MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Khoddami N, Shemirani F
Article Title: A new magnetic ion-imprinted polymer as a highly selective sorbent for determination of cobalt in biological and environmental samples.
Publication date: 2016
Journal: Talanta
Volume: 146
Page numbers: 244-252.
DOI: 10.1016/j.talanta.2015.08.046
Alternative URL: http://www.sciencedirect.com/science/article/pii/S0039914015302666

Abstract: A magnetic ion-imprinted polymer (Fe3O4@TiO2@SiO2-IIP) functionalized with -NH groups for the selective determination of Co(II) ions from environmental and biological samples is presented. This sorbent was synthesized by surface imprinting technique combined with sol-gel process using 3-(2-aminoethylamino) propyltrimethoxysilane (AAPTS) as a functional ligand, tetraethyl orthosilicate as across-linking agent, and Co(II) ion as the template. The prepared magnetic ion-imprinted polymer was characterized by infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), dynamic light scattering (DLS), and X-ray diffraction (XRD). Fe3O4@TiO2@SiO2-IIP showed higher capacity and selectivity than that of Fe3O4@TiO2@SiO2-NIP. The important parameters influencing the recovery such as pH, the volume and eluent concentration, contact time, and the amount of sorbent on extraction percentage of Fe3O4@TiO2@SiO2-IIP were studied and optimized. The linear range (LR), relative standard deviation(RSD) and limit of detection (LOD=3 Sb/m) for flame atomic absorption spectrometric determination of Co(II) ion, after its selective extraction by the prepared IIP polymer, were evaluated as 1-130 μg L-1, 1.22% and 0.15 μg L-1, respectively. The maximum capacity of Fe3O4@TiO2@SiO2-IIP and Fe3O4@TiO2@SiO2-NIP is 35.21 mg g-1 and 10.34 mg g-1, respectively. The separation factor of Fe3O4@TiO2@SiO2-IIP for Co(II)/Pb(II), Co(II)/Ni(II), and Co(II)/Cd(II) are 41.17, 79.74, and 56.48, respectively. In addition, the spent magnetic ion-imprinted polymer can be refreshed by simply washing with an aqueous HNO3 solution, and there is no significant decrease in adsorption capacity after a test of upto seven cycles, demonstrating that the Fe3O4@ TiO2@SiO2-IIP is stable and reusable
Template and target information: cobalt ion, Co(II)
Author keywords: Surface imprinting technique, sol-gel process, Core-shell, Magnetic ion-imprinted polymer


  mipdatabase.com logo imprinters do it in bulk shirt  Science Teacher peptide mug  Perpetual student shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner