Abstract: Dummy molecularly imprinted polymer (DMIP) for climbazole (CBZ) was synthesized for the first time employing miconazole (MNZ) as the dummy template together with methacrylic acid (MAA) monomer, ethylene glycol dimethacrylate (EGDMA) cross-linker and acetonitrile (ACN) porogen. The selectivity and capacity of the prepared MNZ-DMIP was estimated for CBZ by high-performance liquid chromatography (HPLC) and equilibrium binding experiments. Imprinting factor (IF) with a value of 7.0 was achieved, much higher than the CBZ templated MIP (IF = 3.5). Heterogeneous binding sites were found in the MNZ-DMIP, the corresponding saturation capacity and dissociation constant for the high and low affinity binding sites were 6.761 μmol g-1 and 0.3027 mmol L-1, 43.60 μmol g-1 and 4.055 mmol L-1, respectively. High efficient method based on dummy molecularly imprinted solid phase extraction (DMISPE) coupled with HPLC was established for the selective enrichment of CBZ in river and tap water using MNZ-DMIP as sorbent. DMISPE conditions including sample loading pH/volume, selective washing and elution solvents were carefully optimized. The developed method showed good recoveries (82.3-96.2%) and repeatability (RSDs 0.6-4.9%, n = 5) for samples spiked at three different concentration levels (0.2, 1.0 and 5.0 μg L-1). The detection limit was determined as 0.012 μg L-1. The results demonstrated good potential of this method for sample pretreatment of CBZ in environmental water samples
Template and target information: climbazole
Author keywords: Climbazole, Dummy molecularly imprinted polymer, Solid-phase extraction