Abstract: Molecular recognition for a specific cation depending on the change of the oxidation state of the metal catalyst component contained in the hydrogel network has been studied in a self-oscillating hydrogel. The selfoscillating hydrogels are synthesized by the copolymerization of N-isopropylacrylamide (NIPAAm), lead methacrylic acid (Pb(MAA)2), and Ru(bpy)32+ monomer as a metal catalyst component. The recognition for a specific cation (in this study, Ca2+ has been used) is characterized by the adsorbed amount of Ca2+ into the gel. The recognition of the gels for Ca2+ is higher at the temperature below the LCST, and also higher at the oxidized state than at reduced state of the metal catalyst component which corresponds to a more swollen state. Moreover, a propagating wave induced by a periodic change of the oxidation state with the diffusion phenomena in the oscillating hydrogel shows a possibility for temporal and site-specific molecular recognition due to the local swelling of the gel
Template and target information: calcium ion, Ca(II)
Author keywords: BZ reaction, Chemical waves, molecular recognition, Oscillating-hydrogel, Oxidation state