Abstract: Recent progresses of molecular imprinting in metal oxide matrices were summarized. Application of the surface sol-gel process to mixtures of organic carboxylic acids and titanium alkoxide provides ultrathin layers of titania gel (10-20 nm thick), in which molecule-sized cavities are kept intact upon removal of the organic templates. The imprinted cavity reflects the structural and functional features of the template molecule, and the enantioselective imprinting of dipeptide isomers is observed. Robustness and flexibility of the ultrathin titania layer is demonstrated by the formation of interconnected titania hollow structures. Possible practical applications and unsolved problems of this technique are discussed. (C) 2003 Elsevier B.V. All rights reserved