Abstract: Ratiometric fluorescent sensors have shown great prospect in chemical monitoring and recognition due to its high intuitiveness, accurateness, and visualization. In this work, the ratiometric fluorescent sensors, which includes a blue fluorescent Carbon quantum dots (CQDs) as internal standard material, and a red fluorescent boric acid-modified CdTe QDs as response signal. Then we choose dopamine (DA) as template, 3-phenylboronic acid (APBA) for functional monomers, tetraethyl orthosilicate (TEOS) for cross-linker to synthesize double ratio molecularly imprinted polymers (DR-MIPs) that can identify dopamine selectively and sensitively. The DR-MIPs has better capability of selective recognition, obvious anti-ion interference, rapid detection and good visualization. Furthermore, the unique DR-MIPs was proved as efficient visual sensors for determination of DA in human serum rapidly and efficiently. The DR-MIPs still displayed well accuracy, and the potential prospects of this smart sensor is clearly demonstrated in the context of modern clinical medicine
Template and target information: dopamine, DA
Author keywords: dopamine, Quantum dots, Ratiometric fluorescent, molecularly imprinted, Visual detection