Abstract: Ion-imprinting concept and polysaccharide incorporated sol-gel process were applied to the preparation of a new silica-supported organic-inorganic hybrid sorbent for selective separation of Cd(II) from aqueous solution. In the prepared shell/core composite sorbent, covalently surface coating on the supporting silica gel was achieved by using a Cd(II)-imprinting sol-gel process starting from an inorganic precursor, γ-glycidoxypropyltrimethoxysiloxane (GPTMS), and a functional biopolymer, chitosan (CS). The sorbent was prepared through self-hydrolysis of GPTMS, self-condensation and co-condensation of silanol groups (Si-OH) from siloxane and silica gel surface, in combination with in situ covalent cross-linking of CS with partial amine shielded by Cd(II) complexation. Extraction of the imprinting molecules left a predetermined arrangement of ligands and tailored binding pockets for Cd(II). The prepared sorbent was characterized by using X-ray energy dispersion spectroscopy (EDX), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Batch experiments were conducted to study the sorption performance by removal of Cd(II) when present singly or in binary system, an aqueous Cd(II) and Zn(II) mixture. The ion-imprinted composite sorbent offered a fast kinetics for the sorption of Cd(II) and the maximum capacity was 1.14 mmol g-1. The uptake capacity of the imprinted sorbent and the selectivity coefficient were much higher than that of the non-imprinted sorbent. The imprinted sorbent exhibited high reusability. The prepared functional sorbent was shown to be promising for the preconcentration of cadmium in environmental and biological samples
Template and target information: cadmium ion, Cd(II)
Author keywords: cadmium, chitosan, imprinting, sol-gel, sorbent, Selective