MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: McClements J, Seumo Tchekwagep PM, Vilela Strapazon AL, Canfarotta F, Thomson A, Czulak J, Johnson RE, Novakovic K, Losada-Pérez P, Zaman A, Spyridopoulos I, Crapnell RD, Banks CE, Peeters M
Article Title: Immobilization of Molecularly Imprinted Polymer Nanoparticles onto Surfaces Using Different Strategies: Evaluating the Influence of the Functionalized Interface on the Performance of a Thermal Assay for the Detection of the Cardiac Biomarker Troponin I.
Publication date: 2021
Journal: ACS Applied Materials & Interfaces
Volume: 13
Issue: (24)
Page numbers: 27868-27879.
DOI: 10.1021/acsami.1c05566

Abstract: We demonstrate that a novel functionalized interface, where molecularly imprinted polymer nanoparticles (nanoMIPs) are attached to screen-printed graphite electrodes (SPEs), can be utilized for the thermal detection of the cardiac biomarker troponin I (cTnI). The ultrasensitive detection of the unique protein cTnI can be utilized for the early diagnosis of myocardial infraction (i.e., heart attacks), resulting in considerably lower patient mortality and morbidity. Our developed platform presents an innovative route to develop accurate, low-cost, and disposable sensors for the diagnosis of cardiovascular diseases, specifically myocardial infraction. A reproducible and advantageous solid-phase approach was utilized to synthesize high-affinity nanoMIPs (average size = 71 nm) for cTnI, which served as synthetic receptors in a thermal sensing platform. To assess the performance and commercial potential of the sensor platform, various approaches were used to immobilize nanoMIPs onto thermocouples or SPEs: dip coating, drop casting, and a covalent approach relying on electrografting with an organic coupling reaction. Characterization of the nanoMIP-functionalized surfaces was performed with electrochemical impedance spectroscopy, atomic force microscopy, and scanning electron microscopy. Measurements from an in-house designed thermal setup revealed that covalent functionalization of nanoMIPs onto SPEs led to the most reproducible sensing capabilities. The proof of application was provided by measuring buffered solutions spiked with cTnI, which demonstrated that through monitoring changes in heat transfer at the solid-liquid interface, we can measure concentrations as low as 10 pg L-1, resulting in the most sensitive test of this type. Furthermore, preliminary data are presented for a prototype platform, which can detect cTnI with shorter measurement times and smaller sample volumes. The excellent sensor performance, versatility of the nanoMIPs, and reproducible and low-cost nature of the SPEs demonstrate that this sensor platform technology has a clear commercial route with high potential to contribute to sustainable healthcare
Template and target information: cardiac troponin I, cTnI
Author keywords: Biosensors, heat-transfer method (HTM), cardiac biomarkers, cardiac troponins, molecularly imprinted polymer nanoparticles (nanoMIPs), additive manufacturing, cardiovascular diseases (CVDs)


  Mug featuring the name Francesco spelled out in symbols of the chemical elements  Mug featuring the name Asia spelled out in the single letter amino acid code  Meerkat somebody mention coffee mug






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner