Abstract: Advances in medical treatments of a wide variety of pathophysiological conditions require the development of better therapeutic agents, as well as a combination of the required therapeutic agents with device-integrated biomaterials that can serve as sensors and carriers. Combination of micro- and nano-fabricated systems with intelligent biomaterials that have the ability to sense and respond is a promising avenue for the development of better diagnostic and therapeutic medical systems. Micro- and nano-electromechanical systems (MEMs and NEMs) are now becoming a family of potentially powerful new technologies for drug delivery, diagnostic tools, and tissue engineering. Improvements in micro- and nano-fabrication technologies have enhanced the ability to create better performing therapeutic systems for numerous pathophysiological applications. More importantly, MEMS- and NEMS-based tissue regeneration scaffolds, biosensors, and drug delivery devices provide new opportunities to mimic the natural intelligence and response of biological systems
Template and target information: Review - medical biomaterials
Author keywords: Responsive hydrogels, Intelligent therapeutics, Micro- and nano-electromechanical systems, Biosensors, controlled drug delivery, tissue engineering