Abstract: Studies on methanotrophs utilizing methane as sole source of carbon and energy are meaningful for governing global warming; although, the isolation of methanotrophs from nature is challenging. Here, surface imprinted polyurethane films were fabricated to selectively capture living methanotrophs from paddy soil. Two tracks of molecularly imprinted film based on polyurethane (PU-MIF1 and PU-MIF2) were imprinted using type I or II methanotrophs as template, respectively, and then reacted with polyethylene glycol, castor oil, and hexamethylene diisocyanate. Results demonstrated these PU-MIFs hold low water absorption rate and superior biocompatibility, which was highly demanded for maintaining cell viability. Superior selectivity and affinity of PU-MIFs toward their cognate methanotroph cells was observed by fluorescent microscopy. Atomic force microscopy revealed the adhesion force of PU-MIFs with its cognate cells was much stronger in comparison with noncognate ones. Using the as-prepared PU-MIFs, within 30 min, methanotroph cells could be separated from rice paddy efficiently. Therefore, the PU-MIFs might be used as an efficient approach for cell sorting from environmental samples
Template and target information: bacteria, methanotrophs, cells
Author keywords: cell isolation, methanotroph, Molecularly imprinted film, polyurethane, viability