Abstract: Molecularly imprinted polymer nanoparticles (MIPNPs) with the ability to recognize coenzyme Q10 (CoQ10) were synthesised in order to be employed as sorbent in a dispersive micro-solid phase extraction (DMSPE) for the determination of CoQ10 in a liver extract. CoQ10 is a redox-active, lipophilic substance integrated in the mitochondrial respiratory chain which acts as an electron carrier, shuttling electrons from complex I (NADH-ubiquinone oxidoreductase) and II (succinate-ubiquinone oxidoreductase) to complex III (ubiquinol-cytochrome c reductase), for the production of cellular energy. The MIPNPs were synthesised by precipitation polymerization using coenzyme Q0 as the dummy template, methacrylic acid as the functional monomer, an acetonitrile: water mixture as the porogen, ethylene glycol dimethacrylate as the crosslinker and potassium persulfate as initiator. The nanoparticles were characterized by microscopy, capillary electrophoresis, dynamic light scattering, N2 adsorption-desorption isotherms, and infrared spectroscopy. The MIPNPs demonstrated the presence of selective cavities complementary to the quinone nucleus of CoQ10, leading to a specific recognition of CoQ10 compared with related compounds. In the liver extract the relative CoQ10 peak area (CoQ10 area/total peak area) increased from 4.6% to 25.4% after the DMSPE procedure. The recovery percentage of CoQ10 from the liver matrix was between 70.5% and 83.7% quantified against CoQ10 standard processed under the same conditions. The DMSPE procedure allows the elution of almost all the CoQ10 retained (99.4%) in a small volume (200 μL), allowing the sample to be concentrated 2.5 times (LOD: 1.1 μg g-1 and LOQ: 3.7 μg g-1 of tissue). The resulted clean up of the sample, the improvement in peak shape and baseline and the reduction of interferences, evidence that the MIPNPs could potentially be applied as sorbent in a DMSPE with satisfactory results and with a minimum amount of sorbent (1 mg)
Template and target information: coenzyme Q10, CoQ10
Author keywords: Coenzyme Q10, Molecularly imprinted polymer nanoparticles, Dispersive micro solid phase extraction