Abstract: In this study, a novel amphiphilic magnetic molecularly imprinted polymers (MMIPs) have been prepared by using Fe3O4 microspheres as the magnetic core, 4-vinyl pyridine (4-VP) and alkenyl glycosides glucose (AGG) as functional co-monomers. Fe3O4 microspheres were directly encapsulated by the polymer without any surface modification in the distillation-precipitation polymerization. The morphology and composition of MMIPs were characterized by X-ray diffraction (XRD), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Binding property and magnetic separation ability were systematically investigated through the equilibrium binding experiments. The feasibility of magnetic molecular imprinted solid phase extraction (MMISPE) was investigated for the selective enrichment of chloroacetamide herbicides from environmental water samples. The developed MMISPE-HPLC method exhibited good linearity (0.1-200 μg L-1), low limit of detection (0.03-0.06 μg L-1), and good precision (RSD < 7%) under the optimized conditions. The introduced MMISPE-HPLC method was successfully used to analyze chloroacetamide herbicides in environmental water samples. Spiked chloroacetamide herbicides recoveries in three water samples ranged from 82.1% to 102.9%. These results indicated that amphiphilic MMIPs were the promising sorbents for the selective enrichment of chloroacetamide herbicides at trace levels from real environmental water samples
Template and target information: butachlor, chloracetamide herbicides, acetochlor, propisochlor, pretilachlor
Author keywords: Amphiphilic magnetic molecularly imprinted polymers, Chloroacetamide herbicides, Magnetic solid phase extraction, water samples