MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Liu LY, Zhu XD, Zeng YB, Wang HL, Lu YX, Zhang J, Yin ZZ, Chen ZD, Yang YW, Li L
Article Title: An Electrochemical Sensor for Diphenylamine Detection Based on Reduced Graphene Oxide/Fe3O4-Molecularly Imprinted Polymer with 1,4-Butanediyl-3,3'-bis-l-vinylimidazolium Dihexafluorophosphate Ionic Liquid as Cross-Linker.
Publication date: 2018
Journal: Polymers
Volume: 10
Issue: (12)
Article Number: 1329.
DOI: 10.3390/polym10121329
Alternative URL: https://www.mdpi.com/2073-4360/10/12/1329

Abstract: In this paper, we report a new composite of reduced graphene oxide/Fe3O4-ionic liquid based molecularly imprinted polymer (RGO/Fe3O4-IL-MIP) fabricated for diphenylamine (DPA) detection. RGO/Fe3O4-IL-MIP was prepared with RGO/Fe3O4 as supporter, ionic liquid 1-vinyl-3-butylimidazolium hexafluorophosphate ([VC4mim][PF6]) as functional monomer, ionic liquid 1,4-butanediyl-3,3'-bis-l-vinylimidazolium dihexafluorophosphate ([V2C4(mim)2][(PF6)2]) as cross-linker, and diphenylamine (DPA) as template molecule. Fourier transform infrared spectroscopy, thermal gravimetric analysis, scanning electron microscopy, and vibrating sample magnetometer were employed to characterize the RGO/Fe3O4-IL-MIP composite. RGO/Fe3O4-IL-MIP was then drop-cast onto a glassy carbon electrode to construct an electrochemical sensor for DPA. The differential pulse voltammetry (DPV) peak current response for 20 μM DPA of RGO/Fe3O4-IL-MIP modified glassy carbon electrode (GCE) was 3.24 and 1.68 times that of RGO/Fe3O4-IL-NIP and RGO/Fe3O4-EGDMA-MIP modified GCEs, respectively, indicating the advantage of RGO/Fe3O4-IL-MIP based on ionic liquid (IL) as a cross-linker. The RGO/Fe3O4-IL-MIP sensor demonstrated good recognition for DPA. Under the optimized conditions, the RGO/Fe3O4-IL-MIP sensor exhibited a DPA detection limit of 0.05 μM (S/N = 3) with a linear range of 0.1 - 30 μM. Moreover, the new RGO/Fe3O4-IL-MIP based sensor detected DPA in real samples with satisfactory results
Template and target information: diphenylamine, DPA
Author keywords: Reduced graphene oxide, Fe3O4, molecularly imprinted polymer, ionic liquid cross-linker, Electrochemical sensor, Diphenylamine


  Periodic table Stew - the chemical formula for stew shirt  Periodic table Bag bag  Meerkat somebody mention coffee mug






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner