Abstract: A novel colorimetric sensor for cholesterol assay was constructed by combining a molecular imprinting technique with photonic crystals. The molecularly imprinted photonic hydrogel (MIPH) film was prepared by a non-covalent, self-assembly approach using cholesterol as a template molecule, and exhibited a highly ordered three-dimensional macroporous structure characterized by scanning electron microscopy under the optimized imprinting conditions. Various factors affecting rebinding of cholesterol are discussed along with recognition specificity studies on its analogues of stigmasterol and ergosterol through estimation of UV-Vis and electrochemical impedance spectroscopy. The MIPH film generated a significantly readable optical signal directly self-reporting within less than 2 min upon binding cholesterol. The colorimetric measurement of cholesterol concentration strongly relies on the fact that the blue shift effect of the Bragg diffraction peak of the MIPH is gradually enlarged with the increase of cholesterol amounts. The detection level approached 10-13 g mL-1, which is comparable to that of fluorescence measurements. The simultaneous possession of high selectivity, high sensitivity, high stability, easy operation and being label-free enables this sensor to be potentially applicable for rapid on-site detection of trace cholesterol
Template and target information: cholesterol