Abstract: To realize selective mineralization of low-level chlorophenols (CPs) in the presence of high-level ordinary pollutants, molecularly imprinted polymers (MIPs) coated photocatalyst was prepared using substrate analog as template. The pseudo-template imprinted photocatalysts showed rapid decomposition ability toward a group of CPs. Based on the complete dechlorination and spectrophotometry, a new method was proposed to detect the total organochlorine on CPs in water samples. The method showed good linearity when the concentrations of the total organochlorine on CPs is in the range of 12.0 - 200.0 μmol L-1. The detection limit is 1 μmol L-1 for this method. When this method was applied to measure the total organochlorine of the CPs in both tap water and river water samples, an average recovery ranged from 96.3% to 105.1% was obtained with RSD values less than 5%. In this green and simple method, the common inorganic ions in water showed no interference for the detection. The determination of the total organochlorine on the CPs might be used for estimation of the toxicity and the persistence of the water samples
Template and target information: 2,4-dinitrophenol, 2,4-DNP, chlorophenols, CPs, analogue template
Author keywords: Molecularly imprinted photocatalysts, Chlorophenols, Selective mineralization, Dechlorination, Spectrophotometry, Total organochlorine