MIPs logo MIPdatabase    HoHoHo Use this space
Custom Search
Reference type: Journal
Authors: Rosellini E, Barbani N, Giusti P, Ciardelli G, Cristallini C
Article Title: Novel bioactive scaffolds with fibronectin recognition nanosites based on molecular imprinting technology.
Publication date: 2010
Journal: Journal of Applied Polymer Science
Volume: 118
Issue: (6)
Page numbers: 3236-3244.
DOI: 10.1002/app.32622

Abstract: Abstract: Biomimetic materials for application in the field of tissue engineering are usually obtained through covalent bonding between the polymer backbone and the bioactive molecules. A totally new approach, proposed for the first time by our research group, for the creation of advanced synthetic support structures for cell adhesion and proliferation is represented by molecular imprinting (MI) technology. In this article, we describe the synthesis and characterization of molecularly imprinted polymers with recognition properties toward a fibronectin peptide sequence and their application as functionalization structures. Polymers, in the form of densely fused microgel particles, were obtained by precipitation polymerization. The imprinted particles showed good performance in terms of recognition capacity and quantitative rebinding; moreover, the epitope effect was observed, with the particles able to recognize and rebind not only the specific peptide sequence but also a larger fibronectin fragment. The cytotoxicity tests showed normal vitality in C2C12 myoblasts cultured in a medium that was put in contact with the imprinted particles. Therefore, imprinted particles were used to functionalize synthetic polymeric films by deposition on their surface. The deposition of the imprinted particles did not alter their specific recognition and rebinding behavior. The most remarkable result was obtained by the biological characterization: in fact, the functionalized materials appeared able to promote cell adhesion and proliferation. These results are very promising and suggest that MI can be used as an innovative functionalization technique to prepare bioactive scaffolds with an effective capacity for improving tissue regeneration. 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010
Template and target information: peptide, fibrinogen, protein
Author keywords: functionalization of polymers, molecular imprinting, peptides

  Bag featuring the name Caterina spelled out in symbols of the chemical elements  Chemistry peptide mug  Chemists are fun customisable shirt

Molecules Special Issue call      Appeal for information


Join the Society for Molecular Imprinting
Logo of the Society for Molecular Imprinting

New items RSS feed
new items RSS feed  View latest updates

Sign-up for e-mail updates:
Choose between receiving an occasional newsletter or more frequent e-mail alerts.
Click here to go to the sign-up page.

Is your name elemental or peptidic? Enter your name and find out by clicking either of the buttons below!
Other products you may like:
view listings for MIP books on eBay:

Mickey Mouse 90th Anniversary banner