MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Gong CB, Yang YH, Chen MJ, Liu LT, Liu S, Wei YB, Tang Q
Article Title: A photoresponsive molecularly imprinted polymer with rapid visible-light-induced photoswitching for 4-ethylphenol in red wine.
Publication date: 2019
Journal: Materials Science and Engineering: C
Volume: 96
Page numbers: 661-668.
DOI: 10.1016/j.msec.2018.11.089

Abstract: The trans to cis isomerization of the azobenzene chromophore in most azobenzene-based photoresponsive molecularly imprinted polymers (MIPs) is initiated by UV irradiation. This limits the application of these materials in cases where UV light toxicity is an issue, such as in biological systems, food monitoring, and drug delivery. Herein we report a tetra-ortho-methyl substituted azobenzene, (4-[(4-methacryloyloxy)-2,6-dimethyl phenylazo]-3,5-dimethyl benzenesulfonic acid (MADPADSA). The photoswitching of MADPADSA could be induced by visible-light irradiation (550 nm for trans to cis and 475 nm for cis to trans) in 4-hydroxyethylpiperazineethanesulfonic acid (HEPES) buffer-ethanol (4:1, v/v) at pH 7.0, however, the photoisomerization was slow. With the use of MADPADSA as a functional monomer, NaYF4:Yb3+,Er3+ as a substrate, 4-ethylphenol (4-EP) as a template, a novel photoresponsive surface molecularly imprinted polymer NaYF4:Yb3+,Er3+@MIP was obtained. The NaYF4:Yb3+,Er3+@MIP displayed rapid visible-light-induced photoswitching. The NaYF4:Yb3+,Er3+ substrate could efficiently increase the trans to cis isomerization rate of the photoresponsive MIP on its surface, which was faster than that of the corresponding azobenzene monomer MADPADSA. Possible reasons for this effect were investigated by fluorescence spectroscopy. NaYF4:Yb3+,Er3+@MIP displayed good specificity toward 4-EP with a specific binding constant (Kd) of 3.67 × 10-6 mol L-1 and an apparent maximum adsorption capacity (Qmax) of 10.73 μmol g-1, respectively. NaYF4:Yb3+,Er3+@MIP was applied to determine the concentration of 4-EP in red wine with good efficiency and a limit of detection lower than the value that could cause an unpleasant off-flavor
Template and target information: 4-ethylphenol, 4-EP
Author keywords: molecularly imprinted polymer, Visible-light-induced photoswitching, Azobenzene, 4-Ethylphenol, Red wine


  Live and Let MIP spoof movie poster customisable greetings card  Chemistry peptide mug  Chemists are fun customisable shirt






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner