Abstract: A colorimetric sensor array composed of seven molecularly imprinted polymers was shown to accurately identify seven different aromatic amines. The response patterns were systematically classified using linear discriminant analysis with 94% classification accuracy. Analyses of the response patterns of the analytes to the imprinted polymer array suggest that the different selectivity patterns, although subtle, appear to arise from the imprinting process. The molecular imprinting process enabled the rapid preparation of the polymers in the array from ethylene glycol dimethacrylate and methacrylic acid (80:20) in the presence of six different template molecules plus a blank nonimprinted polymer. The response of the imprinted polymer array was coupled to a colorimetric response, using a dye displacement strategy. A benzofurazan dye was selected and shown to give an accurate measure of the binding properties of the imprinted polymer array to all seven analytes. The colorimetric response also enabled the inclusion of analytes that are not spectroscopically active and were not among the original analytes that were used as template molecules. This broadens the potential utility of the imprinted polymer sensor array strategy to a wider range of analytes and applications
Template and target information: (+/-)-propranolol, (+)-pseudoephedrine, (2)-ephedrine, (R)-(2)-2-phenylglycinol, benzylamine, R-methylbenzylamine, cyclohexylamine