Abstract: Synthetic materials capable of specifically recognition proteins are important in bioseparation and biosensors. In this study, bovine serum albumin-imprinted polyacrylamide gel beads were synthesized via inverse-phase seed suspension polymerization, using high-density crosslinked gel beads as core, low-density crosslinked polyacrylamide gel as imprinting shell. The surface of gel bead had a large quantity of well-distributed macropores, which were suited to let the proteins pass in and out. The selectivity test showed that imprinting gel beads exhibited good recognition for template proteins, as compared to the control protein. We consider the formation of multiple hydrogen bonds and complementary shape between the imprinting cavities and the template proteins are the two factors that lead to the imprinting effect. The imprinting beads had quick adsorption rate and possessed improved regeneration property in comparison with those prepared directly via inverse-phase suspension polymerization
Template and target information: protein, bovine serum albumin, BSA
Author keywords: Polyacrylamide gel beads, Bovine serum albumin, molecular imprinting, Recognition