MIPs logo MIPdatabase      MIP2020 Conference logo Use this space
Custom Search
Reference type: Journal
Authors: Guan GJ, Liu BH, Wang ZY, Zhang ZP
Article Title: Imprinting of Molecular Recognition Sites on Nanostructures and Its Applications in Chemosensors.
Publication date: 2008
Journal: Sensors
Volume: 8
Issue: (12)
Page numbers: 8291-8320.
DOI: 10.3390/s8128291

Abstract: Biological receptors including enzymes, antibodies and active proteins have been widely used as the detection platform in a variety of chemo/biosensors and bioassays. However, the use of artificial host materials in chemical/biological detections has become increasingly attractive, because the synthetic recognition systems such as molecularly imprinted polymers (MIPs) usually have lower costs, higher physical/chemical stability, easier preparation and better engineering possibility than biological receptors. Molecular imprinting is one of the most efficient strategies to offer a synthetic route to artificial recognition systems by a template polymerization technique, and has attracted considerable efforts due to its importance in separation, chemo/biosensors, catalysis and biomedicine. Despite the fact that MIPs have molecular recognition ability similar to that of biological receptors, traditional bulky MIP materials usually exhibit a low binding capacity and slow binding kinetics to the target species. Moreover, the MIP materials lack the signal-output response to analyte binding events when used as recognition elements in chemo/biosensors or bioassays. Recently, various explorations have demonstrated that molecular imprinting nanotechniques may provide a potential solution to these difficulties. Many successful examples of the development of MIP-based sensors have also been reported during the past several decades. This review will begin with a brief introduction to the principle of molecular imprinting nanotechnology, and then mainly summarize various synthesis methodologies and recognition properties of MIP nanomaterials and their applications in MIP-based chemosensors. Finally, the future perspectives and efforts in MIP nanomaterials and MIP-based sensors are given
Template and target information: Review - MIPs in sensors
Author keywords: Molecularly imprinted polymers, nanostructures, Chemical detection, sensors


  mipdatabase.com logo imprinters do it in bulk shirt  Science Teacher peptide mug  Perpetual student shirt

Molecules Special Issue call      Appeal for information






 

Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.


Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:



Mickey Mouse 90th Anniversary banner