Abstract: A novel electrochemical sensor for a neural cell adhesion molecule (CD56) was constructed by glycosyl imprinting. A sandwich-like multi-signal generation strategy was first proposed in glycosyl imprinting sensors via boric acid affinity. Glycosyl-imprinted polymers were formed by electro-polymerization with poly-sialic acid (PolySia) as a template molecule and p-aminobenzeneboronic (p-ABA) acid as a functional monomer. Methods such as scanning electron microscope (SEM), Fourier transform infrared spectrum (FT-IR), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) were used to characterize the successful formation of imprinted membranes. Confirmed by both simulation calculation and experimental results, a signal-amplified effect based on macromolecules was introduced for the first time. After re-absorption, aminobenzene borate was linked to the surface of the sensor by boric acid affinity due to the rich hexadoxyl structure of the CD56-terminal chain as a signal probe. Under optimal conditions, the detection limit of the sensor is as low as 0.47 ng/L, and it can be successfully applied to the detection of CD56 in human serum
Template and target information: poly-sialic acid, PolySia, neural cell adhesion molecule, CD56
Author keywords: Glycosyl imprinting, Electrochemical sensor, Multiple signal enhancement, Neural cell adhesion molecule, Boric acid affinity, macromolecules