Abstract: Molecularly imprinted polymer (MIP) for solid extraction and preconcentration of catechins have been successfully prepared by a thermal polymerization method using quercetin as template, 4-vinylpyridine as functional monomer and ethylene glycol dimethacrylate as crosslinker. A solution mixture of acetone and acetonitrile was used as porogen. Systematic investigations of the influence of monomer, cross-linker, porogen, as well as polymerization conditions on the properties of the MIPs were carried out. The quercetin MIPs were evaluated according to their selective recognition properties for quercetin, structurally related compounds (catechin, epigallocatechin gallate and epicatechin) and a unrelated compound of similar molecular size (α-tocopherol). Good binding was observed for quercetin, catechin and epigallocatechin gallate with an optimized MIP in a solid phase extraction system. Adsorption and kinetic characteristics were evaluated for catechins which indicated that the synthesized polymer had high adsorption capacity and contained homogeneous binding sites. Chemical and morphological characterization of the MIP was investigated by FTIR, SEM and BET, which confirmed a high degree of polymerization. Finally, the MIP was successfully applied to the clean-up and preconcentration of catechins from several natural samples
Template and target information: catechins, quercetin, catechin, epigallocatechin gallate, epicatechin
Author keywords: molecularly imprinted polymer, quercetin, catechins, isotherm, kinetics, Physical characterization, Natural samples