Abstract: The influence of polymer matrix on the extraction efficiency for Cu(II) and selectivity against metal ions such as Ni(II), Cd(II), Pb(II) of Cu(II) imprinted copolymer gels was described. The functional monomers investigated include the weakly basic 4-vinylpyridine (4-VP) and its mixure with the acidic and hydrogen binding methacrylic acid. Copolymer gels were prepared by dispersion cross-linking copolymerization using Cu(II)-4-(2-pyridylazo)resorcinol complex, Cu(II), or 4-(2-pyridylazo)resorcinol as templates. The chemical structure and morphology of the Cu(II)-imprinted microbeads are defined using elemental analysis, Fourier transform infrared spectroscopy, and scanning electron microscopy. Extraction efficiencies of newly synthesized sorbents were studied by batch procedure. The prepared copolymer gel with 4-VP as monomer and Cu(II)-4-(2-pyridylazo)resorcinol complex has higher capacity and selectivity toward Cu(II) than the copolymer gels prepared using the mixture of methacrylic acid and 4-VP. This new sorbent can be used as an effective SPE material for the highly selective preconcentration and separation of Cu(II) in sea water samples. It shows high mechanical and chemical stability
Template and target information: copper ion, Cu(II)
Author keywords: copper, Electrothermal atomic absorption spectrometry, Ion-imprinted copolymer microbeads, Sea water, Solid-phase extraction