MIPs logo MIPdatabase      MIP2024 Conference banner, website is now open, register on site for important updates   
Custom Search
Reference type: Journal
Authors: Bakkour R, Hofstetter TB
Article Title: Molecularly imprinted polymers for the pre-concentration of polar organic micropollutants for compound-specific isotope analysis.
Publication date: 2014
Journal: Geophysical Research Abstracts
Volume: 16
Page numbers: EGU2014-3783-1.
Alternative URL: http://meetingorganizer.copernicus.org/EGU2014/EGU2014-3783-1.pdf

Abstract: Compound-specific isotope analysis (CSIA) is a promising tool for assessing transformations of polar organic micropollutants such as pesticides, pharmaceuticals and consumer chemicals in aquatic systems. There are, however, two major challenges: (1) Polar organic micropollutants occur at very low levels and, as a consequence, large amounts of water are required to achieve analyte enrichment with factors of 50'000 and more, inevitably leading to large interferences from the aqueous matrix. (2) The polarity of these micropollutants impedes the use of typical non-polar sorbates for solid-phase enrichment. In view of these challenges, the use of molecularly imprinted polymers (MIP) is a promising approach to produce tailor-made materials for highly selective enrichment of polar organic micropollutants with reduced matrix interferences. In this work, we explore the use of MIP to selectively enrich benzotriazoles, an important class of polar aquatic micropollutants. Polymers were synthesized in the presence of 5,6-dimethyl-1H-benzotriazole as a template, which leaves cavities in the polymer matrix with a very high affinity to the template and closely related structures including our main target analyte, 1H-benzotrizole. After extraction of the template, specific recognition of substituted benzotriazoles is expected by the synthesized MIPs. As the MIP has no specific affinity to the matrix, there is also expected to be negligible enrichment of the matrix. Retention factors of the MIP are compared for different synthetic procedures and to non-imprinted polymers where no specific intermolecular interactions with benzotriazoles are expected. Optimum performance of the MIP is demonstrated in this study in terms of the selectivity of enrichment, recoveries of analytes and the goodness of carbon and nitrogen isotope ratios measured by gas chromatography isotopic ratio mass spectrometry (GC/IRMS). This approach will enable us to enrich large amounts of aqueous samples while minimizing interferences from organic matter and other organic pollutants in the sample matrix and thus offer new perspectives for CSIA of polar organic micropollutants.
Template and target information: benzotriazoles, 1H-benzotrizole


  Eat, sleep, imprint, repeat shirt  SMI logo mug  Woman of proper-tea mug






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner