Abstract: Two types of reversible addition-fragmentation chain transfer molecularly imprinted polymers (RAFT-MIPs) were synthesized using different monomers, which were methacrylic acid functionalized β-cyclodextrin (MAA-β-CD) and 2-hydroxyethyl methacrylate functionalized β-cyclodextrin (HEMA-β-CD), via reversible addition-fragmentation chain transfer (RAFT) polymerization, and were represented as RAFT-MIP(MAA-β-CD) and RAFT-MIP(HEMA-β-CD), respectively. Both RAFT-MIPs were systematically characterized using Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), Brunauer-Emmett-Teller (BET), and rebinding experimental study. The results were compared with MIPs synthesized via the traditional radical polymerization (TRP) process, and were represented as MIP(MAA-β-CD) and MIP(HEMA-β-CD). Morphology results show that RAFT-MIP(MAA-β-CD) has a slightly spherical feature with a sponge-like form, while RAFT-MIP(HEMA-β-CD) has a compact surface. BET results show that the surface area of RAFT-MIP(MAA-β-CD) is higher than MIP(MAA-β-CD), while the RAFT-MIP(HEMA-β-CD) surface area is lower than that of MIP(HEMA-β-CD). Rebinding experiments indicate that the RAFT agent increased the binding capacity of RAFT-MIP(MAA-β-CD), but not of RAFT-MIP(HEMA-β-CD), which proves that a RAFT agent does not always improve the recognition affinity and selective adsorption of MIPs. The usability of a RAFT agent depends on the monomer used to generate potential MIPs.
Template and target information: benzylparaben, BzP
Author keywords: molecularly imprinted polymer, methacrylic acid functionalized β-cyclodextrin, 2-hydroxyethyl methacrylate functionalized β-cyclodextrin, RAFT agent