Abstract: Molecular imprinting technology (MIT), also known as molecular template technology, is a new technology involving material chemistry, polymer chemistry, biochemistry, and other multi-disciplinary approaches. This technology is used to realize the unique recognition ability of three-dimensional crosslinked polymers, called the molecularly imprinted polymers (MIPs). MIPs demonstrate a wide range of applicability, good plasticity, stability, and high selectivity, and their internal recognition sites can be selectively combined with template molecules to achieve selective recognition. A molecularly imprinted fluorescence sensor (MIFs) incorporates fluorescent materials (fluorescein or fluorescent nanoparticles) into a molecularly imprinted polymer synthesis system and transforms the binding sites between target molecules and molecularly imprinted materials into readable fluorescence signals. This sensor demonstrates the advantages of high sensitivity and selectivity of fluorescence detection. Molecularly imprinted materials demonstrate considerable research significance and broad application prospects. They are a research hotspot in the field of food and environment safety sensing analysis. In this study, the progress in the construction and application of MIFs was reviewed with emphasis on the preparation principle, detection methods, and molecular recognition mechanism. The applications of MIFs in food and environment safety detection in recent years were summarized, and the research trends and development prospects of MIFs were discussed
Template and target information: review - MIPs in fluorescense sensing
Author keywords: molecularly imprinted polymer, Fluorescence sensor, food quality and safety, rapid detection, molecular recognition