MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Xu ZF, Deng PH, Tang SP, Kuang DZ, Zhang FX, Li JH
Article Title: Preparation of 2D molecularly imprinted materials based on mesoporous silicas via click reaction.
Publication date: 2014
Journal: Journal of Materials Chemistry B
Volume: 2
Issue: (47)
Page numbers: 8418-8426.
DOI: 10.1039/C4TB01217H

Abstract: The two-dimensional (2D) molecular imprinting approach has attracted extensive research interest in recent years due to its potential advantages such as simple construction, fast template removal and rapid mass transfer. In this study, a new 2D imprinting approach based on the combination of mesoporous silica materials and molecular imprinting technology is reported. 2D molecularly imprinted materials (MIMs) for cholesterol were prepared by using cholesterol as the template, azide modified β-cyclodextrin (azide-β-CD) as the functional monomer and alkynyl-modified SBA-15 (alkyne-SBA-15) as the skeleton. In this method, azide-β-CD molecules were first assembled around the templates by formation of template-monomer complexes, and thus the mutual positions of azide-β-CD molecules were fixed. Then, azide-β-CD molecules were anchored to the walls of the nano-pores of SBA-15 via click chemistry. After removal of the template molecules, the resulting cavities, i.e., recognition sites were formed in the nano-pores of mesoporous silicas. The synthesized MIM was characterized by FT-IR, X-ray diffraction (XRD), elemental analysis (EA), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and so on. Binding kinetic experiments demonstrated that the 2D imprinting approach can improve site accessibility for the template effectively. The 2D MIM exhibited binding affinity and specificity for the template, as revealed by equilibrium binding experiments. When using MIM as a stationary phase for HPLC, baseline separation of cholesterol from other compounds can be achieved. In addition, the use of 2D imprinting significantly reduced the peak broadening and tailing
Template and target information: cholesterol


  Periodic table Soup - the chemical formula for soup apron  Periodic table Bag bag    magnet featuring the template Cholesterol






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner