MIPs logo MIPdatabase      MIP2020 Conference logo Use this space
Custom Search
Reference type: Journal
Authors: Poller AM, Spieker E, Lieberzeit PA, Preininger C
Article Title: Surface Imprints: Advantageous Application of Ready2use Materials for Bacterial Quartz-Crystal Microbalance Sensors.
Publication date: 2017
Journal: ACS Applied Materials & Interfaces
Volume: 9
Issue: (1)
Page numbers: 1129-1135.
DOI: 10.1021/acsami.6b13888

Abstract: Four different materials (two ab initio synthesized polyurethanes; ready-to-use: Epon1002F and poly(vinyl alcohol)/N-methyl-4(4'-formylstyryl)pyridinium methosulfate acetal) for the generation of Escherichia coli surface imprints are compared in this work. The use of commercially available, ready-to-use materials instead of self-synthesized polymers represents an innovative and convenient way of molecular imprint fabrication. This was herein investigated for large, biological templates. Fully synthesized imprint materials (polyurethanes) were developed and optimized regarding their OH excess and the use of catalyst in the polymerization reaction. No to low OH excess (0Gă˘10%) and a noncatalyzed synthesis were determined to be superior for the imprinting of the Gram-negative bacteria. Imprints were characterized using atomic force microscopy, with Epon1002F yielding the most distinguished imprints, along with a smooth surface. The imprints were afterward tested as plastic antibody coatings in a mass-sensitive quartz-crystal microbalance measurement. Dilutions of E. coli suspensions, down to a limit of detection of 1.4 x 10^7 CFU/mL, were successfully measured. Best results were obtained with Epon1002F and self-synthesized, stoichiometric polyurethane. Since ready-to-use Epon1002F was superior in terms of signal intensities and sensitivity, it can advantageously replace self-synthesized polymers for the generation of imprinted sensor surfaces. Easy day-to-day reproducibility and further shortening of imprint fabrication time are other advantages of employing the ready-to-use material instead of conventionally synthesized polymers
Template and target information: bacteria, Escherichia coli, E. coli
Author keywords: bacterial sensor, imprinting, QCM, ready-to-use materials, surface MIP

  Mister Benzene shirt  Mug featuring the name Peter spelled out in the single letter amino acid code  Beach bunny periodic table shirt

Molecules Special Issue call      Appeal for information


Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.

Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:

Mickey Mouse 90th Anniversary banner