Abstract: Abstract: A computational approach was developed for screening functional monomers for rational design of molecularly imprinted polymer (MIP) membranes. It was based on a comparison of the binding energy of complexes between a template and various functional monomers. According to the results of theoretical calculations, MIP membranes with chlorogenic acid as a template were prepared with a UV irradiation polymerization method, using 4-vinylpyridine as a functional monomer and N,N'-methylenebisacrylamide as a crosslinker, with poly(vinylidene fluoride) microfiltration membranes as the support. Membranes covered with a thin layer of imprinted polymer selective to chlorogenic acid were then obtained and tested using the equilibrium-adsorption method. The high affinity of these synthetic membranes to chlorogenic acid, together with their straightforward and inexpensive preparation, provides a good basis for the development of applications of imprinted polymers in separation processes such as solid-phase extraction. Copyright © 2011 Society of Chemical Industry
Template and target information: chlorogenic acid
Author keywords: molecularly imprinted polymer membranes, Scatchard analysis, chlorogenic acid, Hartree-Fock method, binding energy