Abstract: Molecularly imprinted polymers (MIPs) using p-hydroxyhenzoic acid (p-HB), p-hydroxyphenylacetic acid (p-HPA) and p- hydroxyphenylpropionic acid (p-HPPA) as templates were synthesized. The performance of the templates and their analogues on polymer-based high performance liquid chromatography (HPLC) columns was studied. The imprinting effect of the MIP using p-HB as template is more obvious than that of MIP using either p-HPA or p-HPPA as template, and the mixture of p-HB and p-HPA can be well separated on the MIP using p-HB as template, but not on the blank. Interestingly, the recognition of MIP (p-HB as the template) to p-HB showed a synergistic effect. The retention factor of p-HB is not the sum of those of phenol and benzoic acid. We also found that the imprinting effect decreased when increasing the concentration of acetic acid in mobile phase. The possible reason is that acetic acid molecules occupied the binding sites of the polymer, thereby decreasing the concentration of binding sites. Furthermore, polymers, which showed specificity to 3,4- dihydroxybenzoic acid, can be prepared with p-HB as template. It is thus possible to synthesize a specific polymer for a compound that is either expensive or unstable by using a structurally similar compound as template. Copyright (C) 2001 John Wiley Sons, Ltd