
Chemistry Letters, 41, (3), 237-239, (2012)
   
clenbuterol
Ding ZY et al., Determination of clenbuterol with multi-walled carbon nanotubes-molecular imprinted sensors.
Chinese Journal of Analysis Laboratory, 31, (9), 121-124, (2012)
   
clenbuterol
Liang RN et al., Potentiometric Sensor Based on Molecularly Imprinted Polymers for Rapid Determination of Clenbuterol in Pig Urine.
Chinese Journal of Analytical Chemistry, 40, (3), 354-358, (2012)
   
clenbuterol
Wang LQ et al., Matrix Effects in Analysis of β-Agonists with LC-MS/MS: Influence of Analyte Concentration, Sample Source, and SPE Type.
Journal of Agricultural and Food Chemistry, 60, (25), 6359-6363, (2012)
   
clenbuterol
Wang PL et al., Determination of Four Kinds of β-Agonists in Swine Urine by Molecularly Imprinted Solid Phase Extraction Followed Gas Chromatography Coupled Mass Spectrometry.
Chinese Journal of Analytical Chemistry, 40, (3), 470-473, (2012)
   
clenbuterol
Yang T et al., Preparation of clenbuterol-imprinted material using surface-molecular imprinting method and its molecule recognition character.
Plant Protection, 24, (5), 792-796, (2012)
   
clenbuterol
Yang T et al., Determination of Trace Clenbuterol Residue in Swine Urine by LC-MS/MS with Dispersive Solid Phase Extraction using Molecular Imprinted Polymer as Adsorbent.
Journal of Agriculture, 2, (11), 48-51, (2012)
   
clenbuterol
Cho YJ et al., Improvement of an simultaneous determination for clenbuterol and ractopamine in livestock products using LC-MS/MS.
Korean Journal of Food Science and Technology, 45, (1), 25-33, (2013)
   
clenbuterol
Li XB et al., Preparation of clenbuterol imprinted monolithic polymer with hydrophilic outer layers by reversible addition-fragmentation chain transfer radical polymerization and its application in the clenbuterol determination from human serum by on-line solid-phase extraction/HPLC analysis.
Analyst, 138, (10), 3066-3074, (2013)
   
clenbuterol
Lin XY et al., A novel electrochemical sensor for the analysis of β-agonists: The poly(acid chrome blue K)/graphene oxide-nafion/glassy carbon electrode.
Journal of Hazardous Materials, 260, 508-517, (2013)
   
clenbuterol
Qiao FX et al., Rapid screening of clenbuterol hydrochloride in chicken samples by molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography.
Journal of Chromatography B, 923 - 924, 136-140, (2013)
   
clenbuterol
Wang PL et al., Determination of β2-Agonists in Porcine Urine by Molecularly Imprinted Solid Phase Extraction Followed Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Detection.
Analytical Letters, 46, (5), 734-744, (2013)
   
clenbuterol
Xu W et al., Electrochemical sensor based on a carbon nanotube-modified imprinted sol-gel for selective and sensitive determination of β2-agonists.
Microchimica Acta, 180, (11-12), 1005-1011, (2013)
   
clenbuterol
Yan HY et al., Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine.
Journal of Chromatography A, 1294, 10-16, (2013)
   
clenbuterol
Du W et al., Determination of clenbuterol from pork samples using surface molecularly imprinted polymers as the selective sorbents for microextraction in packed syringe.
Journal of Pharmaceutical and Biomedical Analysis, 91, 160-168, (2014)
   
clenbuterol
Lei RL et al., A Novel Electrochemical Sensor for β2-Agonists with High Sensitivity and Selectivity Based on Surface Molecularly Imprinted Sol-gel Doped with Antimony-Doped Tin Oxide.
Electroanalysis, 26, (5), 1004-1012, (2014)
   
clenbuterol
Mi JB et al., Determination of Clenbuterol and Ractopamine in Animal Origin Food by LC-MS/MS Based on a Restricted Access Imprinted Polymer Cartridge for Online Cleanup.
Journal of Instrumental Analysis, 33, (12), 1356-1361, (2014)
   
clenbuterol
Tang PP et al., Surface Plasmon Resonance-based Inhibitive Immunoassay Coupled with Dummy Template Molecularly Imprinted Polymer Solid Phase Extraction for On-line Analysis of Trace Clenbuterol.
Journal of the Chinese Chemical Society, 61, (12), 1357-1364, (2014)
   
clenbuterol
The Huy B et al., Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots.
Biosensors and Bioelectronics, 57, 310-316, (2014)
   
clenbuterol
Tang YW et al., Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol.
Biosensors and Bioelectronics, 71, 44-50, (2015)
   
clenbuterol
Wang PL et al., Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection.
Food Chemistry, 184, 72-79, (2015)
   
clenbuterol
Lay S et al., Molecularly imprinted polymers as the extracted sorbents of clenbuterol ahead of liquid chromatographic determination.
Journal of Zhejiang University SCIENCE B, 17, (6), 465-475, (2016)
   
clenbuterol
Liu HB et al., Novel method for the rapid and specific extraction of multiple β2-agonist residues in food by tailor-made Monolith-MIPs extraction disks and detection by gas chromatography with mass spectrometry.
Journal of Separation Science, 39, (18), 3578-3585, (2016)
   
Clenbuterol
Liu HC et al., Magnetic molecularly imprinted polymers for the determination of β-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry.
Journal of Separation Science, 39, (18), 3594-3601, (2016)
   
clenbuterol
Özkütük EB et al., Determination of Clenbuterol by Multiwalled Carbon Nanotube Potentiometric Sensors.
Analytical Letters, 49, (6), 778-789, (2016)
   
clenbuterol
Qiao FX et al., Preparation of selective magnetic dispersive solid-phase sorbent and its application for recognition clenbuterol from bovine urine.
Journal of Chromatography B, 1017-1018, 18-27, (2016)
   
clenbuterol
Tang KJ et al., Study on Residue Determination of Clenbuterol in Pork Liver by Molecularly Imprinted Solid Phase Extraction/High Performance Liquid Chromatography.
Journal of Instrumental Analysis, 35, (1), 115-118, (2016)
   
clenbuterol
Tang YW et al., Determination of clenbuterol in pork and potable water samples by molecularly imprinted polymer through the use of covalent imprinting method.
Food Chemistry, 190, 952-959, (2016)
   
clenbuterol
Feng F et al., A novel quartz crystal microbalance sensor array based on molecular imprinted polymers for simultaneous detection of clenbuterol and its metabolites.
Talanta, 167, 94-102, (2017)
   
clenbuterol
Guo PQ et al., Development of molecular imprinted column-on line-two dimensional liquid chromatography for selective determination of clenbuterol residues in biological samples.
Food Chemistry, 217, 628-636, (2017)
   
clenbuterol
Peńuela-Pinto O et al., Selective determination of clenbuterol residues in urine by molecular imprinted polymer-Ion mobility spectrometry.
Microchemical Journal, 134, 62-67, (2017)
   
clenbuterol
Tang YW et al., Ultrasensitive detection of clenbuterol by a covalent imprinted polymer as a biomimetic antibody.
Food Chemistry, 228, 62-69, (2017)
   
clenbuterol
Tang YW et al., Visual flow-through column biomimetic immunoassay using molecularly imprinted polymer as artificial antibody for rapid detection of clenbuterol in water sample.
Food and Agricultural Immunology, 28, (6), 949-957, (2017)
   
clenbuterol
González N et al., Flow-batch analysis of clenbuterol based on analyte extraction on molecularly imprinted polymers coupled to an in-system chromogenic reaction. Application to human urine and milk substitute samples.
Talanta, 178, 934-942, (2018)
   
clenbuterol
Jin XC et al., A molecularly imprinted electrochemiluminescence sensor based on upconversion nanoparticles enhanced by electrodeposited rGO for selective and ultrasensitive detection of clenbuterol.
Biosensors and Bioelectronics, 102, 357-364, (2018)
   
clenbuterol
Tang JW et al., Determination of β-Agonist Residues in Animal-Derived Food by a Liquid Chromatography-Tandem Mass Spectrometric Method Combined with Molecularly Imprinted Stir Bar Sorptive Extraction.
Journal of Analytical Methods in Chemistry, 2018, ArticleID9053561-(2018)
   
clenbuterol
Zhang BC et al., Computer-Aided Design of Molecularly Imprinted Polymers for Simultaneous Detection of Clenbuterol and Its Metabolites.
Polymers, 11, (1), ArticleNo17-(2019)
   
clenbuterol
Tian L et al., A molecularly imprinted electrochemiluminescence nanoprobe based on complexes consisting of CdTe and multiwall carbon nanotube for sensitive determination of clenbuterol.
Microchimica Acta, 187, (6), Article358-(2020)
   
clenbuterol
Liu L et al., Electrochemical sensor based on molecularly imprinted film for high sensitivity detection of clenbuterol prepared using sol-gel method.
International Journal of Electrochemical Science, 16, Article210411-(2021)
   
clenbuterol
Zhao YJ et al., A novel molecularly imprinted polymer electrochemiluminescence sensor based on Fe2O3@Ru(bpy)32+ for determination of clenbuterol.
Sensors and Actuators B: Chemical, 350, Article130822-(2022)
   
Clenbuterol hydrochloride
Fiori M et al., Evaluation of two different clean-up steps, to minimise ion suppression phenomena in ion trap liquid chromatography-tandem mass spectrometry for the multi-residue analysis of β-agonists in calves urine.
Analytica Chimica Acta, 529, (1-2), 207-210, (2005)
   
clenbuterol hydrochloride
Huang HP et al., Determination of clenbuterol hydrochloride with molecularly imprinted solid phase extraction-high performance liquid chromatography in Chuangxiling capsules.
Chinese Journal of Pharmaceutical Analysis, 32, (2), 233-236, (2012)
   
clenbuterol hydrochloride
Qiao FX et al., Rapid screening of clenbuterol hydrochloride in chicken samples by molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography.
Journal of Chromatography B, 923 - 924, 136-140, (2013)
   
clenbuterol hydrochloride
Li TY et al., Molecularly Imprinted Membrane Electrospray Ionization for Direct Sample Analyses.
Analytical Chemistry, 89, (3), 1453-1458, (2017)
   
clenbuterol hydrochloride
Li X et al., A high sensitivity electrochemical sensor based on a dual-template molecularly imprinted polymer for simultaneous determination of clenbuterol hydrochloride and ractopamine.
Analyst, 146, (20), 6323-6332, (2021)
   
Clencyclohexerol
Liu HC et al., Magnetic molecularly imprinted polymers for the determination of β-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry.
Journal of Separation Science, 39, (18), 3594-3601, (2016)
   
Clenpenterol
Liu HC et al., Magnetic molecularly imprinted polymers for the determination of β-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry.
Journal of Separation Science, 39, (18), 3594-3601, (2016)
   
clenproperol
Kootstra PR et al., The analysis of β-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening.
Analytica Chimica Acta, 529, (1-2), 75-81, (2005)
   
Clenproperol
Liu HC et al., Magnetic molecularly imprinted polymers for the determination of β-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry.
Journal of Separation Science, 39, (18), 3594-3601, (2016)
   
CLI
Wang YF et al., Fabrication of an antibiotic-sensitive 2D-molecularly imprinted photonic crystal.
Analytical Methods, 11, (22), 2875-2879, (2019)
   
climbazole
Sun XL et al., Preparation and evaluation of dummy-template molecularly imprinted polymer as a potential sorbent for solid phase extraction of imidazole fungicides from river water.
Journal of Chromatography A, 1586, 1-8, (2019)
   
climbazole
Sun XL et al., Dummy molecularly imprinted solid phase extraction of climbazole from environmental water samples.
Talanta, 196, 47-53, (2019)
   
climbazole
Zhang XX et al., Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples.
Journal of Chromatography A, 1620, Article461013-(2020)
   
clindamycin
Hu YF et al., Research on Self-assembly MWNTs-clindamycin Molecularly Imprinted Sol-gel Electrochemical Sensor.
Chemical Journal of Chinese Universities, 30, (9), 1703-1708, (2009)
   
clindamycin
Zhang ZH et al., Novel layer-by-layer assembly molecularly imprinted sol-gel sensor for selective recognition of clindamycin based on Au electrode decorated by multi-wall carbon nanotube.
Journal of Colloid and Interface Science, 344, (1), 158-164, (2010)
   
clindamycin
Szultka M et al., Simultaneous determination of selected chemotherapeutics in human whole blood by molecularly imprinted polymers coated solid phase microextraction fibers and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography B, 940, 66-76, (2013)
   
clindamycin
Wang YF et al., Fabrication of an antibiotic-sensitive 2D-molecularly imprinted photonic crystal.
Analytical Methods, 11, (22), 2875-2879, (2019)
   
clindamycin hydrochloride
Wang YF et al., Fabrication of an antibiotic-sensitive 2D-molecularly imprinted photonic crystal.
Analytical Methods, 11, (22), 2875-2879, (2019)
   
CLO
Wang LQ et al., Matrix Effects in Analysis of β-Agonists with LC-MS/MS: Influence of Analyte Concentration, Sample Source, and SPE Type.
Journal of Agricultural and Food Chemistry, 60, (25), 6359-6363, (2012)
   
CLO
Aqababa H et al., Computer-assisted design and synthesis of a highly selective smart adsorbent for extraction of clonazepam from human serum.
Materials Science and Engineering: C, 33, (1), 189-195, (2013)
   
ClO4-
Shen HY et al., Design and controllable synthesis of ethylenediamine-grafted ion imprinted magnetic polymers for highly selective adsorption to perchlorate.
RSC Advances, 8, (52), 29928-29938, (2018)
   
CLO
de Oliveira FM et al., Design of high-performance adsorption cross-linked organic functional polymers towards tricyclic antidepressants using computational simulation.
Journal of Environmental Chemical Engineering, 7, (1), Article102849-(2019)
   
CLO
Jafari S et al., Label-free electrochemical detection of Cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite.
Measurement, 145, 22-29, (2019)
   
clofibric acid
Zorita S et al., Selective determination of acidic pharmaceuticals in wastewater using molecularly imprinted solid-phase extraction.
Analytica Chimica Acta, 626, (2), 147-154, (2008)
   
clofibric acid
Dai CM et al., Selective removal of acidic pharmaceuticals from contaminated lake water using multi-templates molecularly imprinted polymer.
Chemical Engineering Journal, 211-212, 302-309, (2012)
   
clofibric acid
Dai CM et al., Application of Molecularly Imprinted Polymers to Selective Removal of Clofibric Acid from Water.
PLoS ONE, 8, (10), e78167-(2013)
   
clofibric acid
Dai CM et al., Removal of carbamazepine and clofibric acid from water using double templates-molecularly imprinted polymers.
Environmental Science and Pollution Research, 20, (8), 5492-5501, (2013)
   
clofibric acid
Duan YP et al., Selective trace enrichment of acidic pharmaceuticals in real water and sediment samples based on solid-phase extraction using multi-templates molecularly imprinted polymers.
Analytica Chimica Acta, 758, 93-100, (2013)
   
clofibric acid
Gilart N et al., A rapid determination of acidic pharmaceuticals in environmental waters by molecularly imprinted solid-phase extraction coupled to tandem mass spectrometry without chromatography.
Talanta, 110, 196-201, (2013)
   
clofibric acid
Dai CM et al., Molecularly imprinted polymer assembled on Fe3O4/graphene oxide for clofibric acid (CA) removal from aqueous solution.
Abstracts of Papers of the American Chemical Society, 248, (ENVR), 285-(2014)
   
clofibric acid
Schweiger B et al., Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid.
Sensors, 15, (3), 4870-4889, (2015)
   
clofibric acid
Baek IH et al., Detection of Acidic Pharmaceutical Compounds Using Virus-Based Molecularly Imprinted Polymers.
Polymers, 10, (9), ArticleNo974-(2018)
   
clomiphene
Claude B et al., Interest of molecularly imprinted polymers in the fight against doping: Extraction of tamoxifen and its main metabolite from urine followed by high-performance liquid chromatography with UV detection.
Journal of Chromatography A, 1196-1197, (1-2), 81-88, (2008)
   
clomiphene
Ray JV et al., Smart coumarin-tagged imprinted polymers for the rapid detection of tamoxifen.
Analytical and Bioanalytical Chemistry, 408, (7), 1855-1861, (2016)
   
clomipramine
Santos MG et al., Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification.
Talanta, 163, 8-16, (2017)
   
clomipramine
de Oliveira FM et al., Design of high-performance adsorption cross-linked organic functional polymers towards tricyclic antidepressants using computational simulation.
Journal of Environmental Chemical Engineering, 7, (1), Article102849-(2019)
   
clomipramine-d3
Santos MG et al., Analysis of tricyclic antidepressants in human plasma using online-restricted access molecularly imprinted solid phase extraction followed by direct mass spectrometry identification/quantification.
Talanta, 163, 8-16, (2017)
   
clonazepam
Aqababa H et al., Computer-assisted design and synthesis of a highly selective smart adsorbent for extraction of clonazepam from human serum.
Materials Science and Engineering: C, 33, (1), 189-195, (2013)
   
clonazepam
Panahi HA et al., Selective extraction of clonazepam from human plasma and urine samples by molecularly imprinted polymeric beads.
Journal of Separation Science, 37, (6), 691-695, (2014)
   
clonazepam
Li XX et al., Development and application of novel clonazepam molecularly imprinted coatings for stir bar sorptive extraction.
Journal of Colloid and Interface Science, 468, 183-191, (2016)
   
clonazepam
Abrăo LC et al., A new restricted access molecularly imprinted fiber for direct solid phase microextraction of benzodiazepines from plasma samples.
Analyst, 144, (14), 4320-4330, (2019)
   
cloned bacterial protein
Han RF et al., Separation/enrichment of active natural low content protein using protein imprinted polymer.
Journal of Chromatography B, 873, (1), 113-118, (2008)
   
cloned pig cyclophilin 18
Zhao Z et al., Molecular imprinted polymer with cloned bacterial protein template enriches authentic target in cell extract.
FEBS Letters, 580, (11), 2750-2754, (2006)
   
cloned pig cyclophilin 18
Han RF et al., Separation/enrichment of active natural low content protein using protein imprinted polymer.
Journal of Chromatography B, 873, (1), 113-118, (2008)
   
cloned pig cyclophilin 18
Long Y et al., Molecular imprinted polymer with positively charged assistant recognition polymer chains for adsorption/enrichment of low content target protein.
Chinese Science Bulletin, 53, (17), 2617-2623, (2008)
   
cloned pig cyclophilin 18
Liu HJ et al., Preparation of molecular imprinted polymer with quaternary ammonium groups as recognition sites for separation of pig cyclophilin 18 and bovine serum albumin.
Journal of Separation Science, 33, (12), 1856-1862, (2010)
   
clopidogrel
Proceeding, Li ZW et al, Chiral Separation of R,S Clopidogrel with Monolithic Molecularly Imprinted Polymers,
314-317, (2015)
   
clopidogrel
Mokhtari A et al., A molecularly imprinted polymerized high internal phase emulsion adsorbent for sensitive chemiluminescence determination of clopidogrel.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 265, Article120371-(2022)
   
clopidol
Radi AE et al., Determination of coccidiostat clopidol on an electropolymerized-molecularly imprinted polypyrrole polymer modified screen printed carbon electrode.
Analytical Methods, 6, (19), 7967-7972, (2014)
   
cloprop
Shu YQ et al., Synthesis and characterization of surface molecularly imprinted polymers of cloprop on graphite oxide.
Chinese Journal of Analysis Laboratory, 36, (3), 316-321, (2017)
   
clopyralid
Li X et al., Clopyralid detection by using a molecularly imprinted electrochemical luminescence sensor based on the "gate-controlled" effect.
Journal of Solid State Electrochemistry, 18, (7), 1815-1822, (2014)
   
clopyralid
Guo XH et al., Preparation and characterization of imprinted microspheres for clopyralid.
Journal of Macromolecular Science, Part A, 53, (1), 34-40, (2016)
   
clopyralid
Wang QY et al., A molecularly imprinted sensor with enzymatic enhancement of electrochemiluminescence of quantum dots for ultratrace clopyralid determination.
Analytical and Bioanalytical Chemistry, 410, (21), 5165-5172, (2018)
   
clopyralid
Tan SJ et al., A dummy molecularly imprinted solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for selective determination of four pyridine carboxylic acid herbicides in milk.
Journal of Chromatography B, 1108, 65-72, (2019)
   
CLOR
Wang PL et al., Determination of β2-Agonists in Porcine Urine by Molecularly Imprinted Solid Phase Extraction Followed Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Detection.
Analytical Letters, 46, (5), 734-744, (2013)
   
clorprenaline
Wang LQ et al., Matrix Effects in Analysis of β-Agonists with LC-MS/MS: Influence of Analyte Concentration, Sample Source, and SPE Type.
Journal of Agricultural and Food Chemistry, 60, (25), 6359-6363, (2012)
   
clorprenaline
Wang PL et al., Determination of Four Kinds of β-Agonists in Swine Urine by Molecularly Imprinted Solid Phase Extraction Followed Gas Chromatography Coupled Mass Spectrometry.
Chinese Journal of Analytical Chemistry, 40, (3), 470-473, (2012)
   
clorprenaline
Wang PL et al., Determination of β2-Agonists in Porcine Urine by Molecularly Imprinted Solid Phase Extraction Followed Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry Detection.
Analytical Letters, 46, (5), 734-744, (2013)
   
clorprenaline
Yan HY et al., Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine.
Journal of Chromatography A, 1294, 10-16, (2013)
   
clorprenaline
Wang PL et al., Sensitive detection of β-agonists in pork tissue with novel molecularly imprinted polymer extraction followed liquid chromatography coupled tandem mass spectrometry detection.
Food Chemistry, 184, 72-79, (2015)
   
clorprenaline
Liang SR et al., Molecularly imprinted phloroglucinol-formaldehyde-melamine resin prepared in a deep eutectic solvent for selective recognition of clorprenaline and bambuterol in urine.
Analytica Chimica Acta, 951, 68-77, (2017)
   
clothianidin
Yang DD et al., Synthesis and Characterization of a Molecularly Imprinted Polymer for Preconcentration of Clothianidin in Environmental Samples.
Analytical Letters, 47, (15), 2613-2627, (2014)
   
clotrimazole
Sun XL et al., Preparation and evaluation of dummy-template molecularly imprinted polymer as a potential sorbent for solid phase extraction of imidazole fungicides from river water.
Journal of Chromatography A, 1586, 1-8, (2019)
   
clotrimazole
Zhang XX et al., Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples.
Journal of Chromatography A, 1620, Article461013-(2020)
   
CLOXA
Urraca JL et al., Molecularly imprinted polymer beads for clean-up and preconcentration of β-lactamase-resistant penicillins in milk.
Analytical and Bioanalytical Chemistry, 408, (7), 1843-1854, (2016)
   
cloxacillin
Urraca JL et al., Molecularly Imprinted Polymers as Antibody Mimics in Automated On-Line Fluorescent Competitive Assays.
Analytical Chemistry, 79, (13), 4915-4923, (2007)
   
cloxacillin
Urraca JL et al., Direct Extraction of Penicillin G and Derivatives from Aqueous Samples Using a Stoichiometrically Imprinted Polymer.
Analytical Chemistry, 79, (2), 695-701, (2007)
   
cloxacillin
Kempe H et al., QSRR analysis of β-lactam antibiotics on a penicillin G targeted MIP stationary phase.
Analytical and Bioanalytical Chemistry, 398, (7), 3087-3096, (2010)
   
cloxacillin
Giovannoli C et al., Solid phase extraction of penicillins from milk by using sacrificial silica beads as a support for a molecular imprint.
Microchimica Acta, 180, (15-16), 1371-1377, (2013)
   
cloxacillin
Díaz-Bao M et al., Fast HPLC-MS/MS Method for Determining Penicillin Antibiotics in Infant Formulas Using Molecularly Imprinted Solid-Phase Extraction.
Journal of Analytical Methods in Chemistry, 2015, ArticleID959675-(2015)
   
cloxacillin
Urraca JL et al., Molecularly imprinted polymer beads for clean-up and preconcentration of β-lactamase-resistant penicillins in milk.
Analytical and Bioanalytical Chemistry, 408, (7), 1843-1854, (2016)
   
cloxacillin
Ashley J et al., Quantitative Detection of Trace Level Cloxacillin in Food Samples Using Magnetic Molecularly Imprinted Polymer Extraction and Surface-Enhanced Raman Spectroscopy Nanopillars.
Analytical Chemistry, 89, (21), 11484-11490, (2017)
   
cloxacillin
Du W et al., Molecularly imprinted membrane extraction combined with high-performance liquid chromatography for selective analysis of cloxacillin from shrimp samples.
Food Chemistry, 259, 73-80, (2018)
   
cloxacillin
Jafari S et al., Label-free electrochemical detection of Cloxacillin antibiotic in milk samples based on molecularly imprinted polymer and graphene oxide-gold nanocomposite.
Measurement, 145, 22-29, (2019)
   
cloxacillin
Jafari S et al., Synthesis and characterisation of a selective adsorbent based on the molecularly imprinted polymer for the removal of cloxacillin antibiotic residue from milk.
International Journal of Dairy Technology, 72, (4), 505-514, (2019)
   
cloxacilloic acid
Du KL et al., Preparation and evaluation of a molecularly imprinted sol-gel material as the solid-phase extraction adsorbents for the specific recognition of cloxacilloic acid in cloxacillin.
Journal of Separation Science, 39, (3), 483-489, (2016)
   
clozapine
Mohajeri SA et al., Clozapine imprinted polymers: Synthesis, characterization and application for drug assay in human serum.
Analytica Chimica Acta, 683, (1), 143-148, (2010)
   
clozapine
Mohajeri SA et al., Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method.
Journal of Applied Polymer Science, 121, (6), 3590-3595, (2011)
   
clozapine
Ganjali MR et al., Nano-Composite Clozapine Potentiometric Carbon Paste Sensor Based on Biomimetic Molecular Imprinted Polymer.
International Journal of Electrochemical Science, 7, (5), 4756-4765, (2012)
   
clozapine
Javidi J et al., Synthesis, characterization and application of core-shell magnetic molecularly imprinted polymers for selective recognition of clozapine from human serum.
RSC Advances, 5, (89), 73268-73278, (2015)
   
clozapine
Naklua W et al., Molecularly imprinted polymer microprobes for manipulating neurological function by regulating temperature-dependent molecular interactions.
Process Biochemistry, 51, (1), 142-157, (2016)
   
clozapine
Yousefsani BS et al., Liquid Chromatography Analysis of Clozapine in Rat Brain Tissue, Using its Molecularly Imprinted Polymer after Administration of Toxic Dose of Drug and Lipid Emulsion Therapy.
Current Pharmaceutical Analysis, 15, (3), 251-257, (2019)
   
CLP
Yan HY et al., Ionic liquids modified dummy molecularly imprinted microspheres as solid phase extraction materials for the determination of clenbuterol and clorprenaline in urine.
Journal of Chromatography A, 1294, 10-16, (2013)
   
CLP
Liang SR et al., Molecularly imprinted phloroglucinol-formaldehyde-melamine resin prepared in a deep eutectic solvent for selective recognition of clorprenaline and bambuterol in urine.
Analytica Chimica Acta, 951, 68-77, (2017)
   
CLs
Bouri M et al., Selective extraction and determination of catecholamines in urine samples by using a dopamine magnetic molecularly imprinted polymer and capillary electrophoresis.
Talanta, 99, 897-903, (2012)
   
CLs
Qiu XZ et al., Preparation of a Molecularly Imprinted Polymer Nanotubes Membrane and Its Application in the Determination of Catecholamines in Urine Samples.
Chemical Journal of Chinese Universities, 39, (4), 653-659, (2018)
   
->
Cl-
Kamata K et al., Size-dependent photochemical anion recognition by ion-templated polyviologen film.
Electrochemistry, 67, (12), 1189-1191, (1999)
   
Cl-
Proceeding, Liu Y et al, The development of chloride ion selective polypyrrole thin film on a layer-by-layer carbon nanotube working electrode,
Wu HF (Ed.), Art. No. 798315, (2011)
   
CLX
Amjadi M et al., A molecularly imprinted dual-emission carbon dot-quantum dot mesoporous hybrid for ratiometric determination of anti-inflammatory drug celecoxib.
Spectrochimica Acta Part A-Molecular and Biomolecular Spctroscopy, 191, 345-351, (2018)
   
CLZ
Mohajeri SA et al., Clozapine imprinted polymers: Synthesis, characterization and application for drug assay in human serum.
Analytica Chimica Acta, 683, (1), 143-148, (2010)
   
CLZ
Mohajeri SA et al., Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method.
Journal of Applied Polymer Science, 121, (6), 3590-3595, (2011)
   
CLZ
Ganjali MR et al., Nano-Composite Clozapine Potentiometric Carbon Paste Sensor Based on Biomimetic Molecular Imprinted Polymer.
International Journal of Electrochemical Science, 7, (5), 4756-4765, (2012)
   
CLZ
Javidi J et al., Synthesis, characterization and application of core-shell magnetic molecularly imprinted polymers for selective recognition of clozapine from human serum.
RSC Advances, 5, (89), 73268-73278, (2015)
   
CLZ
Ghorbani A et al., Detection of Chloridazon in Aqueous Matrices Using a Nano-Sized Chloridazon-Imprinted Polymer-Based Voltammetric Sensor.
International Journal of Electrochemical Science, 15, 2913-2922, (2020)
   
Cm
Sai N et al., A novel enrichment imprinted crystalline colloidal array for the ultratrace detection of chloramphenicol.
Talanta, 161, 1-7, (2016)
   
CMA
Shi SY et al., Effective synthesis of magnetic porous molecularly imprinted polymers for efficient and selective extraction of cinnamic acid from apple juices.
Food Chemistry, 237, 198-204, (2017)
   
CMA
Xiang HY et al., Hollow porous molecularly imprinted polymers for rapid and selective extraction of cinnamic acid from juices.
Journal of Chromatography B, 1049-1050, 1-7, (2017)
   
[C6mim]+
Zhuo KL et al., Molecularly imprinted polymer based potentiometric sensor for the determination of 1-hexyl-3-methylimidazolium cation in aqueous solution.
Ionics, 22, (10), 1947-1955, (2016)
   
C2mimCl
Gao X et al., Synthesis of a Novel 1-ethyl-3-methylimidazolium Chloride Ionic Liquid Molecularly Imprinted Polymer and Its Properties of Specific Adsorption and Solid Phase Extraction.
Acta Chimica Sinica, 71, (10), 1411-1420, (2013)
   
[C8mim]Cl
Gao X et al., Effect of alkyl chain length on adsorption properties of alkyl imidazolium ionic liquids surface imprinting polymers.
Monatshefte für Chemie - Chemical Monthly, 146, (3), 475-484, (2015)
   
[C6mim]Cl
Zhuo KL et al., Molecularly imprinted polymer based potentiometric sensor for the determination of 1-hexyl-3-methylimidazolium cation in aqueous solution.
Ionics, 22, (10), 1947-1955, (2016)
   
CML
Liu HL et al., Development and applications of molecularly imprinted polymers based on hydrophobic CdSe/ZnS quantum dots for optosensing of Nε-carboxymethyllysine in foods.
Food Chemistry, 211, 34-40, (2016)
   
CML
Liu HL et al., Application of Quantum Dot-Molecularly Imprinted Polymer Core-Shell Particles Sensitized with Graphene for Optosensing of Nε-Carboxymethyllysine in Dairy Products.
Journal of Agricultural and Food Chemistry, 64, (23), 4801-4806, (2016)
   
CMP
Abu-Alsoud GF et al., Assessment of cross-reactivity in a tailor-made molecularly imprinted polymer for phenolic compounds using four adsorption isotherm models.
Journal of Chromatography A, 1629, Article461463-(2020)
   
CMs
Abadi PPSS et al., Engineering of Mature Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes Using Substrates with Multiscale Topography.
Advanced Functional Materials, 28, (19), ArticleNo1707378-(2018)
   
CMZ
Lee JC et al., Synthesis and adsorption properties of carbamazepine imprinted polymer by dispersion polymerization in supercritical carbon dioxide.
Korean Journal of Chemical Engineering, 31, (12), 2266-2273, (2014)
   
CMZ
Sun XL et al., Preparation and evaluation of dummy-template molecularly imprinted polymer as a potential sorbent for solid phase extraction of imidazole fungicides from river water.
Journal of Chromatography A, 1586, 1-8, (2019)
   
CMZ
Zhang XX et al., Dummy molecularly imprinted microspheres prepared by Pickering emulsion polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples.
Journal of Chromatography A, 1620, Article461013-(2020)
   
CN
Rushton GT et al., A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs).
Analytica Chimica Acta, 528, (1), 107-113, (2005)
   
CN
Zhong SA et al., Selective recognition in molecularly imprinted polymer and its chromatographic characterization for cinchonine.
Journal of Central South University of Technology (English Edition), 12, (1), 102-107, (2005)
   
CN
Matsui J et al., Molecularly-imprinted polymeric logic gates selective for predetermined chemical input species.
Chemical Communications, (30), 3217-3219, (2006)
   
CN-
Abd-Rabboh HSM et al., Mimicking a Receptor for Cyanide Ion Based on Ion Imprinting and Its Applications in Potential Transduction.
Electroanalysis, 24, (6), 1409-1415, (2012)
   
CN
Yang HP et al., Entrapment of alkaloids within silver: from enantioselective hydrogenation to chiral recognition.
Chemical Communications, 50, (64), 8868-8870, (2014)
   
CN-
Alizadeh T et al., Synthesis of nano-sized cyanide ion-imprinted polymer via non-covalent approach and its use for the fabrication of a CN--selective carbon nanotube impregnated carbon paste electrode.
Talanta, 147, 90-97, (2016)
   
Cn
Anirudhan TS et al., Fabrication of a molecularly imprinted silylated graphene oxide polymer for sensing and quantification of creatinine in blood and urine samples.
Applied Surface Science, 466, 28-39, (2019)
   
5-C14-NAP
Ornelas M et al., Acylated-naproxen as the surface-active template in the preparation of micro- and nanospherical imprinted xerogels by emulsion techniques.
Journal of Chromatography A, 1437, 107-115, (2016)
   
CNP
He HL et al., Fluorescent turn-on assay of C-type natriuretic peptide using a molecularly imprinted ratiometric fluorescent probe with high selectivity and sensitivity.
Microchimica Acta, 187, (11), Article614-(2020)
   
CNZ
Guo XC et al., Molecularly imprinted solid phase extraction method for simultaneous determination of seven nitroimidazoles from honey by HPLC-MS/MS.
Talanta, 166, 101-108, (2017)
   
Co2+
Nishide H et al., Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template.
Chemistry Letters, 5, (2), 169-174, (1976)
   
Co2+
Matsui J et al., Molecularly-imprinted polymeric logic gates selective for predetermined chemical input species.
Chemical Communications, (30), 3217-3219, (2006)
   
CO
Djozan D et al., Preparation of new fibers on the basis of codeine imprinted polymer.
Materials and Manufacturing Processes, 22, (6), 758-763, (2007)
   
CO2
Zhao Y et al., Synthesis and CO2 Adsorption Properties of Molecularly Imprinted Adsorbents.
Environmental Science & Technology, 46, (3), 1789-1795, (2012)
   
CO2
Shi YQ et al., Molecular Template-Directed Synthesis of Microporous Polymer Networks for Highly Selective CO2 Capture.
ACS Applied Materials & Interfaces, 6, (22), 20340-20349, (2014)
   
CO2
Zhao Y et al., Adsorption Separation of Carbon Dioxide from Flue Gas by a Molecularly Imprinted Adsorbent.
Environmental Science & Technology, 48, (3), 1601-1608, (2014)
   
CO
Li CJ et al., SnO2 Highly Sensitive CO Gas Sensor Based on Quasi-Molecular-Imprinting Mechanism Design.
Sensors, 15, (2), 3789-3800, (2015)
   
CO2
He H et al., Structure design of a hyperbranched polyamine adsorbent for CO2 adsorption.
Green Chemistry, 18, (21), 5859-5869, (2016)
   
CO2
He H et al., Solid Amine Adsorbent Prepared by Molecular Imprinting and Its Carbon Dioxide Adsorption Properties.
Chemistry - An Asian Journal, 11, (21), 3055-3061, (2016)
   
CO2
Nabavi SA et al., Production of spherical mesoporous molecularly imprinted polymer particles containing tunable amine decorated nanocavities with CO2 molecule recognition properties.
Chemical Engineering Journal, 306, 214-225, (2016)
   
Co
Naeimi H et al., Designable Metal/PMO Nanocomposite and Preparation by a Surface Imprinting Technique Combined with a Sol-Gel Process for Catalytic Click Reaction.
Bulletin of the Chemical Society of Japan, 89, (2), 212-219, (2016)
   
CO2
Nabavi SA et al., Production of molecularly imprinted polymer particles with amide-decorated cavities for CO2 capture using membrane emulsification/suspension polymerisation.
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 521, 231-238, (2017)
   
CO2
Nabavi SA et al., Synthesis of Size-Tunable CO2-Philic Imprinted Polymeric Particles (MIPs) for Low-Pressure CO2 Capture Using Oil-in-Oil Suspension Polymerization.
Environmental Science & Technology, 51, (19), 11476-11483, (2017)
   
CO2
Hanak DP et al., Techno-economic feasibility assessment of CO2 capture from coal-fired power plants using molecularly imprinted polymer.
Fuel, 214, 512-520, (2018)
   
CO2
Liu FL et al., Preparation and characterization of molecularly imprinted solid amine adsorbent for CO2 adsorption.
New Journal of Chemistry, 42, (12), 10016-10023, (2018)
   
CO2
Chaterjee S et al., Amino acid-imprinted polymers as highly selective CO2 capture materials.
Environmental Chemistry Letters, 17, (1), 465-472, (2019)
   
cobalt
Naeimi H et al., Designable Metal/PMO Nanocomposite and Preparation by a Surface Imprinting Technique Combined with a Sol-Gel Process for Catalytic Click Reaction.
Bulletin of the Chemical Society of Japan, 89, (2), 212-219, (2016)
   
cobalt-2,2 bipyridyl complex
Ma XX et al., Permeation characteristics of cobalt(II)-complex molecularly imprinted polymer membranes.
Acta Chimica Sinica, 63, (18), 1681-1685, (2005)
   
cobalt(II) acetate
Matsui J et al., Molecularly-imprinted polymeric logic gates selective for predetermined chemical input species.
Chemical Communications, (30), 3217-3219, (2006)
   
cobalt (II) complex
Hedin-Dahlström J et al., A class II aldolase mimic.
Journal of Organic Chemistry, 71, (13), 4845-4853, (2006)
   
cobalt(II)-enrofloxacin complex
Lv YK et al., Preparation and Characterization of Imprinted Polymers Based on Cobalt(II)-Enrofloxacin Coordination.
Asian Journal of Chemistry, 23, (9), 4037-4041, (2011)
   
cobalt ioin
Tarley CRT et al., Enhanced Selectivity and Sensitivity for Flow Injection Spectrophotometric Determination of Cobalt Using Solid Phase Extraction with a 2D Ion-Imprinted Adsorbent.
Analytical Letters, 44, (1), 216-231, (2011)
   
cobalt ion
Nishide H et al., Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template.
Chemistry Letters, 5, (2), 169-174, (1976)
   
cobalt ion
Tsukagoshi K et al., Adsorption behavior of metal-ions onto Co(II)-imprinted microspheres prepared by surface imprinting - effect of Co(II)-imprinting.
Kobunshi Ronbunshu, 50, (5), 455-458, (1993)
   
cobalt ion
Tsukagoshi K et al., Metal-ion imprinted resin prepared using an interaction at the aqueous-organic interface and its characterization.
Bunseki Kagaku, 45, (11), 975-986, (1996)
   
cobalt ion
Efendiev AA, Macromolecular metal complexes with memory to the catalyzed substrate.
Macromolecular Symposia, 131, (1), 29-38, (1998)
   
Cobalt ion
Mitchell-Koch JT et al., Modification of immobilized metal complexes toward the design and synthesis of functional materials for nitric oxide delivery.
Journal of Polymer Science Part A: Polymer Chemistry, 44, (7), 2282-2292, (2006)
   
cobalt ion
Peng SW et al., Study on Adsorbing Properties and Kinetics of Co~(2+) Imprinting Chitosan Chelated Resins.
Guangzhou Chemical Industry, 34, (6), 1-3, (2006)
   
cobalt ion
Wang ZQ et al., Synthesis and Properties of Cobalt (II) Ion-Imprinted Polymer.
Journal of Anqing Teachers College (Natural Science Edition), 13, (1), 87-88,91, (2007)
   
cobalt ion
Bhaskarapillai A et al., Theoretical investigations of the experimentally observed selectivity of a cobalt imprinted polymer.
Biosensors and Bioelectronics, 25, (3), 558-562, (2009)
   
cobalt ion
Liu Y et al., Synthesis and Adsorption Performance of Surface-Grafted Co(II)-Imprinted Polymer for Selective Removal of Cobalt.
Chinese Journal of Chemistry, 28, (4), 548-554, (2010)
   
cobalt ion
Tajodini N et al., Preconcentration and Determination of Ultra Trace Cobalt(II) in Water Samples Using Co(II)-Imprinted Diazoaminobenzene-Vinylpyridine Copolymers.
Asian Journal of Chemistry, 22, (5), 3335-3344, (2010)
   
cobalt ion
Fan HT et al., Preparation of Cobalt(II) Ion Imprinted Silica Gel Sorbents by Surface Imprinting Technique and Its Adsorption Properties.
Chemical Journal of Chinese Universities, 32, (12), 2902-2907, (2011)
   
cobalt ion
Jiang JG, Molecular recognition characteristics of cobalt(II)-complex molecularly imprinted polymer.
Asian Journal of Chemistry, 23, (10), 4470-4472, (2011)
   
cobalt ion
Li CX et al., Synthesis and applications of novel attapulgite-supported Co(II)-imprinted polymers for selective solid-phase extraction of cobalt(II) from aqueous solutions.
International Journal of Environmental Analytical Chemistry, 91, (11), 1035-1049, (2011)
   
cobalt ion
Liu Y et al., Selective Adsorption of Co(II) by Mesoporous Silica SBA-15-Supported Surface Ion Imprinted Polymer: Kinetics, Isotherms, and Thermodynamics Studies.
Chinese Journal of Chemistry, 29, (3), 387-398, (2011)
   
cobalt ion
Proceeding, Sahar Afzali Borujeni SA et al, Synthesis of Ion Imprinted Polymers for uptake of Cobalt(II) from invironmental samples,
(2011)
   
cobalt ion
Kamal H et al., Radiation Syntheses of Molecularly Imprinted Polymer for Metal Ion Selective Separation.
Arab Journal of Nuclear Sciences and Applications, 45, (2), 79-96, (2012)
   
cobalt ion
Nishad PA et al., Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination.
Carbohydrate Polymers, 87, (4), 2690-2696, (2012)
   
cobalt ion
Anupkumar B, Synthesis of a cobalt selective polymeric sorbent through metal ion imprinting and its evaluation.
BARC Newsletter, 95-98, (2013)
   
cobalt ion
Czulak J et al., Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes.
Advances in Materials Science and Engineering, 2013, Article ID 464265-(2013)
   
cobalt ion
Guo WL et al., Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II).
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 693-703, (2013)
   
cobalt ion
Moorthy MS et al., Ion-imprinted mesoporous silica hybrids for selective recognition of target metal ions.
Microporous And Mesoporous Materials, 180, 162-171, (2013)
   
cobalt ion
Proceeding, Pang M et al, Solid Phase Extraction of Trace Cobalt(II) from Aqueous Solutions through Physicochemical Adsorption by Surface Ion-Imprinted Polymer,
In: Advanced Materials Research, Zhao J, Iranpour R, Li XY, Jin B (Eds.), 700-706, (2013)
   
cobalt ion
Seven F et al., Metal ion-imprinted hydrogel with magnetic properties and enhanced catalytic performances in hydrolysis of NaBH4 and NH3BH3.
International Journal of Hydrogen Energy, 38, (35), 15275-15284, (2013)
   
cobalt ion
P G et al., Selective Removal of Transition Metal ions from Waste water By ion Imprinting Technology.
International Journal of ChemTech Research, 6, (4), 2438-2445, (2014)
   
cobalt ion
Qaddafi M et al., Imprinted Nickel-Cobalt Chitosan as a Specific Adsorbent of Nickel (Ni2+) and Cobalt (Co2+).
International Journal ofScientific and Technology Research, 3, (9), 37-42, (2014)
   
cobalt ion
Liu Y et al., Preparation of core-shell ion imprinted nanoparticles via photoinitiated polymerization at ambient temperature for dynamic removal of cobalt in aqueous solution.
RSC Advances, 5, (104), 85691-85704, (2015)
   
cobalt ion
Hossein Beyki M et al., Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored γ-Fe2O3@chitosan with Co(II) as imprinted ions.
International Journal of Biological Macromolecules, 87, 375-384, (2016)
   
cobalt ion
Kang RF et al., A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater.
Journal of Environmental Chemical Engineering, 4, (2), 2268-2277, (2016)
   
cobalt ion
Khoddami N et al., A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples.
Talanta, 146, 244-252, (2016)
   
cobalt ion
Mahmoud GA et al., Radiation synthesis of imprinted hydrogels for selective metal ions adsorption.
Desalination and Water Treatment, 57, (35), 16540-16551, (2016)
   
cobalt ion
Torkashvand M et al., Synthesis, characterization and application of a novel ion-imprinted polymer based voltammetric sensor for selective extraction and trace determination of cobalt (II) ions.
Sensors and Actuators B: Chemical, 243, 283-291, (2017)
   
cobalt ion
Isikver Y et al., Synthesis and characterization of metal ion-imprinted polymers.
Bulletin of Materials Science, 41, (2), ArticleNo49-(2018)
   
cobalt ion
Sebastian M et al., Multiwalled carbon nanotube based ion imprinted polymer as sensor and sorbent for environmental hazardous cobalt ion.
Journal of Macromolecular Science, Part A, 55, (6), 455-465, (2018)
   
cobalt ion
Yuan GY et al., A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions.
Chemical Engineering Journal, 333, 280-288, (2018)
   
Cobalt ion
Yusof NF et al., Characteristics of adsorption isotherm and kinetic study for newly prepared Co2+-imprinted polymer linkage with dipicolinic acid.
IOP Conference Series: Materials Science and Engineering, 440, ArticleNo.012005-(2018)
   
cobalt ion
Li SH et al., Molecularly imprinted electroluminescence switch sensor with a dual recognition effect for determination of ultra-trace levels of cobalt (II).
Biosensors and Bioelectronics, 139, Article111321-(2019)
   
cobalt ion
Yusof NF et al., Fabrication and binding characterization of ion imprinted polymers for highly selective Co2+ ions in an aqueous medium.
Journal of Environmental Chemical Engineering, 7, (2), Article103007-(2019)
   
Cobalt ion
Stevens MG et al., Preparation of Highly Selective Sorbents Composed of Peptides and Silica Using Novel Molecular Imprinting Technology for Target Metal Ions.
Journal of Chemical Engineering of Japan, 53, (9), 485-493, (2020)
   
cobalt ions
Bhaskarapillai A et al., Synthesis and Characterization of Imprinted Polymers for Radioactive Waste Reduction.
Industrial & Engineering Chemistry Research, 48, (8), 3730-3737, (2009)
   
cobalt ions
Pan JM et al., Selective Adsorption of Co(II) Ions by Whisker Surface Ion-Imprinted Polymer: Equilibrium and Kinetics Modeling.
Chinese Journal of Chemistry, 28, (12), 2483-2488, (2010)
   
COC
Thibert V et al., Synthesis and characterization of molecularly imprinted polymers for the selective extraction of cocaine and its metabolite benzoylecgonine from hair extract before LC-MS analysis.
Talanta, 88, (1), 412-419, (2012)
   
COC
Sánchez-González J et al., Porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction for analysis of urinary cocaine and its metabolites using liquid chromatography - Tandem mass spectrometry.
Analytica Chimica Acta, 898, 50-59, (2015)
   
COC
Chantada-Vázquez MP et al., Simple and Sensitive Molecularly Imprinted Polymer - Mn-Doped ZnS Quantum Dots Based Fluorescence Probe for Cocaine and Metabolites Determination in Urine.
Analytical Chemistry, 88, (5), 2734-2741, (2016)
   
COC
Chantada-Vázquez MP et al., Synthesis and characterization of novel molecularly imprinted polymer - coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine.
Biosensors and Bioelectronics, 75, 213-221, (2016)
   
COC
Sánchez-González J et al., Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry.
Talanta, 147, 641-649, (2016)
   
COC
Sánchez-González J et al., Magnetic molecularly imprinted polymer based - micro-solid phase extraction of cocaine and metabolites in plasma followed by high performance liquid chromatography - tandem mass spectrometry.
Microchemical Journal, 127, 206-212, (2016)
   
COC
Sánchez-González J et al., Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1451, 15-22, (2016)
   
COC
Chantada-Vázquez MP et al., Development and application of molecularly imprinted polymer - Mn-doped ZnS quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum.
Talanta, 181, 232-238, (2018)
   
cocaethylene
Sánchez-González J et al., Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry.
Talanta, 147, 641-649, (2016)
   
cocaethylene
Sánchez-González J et al., Magnetic molecularly imprinted polymer based - micro-solid phase extraction of cocaine and metabolites in plasma followed by high performance liquid chromatography - tandem mass spectrometry.
Microchemical Journal, 127, 206-212, (2016)
   
cocaethylene
Sánchez-González J et al., Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1451, 15-22, (2016)
   
cocaine
Holdsworth CI et al., Formulation of cocaine-imprinted polymers utilizing molecular modelling and NMR analysis.
Australian Journal of Chemistry, 58, (5), 315-320, (2005)
   
cocaine
Piletska EV et al., Towards the development of multisensor for drugs of abuse based on molecular imprinted polymers.
Analytica Chimica Acta, 542, (1), 111-117, (2005)
   
cocaine
Piletska EV et al., Adaptation of the molecular imprinted polymers towards polar environment.
Analytica Chimica Acta, 542, (1), 47-51, (2005)
   
cocaine
Booker K et al., Molecularly Imprinted Polymers and Room Temperature Ionic Liquids: Impact of Template on Polymer Morphology.
Australian Journal of Chemistry, 60, (1), 51-56, (2007)
   
cocaine
Proceeding, Nguyen TH et al, A fibre optic chemical sensor for the detection of cocaine,
In: Fourth European Workshop on Optical Fibre Sensors, Santos JL, Culshaw B, Lopez-Higuera JM, MacPherson WN (Eds.), Art. No. 76531V, (2010)
   
cocaine
Nguyen TH et al., Intrinsic fluorescence-based optical fiber sensor for cocaine using a molecularly imprinted polymer as the recognition element.
IEEE Sensors Journal, 12, (1), 255-260, (2012)
   
cocaine
Thibert V et al., Synthesis and characterization of molecularly imprinted polymers for the selective extraction of cocaine and its metabolite benzoylecgonine from hair extract before LC-MS analysis.
Talanta, 88, (1), 412-419, (2012)
   
cocaine
Subrahmanyam S et al., Optimization of experimental conditions for synthesis of high affinity MIP nanoparticles.
European Polymer Journal, 49, 100-105, (2013)
   
cocaine
Proceeding, Wren SP et al, Preparation of a novel drug sensor using a molecular imprinted polymer approach,
Jaroszewicz LR (Ed.), Art No 879417, (2013)
   
cocaine
Thibert V et al., Molecularly imprinted polymer for the selective extraction of cocaine and its metabolites, benzoylecgonine and ecgonine methyl ester, from biological fluids before LC-MS analysis.
Journal of Chromatography B, 949-950, 16-23, (2014)
   
Cocaine
Proceeding, Wren SP et al, Design and synthesis of a fluorescent molecular imprinted polymer for use in an optical fibre-based cocaine sensor,
91574W-4, (2014)
   
cocaine
Wren SP et al., Preparation of novel optical fibre-based Cocaine sensors using a molecular imprinted polymer approach.
Sensors and Actuators B: Chemical, 193, 35-41, (2014)
   
cocaine
Poma A et al., Generation of Novel Hybrid Aptamer-Molecularly Imprinted Polymeric Nanoparticles.
Advanced Materials, 27, (4), 750-758, (2015)
   
cocaine
Sánchez-González J et al., Porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction for analysis of urinary cocaine and its metabolites using liquid chromatography - Tandem mass spectrometry.
Analytica Chimica Acta, 898, 50-59, (2015)
   
cocaine
Wren SP et al., Computational Design and Fabrication of Optical Fibre Fluorescent Chemical Probes for the Detection of Cocaine.
Journal of Lightwave Technology, 33, (12), 2572-2579, (2015)
   
cocaine
Bujak R et al., New sorbent materials for selective extraction of cocaine and benzoylecgonine from human urine samples.
Journal of Pharmaceutical and Biomedical Analysis, 120, 397-401, (2016)
   
cocaine
Bujak R et al., Selective determination of cocaine and its metabolite benzoylecgonine in environmental samples by newly developed sorbent materials.
Talanta, 146, 401-409, (2016)
   
cocaine
Chantada-Vázquez MP et al., Simple and Sensitive Molecularly Imprinted Polymer - Mn-Doped ZnS Quantum Dots Based Fluorescence Probe for Cocaine and Metabolites Determination in Urine.
Analytical Chemistry, 88, (5), 2734-2741, (2016)
   
cocaine
Chantada-Vázquez MP et al., Synthesis and characterization of novel molecularly imprinted polymer - coated Mn-doped ZnS quantum dots for specific fluorescent recognition of cocaine.
Biosensors and Bioelectronics, 75, 213-221, (2016)
   
cocaine
Proceeding, Nguyen TH et al, Surface plasmon resonance based fibre optic chemical sensor for the detection of cocaine,
ArticleNo991612, (2016)
   
cocaine
Sánchez-González J et al., Development of magnetic molecularly imprinted polymers for solid phase extraction of cocaine and metabolites in urine before high performance liquid chromatography - tandem mass spectrometry.
Talanta, 147, 641-649, (2016)
   
cocaine
Sánchez-González J et al., Magnetic molecularly imprinted polymer based - micro-solid phase extraction of cocaine and metabolites in plasma followed by high performance liquid chromatography - tandem mass spectrometry.
Microchemical Journal, 127, 206-212, (2016)
   
cocaine
Sánchez-González J et al., Determination of cocaine and its metabolites in plasma by porous membrane-protected molecularly imprinted polymer micro-solid-phase extraction and liquid chromatography-tandem mass spectrometry.
Journal of Chromatography A, 1451, 15-22, (2016)
   
cocaine
Garcia Y et al., Development of competitive pseudo-ELISA assay for measurement of cocaine and its metabolites using molecularly imprinted polymer nanoparticles.
Analytical Methods, 9, (31), 4592-4598, (2017)
   
cocaine
Smolinska-Kempisty K et al., New potentiometric sensor based on molecularly imprinted nanoparticles for cocaine detection.
Biosensors and Bioelectronics, 96, 49-54, (2017)
   
cocaine
Sorribes-Soriano A et al., Cocaine abuse determination by ion mobility spectrometry using molecular imprinting.
Journal of Chromatography A, 1481, 23-30, (2017)
   
cocaine
Chantada-Vázquez MP et al., Development and application of molecularly imprinted polymer - Mn-doped ZnS quantum dot fluorescent optosensing for cocaine screening in oral fluid and serum.
Talanta, 181, 232-238, (2018)
   
cocaine
Florea A et al., Polymer platforms for selective detection of cocaine in street samples adulterated with levamisole.
Talanta, 186, 362-367, (2018)
   
cocaine
Sorribes-Soriano A et al., Magnetic molecularly imprinted polymers for the selective determination of cocaine by ion mobility spectrometry.
Journal of Chromatography A, 1545, 22-31, (2018)
   
cocaine
Tavares LS et al., Paper Spray Tandem Mass Spectrometry Based on Molecularly Imprinted Polymer Substrate for Cocaine Analysis in Oral Fluid.
Journal of The American Society for Mass Spectrometry, 29, (3), 566-572, (2018)
   
cocaine
Florea A et al., Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands.
Analyst, 144, (15), 4639-4646, (2019)
   
cocaine
Sánchez-González J et al., NMR spectroscopy for assessing cocaine-functional monomer interactions when preparing molecularly imprinted polymers.
Microchemical Journal, 147, 813-817, (2019)
   
cocaine
Bouvarel T et al., Selective extraction of cocaine from biological samples with a miniaturized monolithic molecularly imprinted polymer and on-line analysis in nano-liquid chromatography.
Analytica Chimica Acta, 1096, 89-99, (2020)
   
cocaine
Sorribes-Soriano A et al., Molecularly imprinted polymer-based device for field collection of oral fluid samples for cocaine identification.
Journal of Chromatography A, 1633, Article461629-(2020)
   
cocaine
Bouvarel T et al., Simplified miniaturized analytical set-up based on molecularly imprinted polymer directly coupled to UV detection for the determination of benzoylecgonine in urine.
Talanta, 233, Article122611-(2021)
   
cocaine
Díaz-Lińán MC et al., Dual-template molecularly imprinted paper for the determination of drugs of abuse in saliva samples by direct infusion mass spectrometry.
Microchemical Journal, 160, Article105686-(2021)
   
cocaine metabolites
Zurutuza A et al., Molecularly imprinted solid-phase extraction of cocaine metabolites from aqueous samples.
Analytica Chimica Acta, 542, (1), 14-19, (2005)
   
[Co(C2H3O2)2(z-Histidine)]
Chaitidou S et al., On the synthesis and rebinding properties of [Co(C2H3O2)2(z-Histidine)] imprinted polymers prepared by precipitation polymerization.
Materials Science and Engineering: C, 29, (4), 1415-1421, (2009)
   
codeine
Djozan D et al., Preparation of new fibers on the basis of codeine imprinted polymer.
Materials and Manufacturing Processes, 22, (6), 758-763, (2007)
   
codeine
Madrakian T et al., Efficient solid phase extraction of codeine from human urine samples using a novel magnetic molecularly imprinted nanoadsorbent and its spectrofluorometric determination.
New Journal of Chemistry, 40, (1), 122-129, (2016)
   
codeine
Proceeding, Zeng L et al, A Novel Molecular Imprinted Polymer Used to Detect Trace Codeine on Surface Plasmon Resonance,
Takahashi M (Ed.), 1020-1033, (2016)
   
codeine
Jafari MT et al., Magnetic Dual-template Molecularly Imprinted Polymer Nanoparticles for the Simultaneous Determination of Acetaminophen and Codeine in Urine Samples by Ion Mobility Spectrometry.
Analytical Sciences, 34, (3), 297-303, (2018)
   
coenzyme II reduced tetrasodium salt
Liu J et al., Novel molecularly imprinted polymer (MIP) multiple sensors for endogenous redox couples determination and their applications in lung cancer diagnosis.
Talanta, 199, 573-580, (2019)
   
coenzyme Q0
Contin M et al., The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10.
Analytica Chimica Acta, 807, 67-74, (2014)
   
coenzyme Q10
Contin M et al., The use of coenzyme Q0 as a template in the development of a molecularly imprinted polymer for the selective recognition of coenzyme Q10.
Analytica Chimica Acta, 807, 67-74, (2014)
   
coenzyme Q10
Contin M et al., Synthesis and characterization of molecularly imprinted polymer nanoparticles for coenzyme Q10 dispersive micro solid phase extraction.
Journal of Chromatography A, 1456, 1-9, (2016)
   
coenzyme Q10
García Becerra C et al., Miniaturized imprinted solid phase extraction to the selective analysis of Coenzyme Q10 in urine.
Journal of Chromatography B, 1116, 24-29, (2019)
   
Co(II)
Tsukagoshi K et al., Adsorption behavior of metal-ions onto Co(II)-imprinted microspheres prepared by surface imprinting - effect of Co(II)-imprinting.
Kobunshi Ronbunshu, 50, (5), 455-458, (1993)
   
Co(II)
Tsukagoshi K et al., Metal ion-selective adsorbent prepared by surface-imprinting polymerization.
Bulletin of the Chemical Society of Japan, 66, (1), 114-120, (1993)
   
Co(II)
Tsukagoshi K et al., Metal-ion imprinted resin prepared using an interaction at the aqueous-organic interface and its characterization.
Bunseki Kagaku, 45, (11), 975-986, (1996)
   
Co(II)
Peng SW et al., Study on Adsorbing Properties and Kinetics of Co~(2+) Imprinting Chitosan Chelated Resins.
Guangzhou Chemical Industry, 34, (6), 1-3, (2006)
   
Co(II)
Wang ZQ et al., Synthesis and Properties of Cobalt (II) Ion-Imprinted Polymer.
Journal of Anqing Teachers College (Natural Science Edition), 13, (1), 87-88,91, (2007)
   
Co(II)
Bhaskarapillai A et al., Synthesis and Characterization of Imprinted Polymers for Radioactive Waste Reduction.
Industrial & Engineering Chemistry Research, 48, (8), 3730-3737, (2009)
   
Co(II)
Bhaskarapillai A et al., Theoretical investigations of the experimentally observed selectivity of a cobalt imprinted polymer.
Biosensors and Bioelectronics, 25, (3), 558-562, (2009)
   
Co(II)
Liu Y et al., Synthesis and Adsorption Performance of Surface-Grafted Co(II)-Imprinted Polymer for Selective Removal of Cobalt.
Chinese Journal of Chemistry, 28, (4), 548-554, (2010)
   
Co(II)
Pan JM et al., Selective Adsorption of Co(II) Ions by Whisker Surface Ion-Imprinted Polymer: Equilibrium and Kinetics Modeling.
Chinese Journal of Chemistry, 28, (12), 2483-2488, (2010)
   
Co(II)
Tajodini N et al., Preconcentration and Determination of Ultra Trace Cobalt(II) in Water Samples Using Co(II)-Imprinted Diazoaminobenzene-Vinylpyridine Copolymers.
Asian Journal of Chemistry, 22, (5), 3335-3344, (2010)
   
Co(II)
Fan HT et al., Preparation of Cobalt(II) Ion Imprinted Silica Gel Sorbents by Surface Imprinting Technique and Its Adsorption Properties.
Chemical Journal of Chinese Universities, 32, (12), 2902-2907, (2011)
   
Co(II)
Jiang JG, Molecular recognition characteristics of cobalt(II)-complex molecularly imprinted polymer.
Asian Journal of Chemistry, 23, (10), 4470-4472, (2011)
   
Co(II)
Li CX et al., Synthesis and applications of novel attapulgite-supported Co(II)-imprinted polymers for selective solid-phase extraction of cobalt(II) from aqueous solutions.
International Journal of Environmental Analytical Chemistry, 91, (11), 1035-1049, (2011)
   
Co(II)
Liu Y et al., Selective Adsorption of Co(II) by Mesoporous Silica SBA-15-Supported Surface Ion Imprinted Polymer: Kinetics, Isotherms, and Thermodynamics Studies.
Chinese Journal of Chemistry, 29, (3), 387-398, (2011)
   
Co(II)
Proceeding, Sahar Afzali Borujeni SA et al, Synthesis of Ion Imprinted Polymers for uptake of Cobalt(II) from invironmental samples,
(2011)
   
Co(II)
Tarley CRT et al., Enhanced Selectivity and Sensitivity for Flow Injection Spectrophotometric Determination of Cobalt Using Solid Phase Extraction with a 2D Ion-Imprinted Adsorbent.
Analytical Letters, 44, (1), 216-231, (2011)
   
Co(II)
Kamal H et al., Radiation Syntheses of Molecularly Imprinted Polymer for Metal Ion Selective Separation.
Arab Journal of Nuclear Sciences and Applications, 45, (2), 79-96, (2012)
   
Co(II)
Nishad PA et al., Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination.
Carbohydrate Polymers, 87, (4), 2690-2696, (2012)
   
Co(II)
Anupkumar B, Synthesis of a cobalt selective polymeric sorbent through metal ion imprinting and its evaluation.
BARC Newsletter, 95-98, (2013)
   
Co(II)
Czulak J et al., Polymer Catalysts Imprinted with Metal Ions as Biomimics of Metalloenzymes.
Advances in Materials Science and Engineering, 2013, Article ID 464265-(2013)
   
Co(II)
Guo WL et al., Preparation of ion-imprinted mesoporous silica SBA-15 functionalized with triglycine for selective adsorption of Co(II).
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 693-703, (2013)
   
Co(II)
Moorthy MS et al., Ion-imprinted mesoporous silica hybrids for selective recognition of target metal ions.
Microporous And Mesoporous Materials, 180, 162-171, (2013)
   
Co(II)
Proceeding, Pang M et al, Solid Phase Extraction of Trace Cobalt(II) from Aqueous Solutions through Physicochemical Adsorption by Surface Ion-Imprinted Polymer,
In: Advanced Materials Research, Zhao J, Iranpour R, Li XY, Jin B (Eds.), 700-706, (2013)
   
Co(II)
Seven F et al., Metal ion-imprinted hydrogel with magnetic properties and enhanced catalytic performances in hydrolysis of NaBH4 and NH3BH3.
International Journal of Hydrogen Energy, 38, (35), 15275-15284, (2013)
   
Co(II)
P G et al., Selective Removal of Transition Metal ions from Waste water By ion Imprinting Technology.
International Journal of ChemTech Research, 6, (4), 2438-2445, (2014)
   
Co(II)
Qaddafi M et al., Imprinted Nickel-Cobalt Chitosan as a Specific Adsorbent of Nickel (Ni2+) and Cobalt (Co2+).
International Journal ofScientific and Technology Research, 3, (9), 37-42, (2014)
   
Co(II)
Liu Y et al., Preparation of core-shell ion imprinted nanoparticles via photoinitiated polymerization at ambient temperature for dynamic removal of cobalt in aqueous solution.
RSC Advances, 5, (104), 85691-85704, (2015)
   
Co(II)
Hossein Beyki M et al., Aqueous Co(II) adsorption using 8-hydroxyquinoline anchored γ-Fe2O3@chitosan with Co(II) as imprinted ions.
International Journal of Biological Macromolecules, 87, 375-384, (2016)
   
Co(II)
Kang RF et al., A novel magnetic and hydrophilic ion-imprinted polymer as a selective sorbent for the removal of cobalt ions from industrial wastewater.
Journal of Environmental Chemical Engineering, 4, (2), 2268-2277, (2016)
   
Co(II)
Khoddami N et al., A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples.
Talanta, 146, 244-252, (2016)
   
Co(II)
Mahmoud GA et al., Radiation synthesis of imprinted hydrogels for selective metal ions adsorption.
Desalination and Water Treatment, 57, (35), 16540-16551, (2016)
   
Co(II)
Torkashvand M et al., Synthesis, characterization and application of a novel ion-imprinted polymer based voltammetric sensor for selective extraction and trace determination of cobalt (II) ions.
Sensors and Actuators B: Chemical, 243, 283-291, (2017)
   
Co(II)
Isikver Y et al., Synthesis and characterization of metal ion-imprinted polymers.
Bulletin of Materials Science, 41, (2), ArticleNo49-(2018)
   
Co(II)
Sebastian M et al., Multiwalled carbon nanotube based ion imprinted polymer as sensor and sorbent for environmental hazardous cobalt ion.
Journal of Macromolecular Science, Part A, 55, (6), 455-465, (2018)
   
Co(II)
Yuan GY et al., A novel ion-imprinted polymer induced by the glycylglycine modified metal-organic framework for the selective removal of Co(II) from aqueous solutions.
Chemical Engineering Journal, 333, 280-288, (2018)
   
Co(II)
Yusof NF et al., Characteristics of adsorption isotherm and kinetic study for newly prepared Co2+-imprinted polymer linkage with dipicolinic acid.
IOP Conference Series: Materials Science and Engineering, 440, ArticleNo.012005-(2018)
   
Co(II)
Li SH et al., Molecularly imprinted electroluminescence switch sensor with a dual recognition effect for determination of ultra-trace levels of cobalt (II).
Biosensors and Bioelectronics, 139, Article111321-(2019)
   
Co(II)
Yusof NF et al., Fabrication and binding characterization of ion imprinted polymers for highly selective Co2+ ions in an aqueous medium.
Journal of Environmental Chemical Engineering, 7, (2), Article103007-(2019)
   
Co(II)
Stevens MG et al., Preparation of Highly Selective Sorbents Composed of Peptides and Silica Using Novel Molecular Imprinting Technology for Target Metal Ions.
Journal of Chemical Engineering of Japan, 53, (9), 485-493, (2020)
   
Co(II)-diphenadione complex
Zhou J et al., Study on the characteristics of molecular recognition of metal-complexing template polymers.
Journal of Analytical Science, 15, (2), 89-93, (1999)
   
Co(III)
Mitchell-Koch JT et al., Modification of immobilized metal complexes toward the design and synthesis of functional materials for nitric oxide delivery.
Journal of Polymer Science Part A: Polymer Chemistry, 44, (7), 2282-2292, (2006)
   
colchicine
Wang Q et al., Metal Ions Mediated Molecularly Imprinted Polymer for Recognition of Colchicine.
Sensor Letters, 12, (11), 1651-1656, (2014)
   
colchicine
Bai HP et al., Graphene@AuNPs modified molecularly imprinted electrochemical sensor for the determination of colchicine in pharmaceuticals and serum.
Journal of Electroanalytical Chemistry, 816, 7-13, (2018)
   
colistin
Turan E et al., A fluorescent artificial receptor with specific imprinted cavities to selectively detect colistin.
Analytical and Bioanalytical Chemistry, 412, (27), 7417-7428, (2020)
   
collagen
Perez-Puyana V et al., (Macro)Molecular Imprinting of Proteins on PCL Electrospun Scaffolds.
ACS Applied Materials & Interfaces, 13, (25), 29293-29302, (2021)
   
colocynthin
Ramezany F et al., Application of Molecularly Imprinted Polymers in Analysis and Detoxification of Colocynth: Resurgence of an Obscure Ancient Botanical.
Planta Medica, 79, (5), 67-(2013)
   
colocynthin
Ramezani F et al., Molecularly Imprinted Polymer of Colocynthin, An Effective Tool for Quality Control of Citrullus colocynthis Extracts.
Current Drug Discovery Technologies, 14, (3), 169-180, (2017)
   
colon carcinoma cells
Jaiswal L et al., A thalidomide templated molecularly imprinted polymer that promotes a biologically active chiral entity tagged in colon carcinoma cells and protein-related immune activation.
Process Biochemistry, 50, (12), 2035-2050, (2015)
   
comment
Huang YD, Comments on "Novel molecularly imprinted polymer based on β-cyclodextrin@graphene oxide: Synthesis and application for selective diphenylamine determination".
Journal of Colloid and Interface Science, 533, 779-780, (2019)
   
commercial MIP
van Hoof N et al., Multi-residue liquid chromatography/tandem mass spectrometric analysis of beta-agonists in urine using molecular imprinted polymers.
Rapid Communications In Mass Spectrometry, 19, (19), 2801-2808, (2005)
   
commercial MIP
Fan S et al., Simultaneous and confirmative detection of multi-residues of β2-agonists and β-blockers in urine using LC-MS/MS/MS coupled with β-receptor molecular imprinted polymer SPE clean-up.
Food Additives & Contaminants: Part A, 30, (12), 2093-2101, (2013)
   
commercial MIP
Ferey L et al., Use of response surface methodology to optimize the simultaneous separation of eight polycyclic aromatic hydrocarbons by capillary zone electrophoresis with laser-induced fluorescence detection.
Journal of Chromatography A, 1302, 181-190, (2013)
   
commercial MIP
Chen X et al., Chemiluminescence diminishment on a paper-based analytical device: high throughput determination of β-agonists in swine hair.
Analytical Methods, 6, (24), 9684-9690, (2014)
   
commercial MIP
Maradonna F et al., A developmental hepatotoxicity study of dietary bisphenol A in Sparus aurata juveniles.
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 166, 1-13, (2014)
   
commercial MIP
Bousoumah R et al., Development of a molecular recognition based approach for multi-residue extraction of estrogenic endocrine disruptors from biological fluids coupled to liquid chromatography-tandem mass spectrometry measurement.
Analytical and Bioanalytical Chemistry, 407, (29), 8713-8723, (2015)
   
commercial MIP
Espenschied KG et al., Extraction and Quantification of Bisphenol A from Broth-Based Soup Matrices Using Molecularly Imprinted Solid Phase Extraction.
The Reporter, 33, (3), 24-25, (2015)
   
commercial MIP
Guedes-Alonso R et al., Molecularly imprinted solid-phase extraction coupled with ultra high performance liquid chromatography and fluorescence detection for the determination of estrogens and their metabolites in wastewater.
Journal of Separation Science, 38, (22), 3961-3968, (2015)
   
commercial MIP
Moreno-González D et al., Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers.
Analytica Chimica Acta, 891, 321-328, (2015)
   
commercial MIP
DOrazio G et al., Capillary electrochromatography and nano-liquid chromatography coupled to nano-electrospray ionization interface for the separation and identification of estrogenic compounds.
Electrophoresis, 37, (2), 356-362, (2016)
   
commercial MIP
Liu HC et al., Magnetic molecularly imprinted polymers for the determination of β-agonist residues in milk by ultra high performance liquid chromatography with tandem mass spectrometry.
Journal of Separation Science, 39, (18), 3594-3601, (2016)
   
commercial MIP
Martinez-Sena T et al., Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography.
Journal of Pharmaceutical and Biomedical Analysis, 131, 48-53, (2016)
   
commercial MIP
Prutthiwanasan B et al., Fluorescent labelling of ciprofloxacin and norfloxacin and its application for residues analysis in surface water.
Talanta, 159, 74-79, (2016)
   
Commercial MIP
Bueno-Hernández D et al., Low cost optical device for detection of fluorescence from Ochratoxin A using a CMOS sensor.
Sensors and Actuators B: Chemical, 246, 606-614, (2017)
   
commercial MIP
Gallo P et al., Determination of BPA, BPB, BPF, BADGE and BFDGE in canned energy drinks by molecularly imprinted polymer cleaning up and UPLC with fluorescence detection.
Food Chemistry, 220, 406-412, (2017)
   
commercial MIP
Hernández-Mesa M et al., Capillary electrophoresis-tandem mass spectrometry combined with molecularly imprinted solid phase extraction as useful tool for the monitoring of 5-nitroimidazoles and their metabolites in urine samples.
Talanta, 163, 111-120, (2017)
   
commercial MIP
Moreno-González D et al., Evaluation of hydrophilic interaction liquid chromatography-tandem mass spectrometry and extraction with molecularly imprinted polymers for determination of aminoglycosides in milk and milk-based functional foods.
Talanta, 171, 74-80, (2017)
   
commercial MIP
Sun Y et al., Application of molecularly imprinted polymers for the analysis of polycyclic aromatic hydrocarbons in lipid matrix-based biological samples.
Analytical and Bioanalytical Chemistry, 409, (29), 6851-6860, (2017)
   
commercial MIP
Villar-Navarro M et al., Easy, fast and environmental friendly method for the simultaneous extraction of the 16 EPA PAHs using magnetic molecular imprinted polymers (mag-MIPs).
Journal of Chromatography B, 1044-1045, 63-69, (2017)
   
commercial MIP
Zhang H et al., Internal Extractive Electrospray Ionization Mass Spectrometry for Quantitative Determination of Fluoroquinolones Captured by Magnetic Molecularly Imprinted Polymers from Raw Milk.
Scientific Reports, 7, (1), ArticleNo14714-(2017)
   
commercial MIP
Chung JH et al., Inter-Laboratory Validation of Method to Determine Residual Enrofloxacin in Chicken Meat.
International Journal of Analytical Chemistry, 2018, ArticleNo6019549-(2018)
   
commercial MIP
Kou W et al., Fast quantification of fluoroquinolones in environmental water samples using molecularly imprinted polymers coupled with internal extractive electrospray ionization mass spectrometry.
RSC Advances, 8, (31), 17293-17299, (2018)
   
commercial MIPS
Ferey L et al., Optimizing separation conditions of 19 polycyclic aromatic hydrocarbons by cyclodextrin-modified capillary electrophoresis and applications to edible oils.
Talanta, 119, 572-581, (2014)
   
commercial MIPs
Li XQ et al., Evaluation of matrix effect in isotope dilution mass spectrometry based on quantitative analysis of chloramphenicol residues in milk powder.
Analytica Chimica Acta, 807, 75-83, (2014)
   
commercial MIPs
Sturini M et al., Environmental photochemistry of fluoroquinolones in soil and in aqueous soil suspensions under solar light.
Environmental Science and Pollution Research, 21, (23), 13215-13221, (2014)
   
commercial MIPs
Zheng HB et al., Facile synthesis of magnetic molecularly imprinted polymers and its application in magnetic solid phase extraction for fluoroquinolones in milk samples.
Journal of Chromatography A, 1329, 17-23, (2014)
   
commercial MIPs
González-Sálamo J et al., Evaluation of two molecularly imprinted polymers for the solid-phase extraction of natural, synthetic and mycoestrogens from environmental water samples before liquid chromatography with mass spectrometry.
Journal of Separation Science, 38, (15), 2692-2699, (2015)
   
commercial MIPs
Roszko M et al., Simultaneous separation of chlorinated/brominated dioxins, polychlorinated biphenyls, polybrominated diphenyl ethers and their methoxylated derivatives from hydroxylated analogues on molecularly imprinted polymers prior to gas/liquid chromatography and mass spectrometry.
Talanta, 144, 171-183, (2015)
   
competetive glycosidase inhibitor
Sharma B et al., Biomimetic Glycoside Hydrolysis by a Microgel Templated with a Competitive Glycosidase Inhibitor.
ACS Catalysis, 8788-8795, (2018)
   
complex ion
Jiang WJ et al., A novel ion imprinted SiO2 microsphere for the specific and rapid extraction and pre-concentration of ultra-trace methyl mercury.
RSC Advances, 6, (46), 40100-40105, (2016)
   
complex of 1-amino-8-naphthol-3,6-disodium sulfonate with mercury
Liu ZH et al., Molecularly imprinted TiO2 thin film using stable ground-state complex as template as applied to selective electrochemical determination of mercury.
Talanta, 68, (4), 1120-1125, (2006)
   
complex template
Lian HX et al., Novel metal ion-mediated complex imprinted membrane for selective recognition and direct determination of naproxen in pharmaceuticals by solid surface fluorescence.
Talanta, 116, 460-467, (2013)
   
compost
Lieberzeit PA et al., Nanostructured Particles and Layers for Sensing Contaminants in Air and Water.
Nano, 3, (4), 205-208, (2008)
   
Con A
Zheng HF et al., Enhanced Binding and Biosensing of Carbohydrate-Functionalized Monolayers to Target Proteins by Surface Molecular Imprinting.
Journal of Physical Chemistry B, 113, (32), 11330-11337, (2009)
   
Con A
Ali M et al., Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions.
Nanoscale, 3, (4), 1894-1903, (2011)
   
Con A
Zheng HF et al., Reduced steric hindrance and optimized spatial arrangement of carbohydrate ligands in imprinted monolayers for enhanced protein binding.
Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828, (2), 792-800, (2013)
   
ConA
Dechtrirat D et al., Hybrid Material for Protein Sensing Based on Electrosynthesized MIP on a Mannose Terminated Self-Assembled Monolayer.
Advanced Functional Materials, 24, (15), 2233-2239, (2014)
   
ConA
Naraprawatphong R et al., Development of protein-recognition SPR devices by combination of SI-ATRP with biomolecular imprinting using protein ligands.
Molecular Imprinting, 4, (1), 21-30, (2016)
   
ConA
Hirayama M et al., Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems.
Journal of Micromechanics and Microengineering, 28, (3), ArticleNo034002-(2018)
   
Con A
Razym G et al., Surface-imprinted silica particles for Concanavalin A purification from Canavalia ensiformis.
Journal of Chromatography B, 1136, Article121852-(2020)
   
Concanavalin A
Zheng HF et al., Enhanced Binding and Biosensing of Carbohydrate-Functionalized Monolayers to Target Proteins by Surface Molecular Imprinting.
Journal of Physical Chemistry B, 113, (32), 11330-11337, (2009)
   
concanavalin A
Ali M et al., Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions.
Nanoscale, 3, (4), 1894-1903, (2011)
   
Concanavalin A
Zheng HF et al., Reduced steric hindrance and optimized spatial arrangement of carbohydrate ligands in imprinted monolayers for enhanced protein binding.
Biochimica et Biophysica Acta (BBA) - Biomembranes, 1828, (2), 792-800, (2013)
   
concanavalin A
Dechtrirat D et al., Hybrid Material for Protein Sensing Based on Electrosynthesized MIP on a Mannose Terminated Self-Assembled Monolayer.
Advanced Functional Materials, 24, (15), 2233-2239, (2014)
   
concanavalin A
Hirayama M et al., Design of protein-responsive micro-sized hydrogels for self-regulating microfluidic systems.
Journal of Micromechanics and Microengineering, 28, (3), ArticleNo034002-(2018)
   
concanavalin A
Razym G et al., Surface-imprinted silica particles for Concanavalin A purification from Canavalia ensiformis.
Journal of Chromatography B, 1136, Article121852-(2020)
   
concanavalin A-type IV
Xing Y et al., Zwitterion-Immobilized Imprinted Polymers for Promoting the Crystallization of Proteins.
Crystal Growth & Design, 15, (10), 4932-4937, (2015)
   
concanavalin B
Çimen D et al., Molecularly imprinted cryogel columns for Concanavalin A purification from jack bean extract.
Separation Science Plus, 1, (6), 454-463, (2018)
   
conconavalin A
Naraprawatphong R et al., Development of protein-recognition SPR devices by combination of SI-ATRP with biomolecular imprinting using protein ligands.
Molecular Imprinting, 4, (1), 21-30, (2016)
   
condensed lignin marker
Gonzalez-Vogel A et al., Molecularly imprinted conducting polymer for determination of a condensed lignin marker.
Sensors and Actuators B: Chemical, 295, 186-193, (2019)
   
condensed tannins
Martins RO et al., Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources.
Journal of Chromatography A, 1620, Article460977-(2020)
   
Conference report
Pedersen-Bjergaard S et al., Recent progress in sample extraction: A report on the ExTech 2007 Symposium at Alesund, Norway, 3-6 June 2007.
TrAC Trends in Analytical Chemistry, 26, (9), 843-846, (2007)
   
Congo red
Fireman-Shoresh S et al., Induction and detection of chirality in doped sol-gel materials: NMR and circular dichroism studies.
Journal of Materials Chemistry, 17, (6), 536-544, (2007)
   
congo red
Chang ZQ et al., Synthesis and study on adsorption property of congo red molecularly imprinted polymer nanospheres.
Environmental Science, 36, (7), 2564-2572, (2015)
   
Congo red
Liu F et al., A novel bifunctional molecularly imprinted polymer for determination of Congo red in food.
RSC Advances, 5, (29), 22811-22817, (2015)
   
Congo red
Wei ST et al., Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions.
Journal of Hazardous Materials, 294, 168-176, (2015)
   
congo red
Yang XC et al., Preparation of magnetic imprinted graphene oxide composite for catalytic degradation of Congo red under dark ambient condition.
Water Science & Technology, 76, (7), 1676-1686, (2017)
   
congo red
Harsini NN et al., Synthesis of Molecularly Imprinted Polymer on Magnetic Core-Shell Silica Nanoparticles for Recognition of Congo Red.
Eurasian Journal of Analytical Chemistry, 13, (3), ArticleNoem20-(2018)
   
COPA
Zhang SZ et al., Preparation of cholesterol imprinted polymerized organogel and selectivity adsorption ability.
Acta Polymerica Sinica, (4), 390-394, (2011)
   
copper
Schiller A et al., Highly cross-linked polymers containing N,N,N-chelate ligands for the Cu(II)-mediated hydrolysis of phosphoesters.
Inorganic Chemistry, 44, (18), 6482-6492, (2005)
   
copper
Xiao L et al., Preparation of surface ion imprinting magnetic chitosan nanoparticles and adsorption of Cu(II) ions.
Ion Exchange and Adsorption, 24, (3), 193-199, (2008)
   
copper
Naeimi H et al., Designable Metal/PMO Nanocomposite and Preparation by a Surface Imprinting Technique Combined with a Sol-Gel Process for Catalytic Click Reaction.
Bulletin of the Chemical Society of Japan, 89, (2), 212-219, (2016)
   
copper-carnosine
Okutucu B et al., Different approaches to synthesize carnosine selective imprinted polymers.
Materials Science and Engineering: C, 32, (5), 1174-1178, (2012)
   
copper complex
Sun Y et al., Adsorption properties and recognition mechanisms of a novel surface imprinted polymer for selective removal of Cu(II)-citrate complexes.
Journal of Hazardous Materials, 424, Article127735-(2022)
   
copper-2,2-dipyridyl
Zheng N et al., Molecular recognition characteristics of Cu complex imprinted polymer.
Acta Chimica Sinica, 59, (10), 1572-1576, (2001)
   
copper ion
Nishide H et al., Selective adsorption of metal ions on crosslinked poly(vinylpyridine) resin prepared with a metal ion as a template.
Chemistry Letters, 5, (2), 169-174, (1976)
   
copper ion
Kato M et al., Metal-ion adsorption on poly(1-vinylimidazole) resins prepared by γ-irradiation with template metal-ion.
Kobunshi Ronbunshu, 37, (10), 647-650, (1980)
   
copper ion
Inoue K et al., Selectivity series in the adsorption of metal-ions on a resin prepared by crosslinking copper(II)-complexed chitosan.
Chemistry Letters, 17, (8), 1281-1284, (1988)
   
copper ion
Harkins DA et al., Preparation of site-selective ion-exchange resins.
Separation Science and Technology, 26, (3), 345-354, (1991)
   
copper ion
Kido H et al., Metal-ion complexation behavior of resins prepared by a novel template polymerization technique.
Analytical Sciences, 8, (6), 749-753, (1992)
   
copper ion
Yu KY et al., Metal ion-imprinted microspheres prepared by reorganization of the coordinating groups on the surface.
Analytical Sciences, 8, (5), 701-703, (1992)
   
copper ion
Kido H et al., Metal-ion complexation equilibria of ion-exchange resins prepared by a surface template polymerization.
Kobunshi Ronbunshu, 50, (5), 403-410, (1993)
   
copper ion
Maeda M, Surface template polymerization - a new preparation method to molecularly imprinted resins.
Journal of Japan Oil Chemists Society, 43, (11), 921-926, (1994)
   
copper ion
Maeda M et al., Template-dependent metal adsorptivity of dialkyl phosphate-type resins prepared by surface template polymerization technique.
Analytical Sciences, 10, (1), 113-115, (1994)
   
copper ion
Murata M et al., Metal ion selectivity of surface templated resins carrying phosphate groups.
Analytical Science &Technology, 8, (4), 529-534, (1995)
   
copper ion
Tsukagoshi K et al., Metal-ion imprinted resin prepared using an interaction at the aqueous-organic interface and its characterization.
Bunseki Kagaku, 45, (11), 975-986, (1996)
   
copper ion
Efendiev AA, Macromolecular metal complexes with memory to the catalyzed substrate.
Macromolecular Symposia, 131, (1), 29-38, (1998)
   
copper ion
Huang WQ et al., Adsorption selectivity for Cu2+, Ni2+, Co2+ ions using crosslinking chitosan resins imprinted by metal ions.
Chinese Journal of Reactive Polymers, 8, (Z1), 6-11, (1999)
   
copper ion
Yang DH, The Synthesis and Adsorption Properties of Metal Ion imprinted Microspheres.
Journal of Taiyuan University of Technology, 30, (5), 502-504, (1999)
   
copper ion
Book chapter, Burleigh MCet al., Stepwise Assembly of Surface Imprint Sites on MCM-41 for Selective Metal Ion Separations,
In: Nuclear Site Remediation, Eller PG, Heineman WR (Eds.) American Chemical Society: Washington, DC, 146-158, (2000)
   
copper ion
Dai S et al., Hierarchically imprinted sorbents for the separation of metal ions.
Journal of the American Chemical Society, 122, (5), 992-993, (2000)
   
copper ion
Wang XD et al., The preparation of globular copper(II) template condensation polymer and its behavior of the selective adsorption.
Chinese Journal of Analytical Chemistry, 28, (7), 805-809, (2000)
   
copper ion
He JH et al., Imprinting of coordination geometry in ultrathin films via the surface sol-gel process.
Chemistry Letters, 30, (9), 850-851, (2001)
   
copper ion
Wu JM et al., Selective adsorption of copper ion by copper ion templated alginate gel.
Chinese Journal of Analytical Chemistry, 30, (12), 1414-1417, (2002)
   
copper ion
Baba Y et al., Molecularly Imprinted Mesoporous Silicas for the Separation of Metal Ions by Sol-Gel Method.
Journal of Ion Exchange, 14, (Supplement), 161-164, (2003)
   
copper ion
Liu CP et al., Study on the adsorption property of copper (II) imprinted chelating resin for metal ions.
Ion Exchange and Adsorption, 19, (6), 504-510, (2003)
   
copper ion
Yamashita K et al., Two-step imprinting procedure of inter-penetrating polymer network-type stimuli-responsive hydrogel-adsorbents.
Polymer Journal, 35, (7), 545-550, (2003)
   
copper ion
Kanazawa R et al., Preparation of thermosensitive microgel adsorbent for quick adsorption of heavy metal ions by a temperature change.
Journal of Chemical Engineering of Japan, 37, (6), 804-807, (2004)
   
copper ion
Kanazawa R et al., Preparation of molecular imprinted thermosensitive gel adsorbents and adsorption/desorption properties of heavy metal ions by temperature swing.
Journal of Chemical Engineering of Japan, 37, (1), 59-66, (2004)
   
copper ion
Proceeding, Tokuyama H et al, Adsorption/desorption of target metal on molecular imprinted thermosensitive gel adsorbent: equilibrium isotherms and kinetics behavior,
In: Asian Pacific Confederation of Chemical Engineering congress program and abstracts, 670-677, (2004)
   
copper ion
Fujiwara I, Preparation of anion-imprinted resin by a surface-imprinting polymerization method and its use for chemical separation.
Bunseki Kagaku, 54, (3), 243-244, (2005)
   
copper ion
Tokuyama H et al., Development and performance of a novel molecular imprinted thermosensitive gel with a cross-linked chelating group for the temperature swing adsorption of a target metal.
Journal of Chemical Engineering of Japan, 38, (8), 633-640, (2005)
   
copper ion
Tokuyama H et al., Equilibrium and kinetics for temperature swing adsorption of a target metal on molecular imprinted thermosensitive gel adsorbents.
Separation and Purification Technology, 44, (2), 152-159, (2005)
   
copper ion
Uibel RH et al., Templating of multiple ligand metal ion complexation sites in 8-hydroxyquinoline-modified silica sol-gel materials investigated by in situ Raman spectroscopy.
Analytical Chemistry, 77, (4), 991-1000, (2005)
   
copper ion
Birlik E et al., Preconcentration of copper using double-imprinted polymer via solid phase extraction.
Analytica Chimica Acta, 565, (2), 145-151, (2006)
   
copper ion
Wang S et al., Selective solid-phase extraction of trace copper ions in aqueous solution with a Cu(II)-imprinted interpenetrating polymer network gel prepared by ionic imprinted polymer (IIP) technique.
Microchimica Acta, 154, (1-2), 73-80, (2006)
   
copper ion
Zhu JH et al., Preparation and characterization of Cu(II)-molecularly imprinted polymer.
Chemical Journal of Chinese Universities, 27, (10), 1853-1855, (2006)
   
copper ion
An FQ et al., Studies on preparation of ion-imprinted polyethyleneimine on silica gel particles and binding properties for metal ions.
Acta Polymerica Sinica, (4), 366-373, (2007)
   
copper ion
Baghel A et al., Synthesis and characterization of metal ion imprinted nano-porous polymer for the selective recognition of copper.
Biosensors and Bioelectronics, 22, (12), 3326-3334, (2007)
   
copper ion
Bi X et al., Complexation of Copper Ions with Histidine-Containing Tripeptides Immobilized on Solid Surfaces.
Langmuir, 23, (22), 11067-11073, (2007)
   
copper ion
Bi XY et al., Preparation of Ion-Imprinted Silica Gels Functionalized with Glycine, Diglycine, and Triglycine and Their Adsorption Properties for Copper Ions.
Langmuir, 23, (15), 8079-8086, (2007)
   
copper ion
Dakova I et al., Solid phase selective separation and preconcentration of Cu(II) by Cu(II)-imprinted polymethacrylic microbeads.
Analytica Chimica Acta, 584, (1), 196-203, (2007)
   
copper ion
Gao BJ et al., Novel surface ionic imprinting materials prepared via couple grafting of polymer and ionic imprinting on surfaces of silica gel particles.
Polymer, 48, (8), 2288-2297, (2007)
   
copper ion
Li F et al., Preparation of silica-supported porous sorbent for heavy metal ions removal in wastewater treatment by organic-inorganic hybridization combined with sucrose and polyethylene glycol imprinting.
Analytica Chimica Acta, 585, (2), 211-218, (2007)
   
copper ion
Li ZM et al., Preparation for nitrocellulose membrane-poly (vinyl alcohol)-ionic imprinting and its application to determine trace copper by room temperature phosphorimetry.
Analytica Chimica Acta, 589, (1), 44-50, (2007)
   
copper ion
Liu Z et al., Preparation and Adsorbability of Copper Ion Imprinted Polymer.
Journal of GuiLin University of Technology, 27, (1), 106-110, (2007)
   
copper ion
Shamsipur M et al., A stoichiometric imprinted chelating resin for selective recognition of copper(II) ions in aqueous media.
Analytica Chimica Acta, 599, (2), 294-301, (2007)
   
copper ion
Book chapter, Xu Jet al., Preparation of Molecularly Imprintin Sensor for Cuprum (II) Based on Quartz Crystal Microbalance,
In: Piezoelectricity, Acoustic Waves and Device Applications, Wang J, Chen WQ (Eds.) World Scientific: 328-331, (2007)
   
copper ion
Zhu LL et al., Study on preparation and adsorbability of Cu2+ imprinted polymers from emulsion polymerization.
Journal of Fuzhou University (Natural Science Edition), 35, (5), 754-759, (2007)
   
copper ion
Dhakal RP et al., Planarity-recognition enhancement of N-(2-pyridylmethyl)chitosan by imprinting planar metal ions.
Reactive and Functional Polymers, 68, (11), 1549-1556, (2008)
   
copper ion
Hou LX et al., Preparation and characteristics of a novel Cu(II)-imprinted epoxy resin-based monolithic polymer.
Spectroscopy and Spectral Analysis, 28, (10), 2446-2449, (2008)
   
copper ion
Kang JW et al., Studies on preparation and characteristics of a novel copper(II)-Schiff base imprinted membrane.
Journal of Northwest Normal University (Natural Science), 44, (5), 48-52, (2008)
   
copper ion
Liu YQ et al., Preparation of Cu2+ Selective Electrode by Silica Matrix Molecular Imprinting Technology.
Chemical Research, 19, (3), 70-73, (2008)
   
copper ion
Qi JY et al., Selective removal of Cu(II) from contaminated water using molecularly imprinted polymer.
Frontiers of Chemical Engineering in China, 2, (1), 109-114, (2008)
   
Copper ion
Ren YM et al., Adsorption character for removal Cu(II) by magnetic Cu(II) ion imprinted composite adsorbent.
Journal of Hazardous Materials, 158, (1), 14-22, (2008)
   
copper ion
Zhong SA et al., Preparation and Permeation Characteristics of Copper Ion Imprinted Polymer Membranes.
Chinese Journal of Applied Chemistry, 25, (8), 989-991, (2008)
   
copper ion
Zhong SA et al., Preparation and adsorption behaviors of Cu(II) ion-imprinted polymers.
Journal of Chongqing University (English Edition), 7, (1), 23-27, (2008)
   
copper ion
Buica GO et al., Voltammetric Sensing of Mercury and Copper Cations at Poly(EDTA-like) Film Modified Electrode.
Electroanalysis, 21, (1), 77-86, (2009)
   
copper ion
Chen AH et al., The chemically crosslinked metal-complexed chitosans for comparative adsorptions of Cu(II), Zn(II), Ni(II) and Pb(II) ions in aqueous medium.
Journal of Hazardous Materials, 163, (2-3), 1068-1075, (2009)
   
copper ion
Dam HA et al., Selective Copper(II) Sorption Behavior of Surface-Imprinted Core-Shell-Type Polymethacrylate Microspheres.
Industrial & Engineering Chemistry Research, 48, (12), 5679-5685, (2009)
   
Copper ion
Guo JJ et al., On-line Selective Solid-Phase Extraction of Copper with a Surface Ion Imprinted Silica Gel Sorbent.
Journal of the Chinese Chemical Society, 56, (4), 763-770, (2009)
   
copper ion
Hoai NT et al., Synthesis, structure, and selective separation behavior of copper-imprinted microporous polymethacrylate beads.
AIChE Journal, 55, (12), 3248-3254, (2009)
   
Copper ion
Otero-Romaní J et al., Inductively coupled plasma-optical emission spectrometry/mass spectrometry for the determination of Cu, Ni, Pb and Zn in seawater after ionic imprinted polymer based solid phase extraction.
Talanta, 79, (3), 723-729, (2009)
   
copper ion
Ren YM et al., Characters of Cu(II) ion imprinted magnetic composite adsorbent.
Materials Science and Technology, 17, (6), 801-805, (2009)
   
copper ion
Ren YM et al., Characters of Cu (II) ion imprinted magnetic composite adsorbent.
Material Science and Technology, 17, (6), 801-805, (2009)
   
copper ion
Ren YM et al., Preparation of Cu (II) ion imprinted magnetic composite adsorbent.
Material Science and Technology, 17, (5), 680-685, (2009)
   
copper ion
Ren YM et al., Preparation of Cu (II) ion imprinted magnetic composite adsorbent.
Materials Science and Technology, 17, (5), 680-685, (2009)
   
copper ion
Shen YY et al., Study on Synthesis and Properties of Cu(II) Ion-Imprinted Polymer by Silica Gels.
Journal of Anqing Teachers College (Natural Science Edition), 15, (1), 75-77, (2009)
   
copper ion
Book chapter, Shofiyani Aet al., Enhancement of Cu(II) Adsorption Capacity by Surface-Ionic Imprinted Biosorbent,
In: Chemical, Biological and Environmental Engineering, Li K (Ed.) World Scientific: 231-234, (2009)
   
copper ion
Singh DK et al., Synthesis of a New Cu(II)-Ion Imprinted Polymer for Solid Phase Extraction and Preconcentration of Cu(II).
Chromatographia, 70, (11), 1539-1545, (2009)
   
copper ion
Tobiasz A et al., Cu(II)-imprinted styrene-divinylbenzene beads as a new sorbent for flow injection-flame atomic absorption determination of copper.
Microchemical Journal, 93, (1), 87-92, (2009)
   
copper ion
Wang ZQ et al., An imprinted organic–inorganic hybrid sorbent for selective separation of copper ion from aqueous solution.
Journal of Materials Science, 44, (10), 2694-2699, (2009)
   
copper ion
Hoai NT et al., Batch and column separation characteristics of copper-imprinted porous polymer micro-beads synthesized by a direct imprinting method.
Journal of Hazardous Materials, 173, (1-3), 462-467, (2010)
   
Copper ion
Jo SH et al., Continuous separation of copper ions from a mixture of heavy metal ions using a three-zone carousel process packed with metal ion-imprinted polymer.
Journal of Chromatography A, 1217, (45), 7100-7108, (2010)
   
copper ion
Khajeh M et al., Development of a Selective Molecularly Imprinted Polymer-Based Solid-Phase Extraction for Copper from Food Samples.
Biological Trace Element Research, 135, (1), 325-333, (2010)
   
copper ion
Ng SM et al., Demonstration of a simple, economical and practical technique utilising an imprinted polymer for metal ion sensing.
Microchimica Acta, 169, (3), 303-311, (2010)
   
copper ion
Shamsipur M et al., Synthesis and characterization of novel ion-imprinted polymeric nanoparticles for very fast and highly selective recognition of copper(II) ions.
Talanta, 83, (2), 674-681, (2010)
   
copper ion
Su L et al., Preparation and Property of Microspheric Cu(II) Ion Imprinted Polymer.
Journal of Anqing Teachers College (Natural Science Edition), 16, (1), 81-84, (2010)
   
copper ion
Wang LL et al., Study on adsorption behavior and mechanism of copper(II) ion imprinted polymer.
Metallurgical Analysis, 30, (2), 17-22, (2010)
   
copper ion
Wu GH et al., Synthesis of ion-imprinted mesoporous silica gel sorbent for selective adsorption of copper ions in aqueous media.
Microchimica Acta, 171, (1), 203-209, (2010)
   
copper ion
Proceeding, Asgharia K et al, Selective solid-phase extraction of Cu2+ from aqueous solutions by using surface imprinting technique,
(2011)
   
copper ion
Proceeding, Ashkenani H et al, Synthesis of a New Ion Imprinted Polymer for Solid Phase Extraction and Preconcentration of Copper,
(2011)
   
copper ion
Baba Y et al., A Quantitative Consideration for Template Effect of Palladium(II) Using N-[Pyridylmethyl] Chitosan.
Solvent Extraction and Ion Exchange, 29, (3), 509-517, (2011)
   
copper ion
Proceeding, Baramakeh L et al, Synthesis, characterization and analytical applications of CU(II)-ion imprinted polymer,
(2011)
   
copper ion
Chen CY et al., Biosorption of Cu(II), Zn(II), Ni(II) and Pb(II) ions by cross-linked metal-imprinted chitosans with epichlorohydrin.
Journal of Environmental Management, 92, (3), 796-802, (2011)
   
copper ion
Chen JH et al., Cu(II)-imprinted porous film adsorbent Cu-PVA-SA has high uptake capacity for removal of Cu(II) ions from aqueous solution.
Desalination, 277, (1-3), 265-273, (2011)
   
copper ion
Jiang Y et al., Effect of solvent/monomer feed ratio on the structure and adsorption properties of Cu2+-imprinted microporous polymer particles.
Chemical Engineering Journal, 166, (1), 435-444, (2011)
   
copper ion
Jo SH et al., Development of a four-zone carousel process packed with metal ion-imprinted polymer for continuous separation of copper ions from manganese ions, cobalt ions, and the constituent metal ions of the buffer solution used as eluent.
Journal of Chromatography A, 1218, (33), 5664-5674, (2011)
   
copper ion
Khajeh M et al., Imprinted polymer particles for preconcentration of copper from water and biological samples.
Environmental Chemistry Letters, 9, (2), 177-183, (2011)
   
copper ion
Khajeh M et al., A pre-concentration procedure employing a new imprinted polymer for the determination of copper in water.
International Journal of Environmental Analytical Chemistry, 91, (13), 1310-1319, (2011)
   
copper ion
Kumar D et al., Molecularly imprinted polymer-modified electrochemical sensor for simultaneous determination of copper and zinc.
Advanced Materials Letters, 2, (4), 294-297, (2011)
   
copper ion
Latif U et al., Dual and tetraelectrode QCMs using imprinted polymers as receptors for ions and neutral analytes.
Analytical and Bioanalytical Chemistry, 400, (8), 2507-2515, (2011)