Abstract: A new piezoelectric quartz crystal sensor using molecularly imprinted polymers (MIPs) as recognition element has been prepared for the fast detection of carbaryl. The MIPs were prepared by precipitation polymerization in ACN, and then the polymer particles were fixed on the surface of the electrode. Computer simulation technology was employed to investigate the interaction between carbaryl and methacrylic acid (MAA) for elucidating the recognition mechanism. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were employed to evaluate the obtained imprinted polymer particles and the MIP sensitive film coated on the electrode. The sensor developed exhibits a liner relationship between the frequency shift and carbaryl concentration in the range of 10-1000 ng/mL (y = 0.139 x + 2.99, r = 0.9981), and the detection limit was 12.5 ng/mL (S/N = 3). Furthermore, the influencing factors were investigated, and the experiments indicated that the obtained sensor has high sensitivity, excellent selectivity, good reproducibility, and reusable property
Template and target information: carbaryl
Author keywords: Carbaryl, detection, Molecularly imprinted polymers, Piezoelectric crystal sensor