MIPs logo MIPdatabase    HoHoHo Use this space
Custom Search
Reference type: Journal
Authors: Sergeyeva TA, Slinchenko OA, Gorbach LA, Matyushov VF, Brovko OO, Piletsky SA, Sergeeva LM, Elska GV
Article Title: Catalytic molecularly imprinted polymer membranes: Development of the biomimetic sensor for phenols detection.
Publication date: 2010
Journal: Analytica Chimica Acta
Volume: 659
Issue: (1-2)
Page numbers: 274-279.
DOI: 10.1016/j.aca.2009.11.065
Alternative URL: http://hdl.handle.net/1826/4105

Abstract: Portable biomimetic sensor devices for the express control of phenols content in water were developed. The synthetic binding sites mimicking active site of the enzyme tyrosinase were formed in the structure of free-standing molecularly imprinted polymer membranes. Molecularly imprinted polymer membranes with the catalytic activity were obtained by co-polymerization of the complex Cu(II)-catechol-urocanic acid ethyl ester with (tri)ethyleneglycoldimethacrylate, and oligourethaneacrylate. Addition of the elastic component oligourethaneacrylate provided formation of the highly cross-linked polymer with the catalytic activity in a form of thin, flexible, and mechanically stable membrane. High accessibility of the artificial catalytic sites for the interaction with the analyzed phenol molecules was achieved due to addition of linear polymer (polyethyleneglycol Mw 20,000) to the initial monomer mixture before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) were formed. The cross-linked component of the semi-IPN was represented by the highly cross-linked catalytic molecularly imprinted polymer, while the linear one was represented by polyethyleneglycol Mw 20,000. Extraction of the linear polymer from the fully formed semi-IPN resulted in formation of large pores in the membranes' structure. Concentration of phenols in the analyzed samples was detected using universal portable device oxymeter with the oxygen electrode in a close contact with the catalytic molecularly imprinted polymer membrane as a transducer. The detection limit of phenols detection using the developed sensor system based on polymers-biomimics with the optimized composition comprised 0.063ámM, while the linear range of the sensor comprised 0.063-1ámM. The working characteristics of the portable sensor devices were investigated. Storage stability of sensor systems at room temperature comprised 12 months (87%). As compared to traditional methods of phenols detection the developed sensor system is characterized by simplicity of operation, compactness, and low cost
Template and target information: catechol
Author keywords: phenols, Polymers-biomimics, Polymer catalysts, Molecularly imprinted polymers, sensor, Tyrosinase, Environmental monitoring

  Shirt featuring the name Sergey spelled out in symbols of the chemical elements  Mug featuring the name Tanya spelled out in the single letter amino acid code  Woman of proper-tea mug

Molecules Special Issue call      Appeal for information


Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.

Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:

Mickey Mouse 90th Anniversary banner