Abstract: Protein imprinting technology is of interest in drug delivery, biosensing, solid-phase extraction, and so forth. However, the efficient recognition and separation of proteins have remained challenging to date. Toward this, under the assistance of Ni2+-bovine serum albumin (BSA) directional coordination strategy, magnetic BSA-imprinted materials had been synthesized via dopamine self-polymerization on hollow Fe3O4@mSiO2 microspheres (mSiO2 referred as mesoporous silica). The well-defined imprinted microspheres possessed more satisfactory adsorption capacity (266.99 mg/g), enhanced imprinting factor (5.45), and fast adsorption saturation kinetics (40 min) for BSA, superior to many previous reports. Benefiting from the coordinate interaction between Ni2+ and BSA, these fabricated microspheres exhibited excellent specificity not only in individual and competitive protein rebinding samples but also in bovine serum. Combined with the directional coordination method, the magnetic-imprinted composite materials to selectively capture target proteins could provide promising potential in applications
Template and target information: protein, bovine serum albumin, BSA
Author keywords: Molecularly imprinted polymers, directional coordination, dopamine, rebinding specificity, effective adsorption