Abstract: A new fluorescent probe based on graphitic carbon nitride (g-C3N4) combined with molecularly imprinted silica was successfully fabricated and used to selectively recognize chlortetracycline (CTC). The g-C3N4 used in this study has the characteristics of low toxicity and high chemical stability. This synthetic composite was characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, UV spectroscopy, X-ray diffraction, and fluorescence spectroscopy. The material was used to detect CTC by the fluorescence quenching technique. The fluorescence quenching was due to g-C3N4 and the benzene ring of CTC through π-π electron donor-acceptor interaction and electrostatic force. Hydrogen bonds formed between CTC and 3-aminopropyltriethoxysilane during the polymerization process. Eventually, a considerable amount of selective recognition holes were formed in the composite material and could specifically recognize the template molecule CTC. In addition, the probe strategy was successfully applied to milk analysis, and the recoveries ranged from 90.1% to 95.7%, with relative standard deviations of 1.8-2.8%; the detection limit for CTC was 8 ng mL-1. The results indicate that this method combined the sensitivity of fluorescence detection with the excellent selectivity of a molecularly imprinted polymer. The new material can be widely used in the detection of dairy products
Template and target information: chlortetracycline, CTC
Author keywords: Graphitic carbon nitride, molecularly imprinted, π-π electron donor-acceptor interaction, Chlortetracycline