Abstract: Nanofibrous polyporous membranes imprinted with cyhexatin (CYT) were formed via the ordered distribution of the imprints in electrospun nanofibers. The MIPs have a high mass transfer rate and enhanced adsorption capacity. In addition, a printed carbon electrode with enhanced sensitivity was developed via electrochemical fabrication of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). The molecularly imprinted sensor exhibits excellent selectivity and sensitivity for CYT. The structure and morphology of the nanohybrid films were characterized by using scanning electron microscopy, atomic force microscopy and chronoamperometry. The sensing performances were evaluated by cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy by using hexacyanoferrate(IV) as an electrochemical probe. The electrode, best operated at a working potential of around 0.16 V (vs. Ag/AgCl), has a linear response in the 1-800 ng mL-1 CYT concentration range and a detection limit of 0.17 ng mL-1 (at S/N = 3). The sensor demonstrated satisfactory recoveries when applied to the determination of CYT in spiked pear samples
Template and target information: cyhexatin, CYT
Author keywords: voltammetric sensor, Molecularly imprinted sensor, Electrospun nanofibers