Abstract: A new porous sorbent for wastewater treatment of metal ions was synthesized by covalent grafting of molecularly imprinted organic-inorganic hybrid on silica gel. With sucrose and polyethylene glycol 4000 (PEG 4000) being synergic imprinting molecules, covalent surface coating on silica gel was achieved by using polysaccharide-incorporated sol-gel process starting from the functional biopolymer, chitosan and an inorganic epoxy-precursor, gamma-glycidoxypropyltrimethoxysiloxane (GPTMS) at room temperature. The prepared porous sorbent was characterized by using simultaneous thermogravimetry and differential scanning calorimeter (TG/DSC), scanning electron microscopy (SEM), nitrogen adsorption porosimetry measurement and X-ray diffraction (XRD). Copper ion, Cu2+, was chosen as the model metal ion to evaluate the effectiveness of the new biosorbent in wastewater treatment. The influence of epoxy-siloxane dose, buffer pH and co-existed ions on Cu2+ adsorption was assessed through batch experiments. The imprinted composite sorbent offered a fast kinetics for the adsorption of Cu2+. The uptake capacity of the sorbent imprinted by two pore-building components was higher than those imprinted with only a single component. The dynamic adsorption in column underwent a good elimination of Cu2+ in treating electric plating wastewater. The prepared composite sorbent exhibited high reusability. Easy preparation of the described porous composite sorbent, absence of organic solvents, cost-effectiveness and high stability make this approach attractive in biosorption
Template and target information: copper ion, Cu(II)
Author keywords: Organic-inorganic, Hybrid, chitosan, imprinting, sol-gel, sorbent, silica gel, Porous