Abstract: The quercetin molecularly imprinted polymer microspheres were prepared by reversible addition-fragmentation chain transfer free radical polymerization combined with precipitation method (RAFTPP) with the dibenzyl trithiocarbonate (DBTTC) as RAFT reagent and quercetin as template molecule. The effects of solvents and cross-linking agent on the morphology and size of polymers were investigated, and the polymers were preliminarily screened by scanning electron microscope. The adsorption experiment and adsorption model analysis were carried out on the molecularly imprinted polymers (R-MIP) prepared under optimal condition and on the molecularly imprinted polymers prepared with a traditional precipitation polymerization (T-MIP). Consequently it was determined that, QR-MIP max was 37.71 mg g-1 and QT-MIP max was 29.61 mg g-1. The results showed that the R-MIP had a good adsorptive property and was obviously superior to T-MIP. R-MIP was used as solid-phase extraction filler in combination with the HPLC method to conduct enrichment, separation and measurement of the quercetin in honeysuckle and clove leaves, which effectively removed the matrix interference and the recovery rate of this method was 93.8-102.9%
Template and target information: quercetin
Author keywords: quercetin, RAFTPP, precipitation polymerization, Solid-phase extraction