Abstract: Microcontact imprinting of cells often involves the deposition of a polymer solution onto a monolayer cell stamp, followed by solvent evaporation. Thus, the concentration of the polymer may play an important role in the final morphology and efficacy of the imprinted film. In this work, various concentrations of poly(ethylene-co-vinyl alcohol) (EVAL) were dissolved in dimethyl sulfoxide (DMSO) for the microcontact imprinting of algae on an electrode. Scanning electron microscopy and fluorescence spectrometry were used to characterize the surface morphology and recognition capacity of algae to the algae-imprinted cavities. The readsorption of algae onto algae-imprinted EVAL thin films was quantified to obtain the EVAL concentration that maximized algal binding. Finally, the power and current density of an algal biofuel cell with the algae-imprinted EVAL-coated electrode were measured and found to be approximately double those of such a cell with a Pt/indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) electrode
Template and target information: algae, algal cells, Chlamydomonas reinhardtii