Abstract: An antibody-free immunoassay that makes use of a boronate affinity molecularly imprinted polymer (MIP) and surface enhanced Raman scattering (SERS) tags is described. It was applied to the specific determination of the carcinoembryonic antigen (CEA) in human serum. For the preparation of the boronate affinity array, a polymer capable of adsorbing glycoproteins was first synthesized on the surface of a glass slide with four spots using 4-vinylbenzeneboronic acid (VPBA) as the functional monomer, ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and ethylene glycol and cyclohexanol as porogens. The surface of the VPBA-Co-EGDMA can bind target glycoproteins. After specific capture of the glycoprotein, a "MIP-target glycoprotein-SERS tag" sandwich structure was formed by covalent interaction between the SERS nanotag (consisting of gold nanoparticles and 4-mercaptophenylboronic acid [MPBA]). CEA can be quantified in spiked serum with a detection limit of 0.1 ng mL-1 via the specific Raman band at 1098 cm-1
Template and target information: protein, carcinoembryonic antigen, CEA
Author keywords: sandwich structure, Nanoprobes, MIP array, Real sample analysis, Biomarker