Abstract: Molecularly imprinted polymers which have been extensively investigated as selective adsorbents were constructed using a template molecule during the polymerization to gain template-specific cavities. In this study, we prepared cholesterol imprinted poly(2-hydroxyethyl methacrylate-methacryloyamidotryptophan) (PHEMA-MTrp) particles embedded composite membranes. These membranes were characterized through elemental analysis, FTIR, SEM, swelling tests, and surface area measurements. Adsorption experiments were performed in a batch experimental set-up, and the adsorption medium was either a methanol or intestinal-mimicking solution. Stigmasterol and estradiol were used as competing molecules in selectivity tests. Some results are as follows: the specific surface areas of MIP particle-embedded membranes, NIP particle-embedded membranes, and membranes without particles were 36.5, 29.2 and 13.7 m2/g, respectively. The imprinted membranes were 1.96 and 2.13 times more selective for cholesterol when compared to stigmasterol and estradiol used as competitor agents, respectively. Cholesterol adsorption capacity increased up to 23.43 mg/g with increasing cholesterol concentration of 2 mg/mL. The MIP particle-embedded composite membranes showed a negligible loss in cholesterol adsorption capacity after ten consecutive adsorption cycles using the same adsorbent
Template and target information: cholesterol
Author keywords: molecularly imprinted polymers (MIP), Particles embedding, Cholesterol imprinting, N-methacryloyl-(l)-tryptophan (MTrp)